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M-rank and meager groups

by

Ludomir N e w e l s k i (Wrocław)

Abstract. Assume p∗ is a meager type in a superstable theory T . We investigate
definability properties of p∗-closure. We prove that if T has < 2ℵ0 countable models then
the multiplicity rank M of every type p is finite. We improve Saffe’s conjecture.

0. Introduction. Throughout the paper, T is a superstable theory in
a countable language L, and we work within a monster model C = Ceq of
T . The general references are [Ba, Sh, Hru], see also [Ne2]. Suppose p is a
regular stationary type. Associated with p is a closure operator clp defined
by a ∈ clp(A) iff stp(a) is hereditarily orthogonal to p. Restricted to p(C),
clp induces a pre-geometry, and is equivalent to the closure operator induced
by forking dependence. For instance, if p is minimal then clp on p(C) equals
acl. So when a, b, c are distinct points on a line in p(C) (with respect to the
clp-pregeometry), then a ∈ acl(b, c). We show that in fact in many cases
clp(a) is definable over clp(b) and clp(c), that is, in the quotient geometry
p-closure equals definable closure.

These cases include the case of properly weakly minimal p, and more gen-
erally of a meager type p. Now let us recall this and other notions introduced
in [Ne2, Ne3].

Suppose s(x) is a partial type over C. Then [s] denotes the class of partial
types over C, with free variable x, containing s. For any set A let TrA(s)
(the trace of s over A) be the set {stp(a/A): a realizes s}. We denote the
set of strong types over A by Str(A), and identify it with S(acl(A)). Tr(s)
is Tr∅(s). We refer the reader to [Ne3] for the properties of Tr. Sometimes,
to specify clearly the variable in the types in question, we write e.g. Strx(A)
to denote the set of strong types over A in variable x. We shall often use
the following regularity criterion of Hrushovski [Hru]:
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Suppose p is regular and q = stp(a/X) is p-simple, of p-weight 1. Then
q is regular iff clp(X) ∩ acl(Xa) ⊆ acl(X).

Now suppose P is a closed subset of Strx(A). We say that forking is
meager on P if for every formula ϕ(x) forking over A, TrA(ϕ)∩P is nowhere
dense in P .

Assume p is a regular stationary type. We say that a formula ϕ(x) over
A is a p-formula (over A) if the following conditions hold:

(a) ϕ is p-simple of p-weight 1.
(b) If a ∈ ϕ(C) and wp(a/A) > 0 then stp(a/A) is regular, non-orthogonal

to p.
(c) The set Pϕ = {r(x) ∈ Str(A) : wp(r) > 0} is closed.
(d) p-weight 0 is definable on ϕ(C), that is, if a ∈ ϕ(C) and wp(a/Ac) = 0

then for some formula ψ(x, y) over acl(A), true of (a, c), whenever
ψ(a′, c′) holds then wp(a′/Ac′) = 0.

If ϕ(x) satisfies only (a), (c), (d) above, we say that ϕ is a weak p-formula
over A. We say that a is p-proper over A if a ∈ ϕ(C) for some weak p-formula
ϕ over A, and wp(a) > 0. “p-proper” means p-proper over some finite subset
of clp(∅).

By [H-S], p-formulas exist over many finite sets A (for non-trivial p). It
is quite easy to find them when T is small (see [Ne2]). Notice that if p is
weakly minimal, then some weakly minimal ϕ(x) ∈ p is a p-formula. Also,
if ϕ is a p-formula over A then ϕ is a p-formula over any A′ containing A.
The properties of p-formulas ensure that we can work with clp there just as
with acl in the weakly minimal case.

R e m a r k 0.1. If ϕ(x) is a weak p-formula over A then for some A′ ⊂
clp(A) with A ⊂ A′ and A′ \ A finite, over A′ there is a p-formula ϕ′(x) `
ϕ(x).

P r o o f. Choose ϕ′ ` ϕ over clp(A) with p-weight 1 and minimal∞-rank.
Let ϕ′ be over A′. By Hrushovski’s regularity criterion this works.

We say that p is meager if for some (equivalently: any) p-formula ϕ (over
some A), forking is meager on Pϕ. In [Ne2] we prove that if p is meager
then p is locally modular and non-trivial. For example, any properly weakly
minimal non-trivial type is meager. Also, the locally modular type obtained
in [L-P] by minimizing the∞-rank of a type with no Morley rank, is meager.
In [Ne2, Ne3] we find (in a small T ) many meager types.

Suppose d is a closure operator on a subset X of C (X may be, for in-
stance, p(C)). We say that {a0, a1, a2} ⊂ X is a d-triangle over A if a0, a1, a2

are pairwise independent over A (in the sense of forking), and for i < 3,
ai ∈ d(A ∪ {a0, a1, a2} \ {ai}) \ d(A). When A = ∅, we omit it in this
definition.
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In this paper we prove that meager types have some of the properties of
properly weakly minimal types. This sheds a new light also on the proofs
of these properties in the weakly minimal case. Suppose p is a meager type.
Since p is non-trivial, we get a clp-triangle. Given a clp-triangle {a0, a1, a2}
with ai p-proper, we find a dcl-triangle {a′0, a′1, a′2} with a′i p-proper and
clp(ai) = clp(a′i). This in turn provides us with a clp(∅)-definable regular
group G, with generics non-orthogonal to p (generalizing [Hru, Proposi-
tion 5.10]).

In Section 2 we further investigate such groups G and prove (using the
results from [Ne2, Ne3]) that if T has < 2ℵ0 countable models then the mul-
tiplicity rankM(q) is finite for every q (this notion is explained in Section 2).
This improves a result from [Ne2], where we proved only that M(q) < ∞,
and proves a conjecture from [Ne1], saying that under the few models as-
sumption, M≤ U . Also, we improve Saffe’s condition from [Ne2].

1. The geometry of a meager type. In this section we assume p
is a regular locally modular strong type over ∅. Also, cl and proper mean
clp and p-proper here. We are going to investigate geometrical properties of
p-closure. So it is natural to work within p-formulas. However, for technical
reasons it is convenient to work with p-proper elements, within a broader
set-up of weak p-formulas. The proof of the next proposition is technical.
Essentially it is parallel to the proof of Proposition 5.10 in [Hru], which deals
with weakly minimal types. In the weakly minimal case traces of forking
formulas are finite, in the meager case they are merely nowhere dense. So
we have to modify the argument from [Hru, 5.10] just as we modified the
proof that a properly weakly minimal type is locally modular to show that
a meager type is locally modular [Ne2].

Proposition 1.1. If p is meager and {a0, a1, a2} is a cl-triangle, with all
ai proper , then for some finite C ⊂ cl(∅) there is a dcl-triangle {a′0, a′1, a′2}
over C with all a′i proper.

P r o o f. In this proof let C = cl(∅); however, notice that C can always be
replaced by a sufficiently large finite subset. Let ϕ(x) be a weak p-formula
over C, true of a0, a1 and a2. Let a′ = a1a2 and B = cl(a0) ∩ acl(a0a

′).
Choose a large finite fragment a′0 ⊂ B of Cb(a′/B) such that a′^B (a′0).
Since wp(a′/B) = 1 and clp(B) ∩ acl(Ba) ⊆ B, we see that stp(a′/B) is
regular, hence also stp(a′/a′0) is regular.

Clearly, a′0 is cl-interdependent with a0, hence wp(a′0) = 1. Again by
the regularity criterion, stp(a′0/C) is regular, non-orthogonal to p. We shall
find a weak p-formula over C, true of a′0, witnessing that a′0 is proper. Since
wp(a0/a

′
0) = 0, choose a formula δ(x, y) ` ϕ(x) (over C), true of (a0, a

′
0),
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such that whenever δ(c, c′) holds then wp(c/c′) = 0. Also, we may say of a0,
a′0 the following:

(a) for generic a′1
s≡ a1 (C), there is a′2 in ϕ(C) with wp(a′2/a0a

′
1) = 0 and

a′0 ∈ acl(a0a
′
1a
′
2).

So we may assume that if δ(c, c′) holds then (a) holds with c, c′ in place
of a0, a′0. It follows that δ(c, c′) implies wp(c′) ≤ 1. Indeed, choose a′1, a′2 as
in (a) (with c, c′ in place of a0, a′0). We deduce that wp(c′/ca′1) = 0. Since
cc′^a′1 (C), also wp(c′/c) = 0, hence wp(c) ≤ 1 implies wp(c′) ≤ 1.

Let ψ(y) = ∃x δ(x, y). Using δ, we see that p-weight 0 is definable on
ψ(C) and ψ is a weak p-formula over C.

Now we shall prove that a′0 ∈ dcl({a1, a2} ∪ acl(C)), or else for some
a′′1 , a

′′
2 ∈ ϕ(C), {a′0, a′′1 , a′′2} is a cl-triangle over C with a′0 ∈ dcl({a′′1 , a′′2} ∪

acl(C)). Suppose not. Then there is a′′0 such that

(b) a′0
s≡ a′′0 (C), a′0 ≡ a′′0 (Ca′) and a′0 6= a′′0 .

Claim. Whenever a′′0 satisfies (b) then a′0^a′′0 (C) and wp(a′/a′0a
′′
0)=0.

In particular , some χ(x1, x2, y0, y1) over acl(C), true of (a1, a2, a
′
0, a
′′
0), wit-

nesses wp(a1a2/a
′
0a
′′
0) = 0.

P r o o f. If both a′^a′0 (a′′0C) and a′^a′′0 (a′0C), then using the fact that
a′0 is a part of Cb(a′/a′0C), we would get a′0 = a′′0 , a contradiction. Thus,
for example, a′ /̂ a′0 (a′′0C), hence wp(a′/a′0a

′′
0) < wp(a′/a′0). It follows that

a′′0 6∈ cl(a′0), hence necessarily a′0^a′′0 (C). We see that wp(a′/a′0a
′′
0) = 0.

The rest is easy.

By compactness, possibly modifying somewhat χ, we find a formula
δ(x1, x2, y) over acl(C), true of (a1, a2, a

′
0), such that for every a′1, a′2,

(c) whenever δ(a′1, a
′
2, a
′
0), δ(a′1, a

′
2, a
′′
0) and a′0 6= a′′0 hold then χ(a′1, a

′
2,

a′0, a
′′
0) holds.

Without loss of generality, δ(x1, x2, y) implies ϕ(x1)∧ϕ(x2). Let δ′(x1, y)
be ∃x2 δ(x1, x2, y). Since δ′ is true of (a1, a

′
0), δ′(x1, a

′
0) does not fork over

C, and is of p-weight 1. By the open mapping theorem, we choose a formula
δ′′(x1) over acl(C) with

stp(a1/c) ∈ [δ′′] ∩ Str(C) ⊂ TrC(δ′(x1, a
′
0)) ∩ [ϕ].

By Remark 0.1, choose δ∗(x) below δ′′(x) which is a p-formula over some
finite subset of cl(∅). So δ∗ is a p-formula over C.

Fix a′′0
s≡a′0 (C) with a′′0 ^a′0(C). This determines uniquely stp(a′0a

′′
0/C).

Since p is meager, we can choose r ∈ Pδ∗ \ TrC(∃x2 χ(x1, x2, a
′
0, a
′′
0)). Let

a′′1 realize r, and without loss of generality a′′1 ^a′0a
′′
0 (C).

It follows that δ′(a′′1 , a
′
0) holds and wp(a′′1a

′
0) = 2. Hence we can choose

a′′2 so that δ(a′′1 , a
′′
2 , a
′
0) holds. If a′0 ∈ dcl(a′′1 , a

′′
2 , acl(C)), we are done.
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Otherwise, we can choose a∗0 6= a′0 with a∗0
s≡a′0 (C) and a∗0 ≡ a′0 (a′′1a

′′
2C).

By (c), χ(a′′1 , a
′′
2 , a
′
0, a
∗
0) holds, hence we get a∗0 ^a′0 (C) and a′0a

′′
0

s≡a′0a∗0 (C).
Thus ∃x2 χ(x1, x2, a

′
0, a
′′
0) is consistent with r, a contradiction.

Notice that if we had e.g. a1 ∈ dcl(a0, a2), then choosing a′0 ⊂ Cb(a′/b)
large enough, we might get a1 ∈ dclC(a′0, a2), as well as a′0 ∈ dclC(a1a2),
and in the case where a′0 ∈ dclC(a′′1a

′′
2), by suitable choice of δ we can ensure

that a′′1 ∈ dclC(a′0a
′′
2). Thus, repeating the above construction twice we get

what we want.

Examining the proof of Proposition 1.1 we get the following.

R e m a r k 1.2. Suppose ϕ is a weak p-formula over ∅, p is meager and
orthogonal to any type with ∞-rank < R∞(ϕ). Then there is a clp-triangle
{a′0, a′1, a′2} which is also a dcl-triangle over some finite C ⊂ cl(∅), such that
for every i < 3, R∞(a′i/C) = R∞(ϕ) and a′i is proper.

P r o o f. Since every type of ∞-rank < R∞(ϕ) is orthogonal to p, we see
that in fact ϕ is a p-formula. Hence by non-triviality of p there is a cl-triangle
{a0, a1, a2} ⊂ ϕ(C). In the proof of Proposition 1.1 we get as an intermediate
step a cl-triangle {a′0, a1, a2} (or {a′0, a′′1 , a′′2}) such that a′0 ∈ dclC(a1a2) (or
a′0 ∈ dclC(a′′1a

′′
2)), and for i = 1, 2, R∞(ai) = R∞(ϕ) (R∞(a′′i ) = R∞(ϕ)

respectively). This implies R∞(a′0/C) = R∞(ϕ).

The next corollary generalizes [Hru, 5.10]. As in [Hru], in view of [Hru,
5.7], Proposition 1.1 and the next corollary tell us something new mainly in
a very special case when for each a proper over A, tp(a/cl(A)) is modular.
Nevertheless, their proofs illustrate how the meager forking assumption can
successfully replace the assumption of algebraicity of forking in the weakly
minimal case. We apply this corollary in the next section to prove that when
T is superstable with few countable models, then M(q) is finite for any q.

Corollary 1.3. If p is meager and ϕ(x) is a weak p-formula over A
then in ϕ(C)eq there is a cl(A)-definable regular group G with generic types
non-orthogonal to p. If p is orthogonal to any type with ∞-rank < R∞(ϕ),
then we can find such a G with R∞(G) = R∞(ϕ).

P r o o f. We sketch the proof in the case where p is orthogonal to any
type with ∞-rank < α = R∞(ϕ), giving a group G of rank α (this case
requires more care).

Without loss of generality, A is finite. By Remark 1.2, extending A a
little, we find {a, b, c} which is a clp- and dcl-triangle over A. Moreover, we
can assume that r = stp(a/A), r′ = stp(b/A) and r′′ = stp(c/A) are regular,
non-orthogonal to p and have ∞-rank α. So c defines an invertible function
mapping r|Ac to r′|Ac. Let σ be the germ of this function. So σ ∈ dcl(Ac),
stp(σ/A) is regular and R∞(σ/A) = α.
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Choose σ′
s≡ σ (A) with σ′^σ and let τ = σ−1 ◦ σ′. By [Hru, 5.2],

q = stp(τ/A) is regular and q is closed under generic composition. More-
over, since τ , σ, σ′ are pairwise A-independent and τ ∈ dclA(σ, σ′), we get
R∞(τ/A) = α. By [Hru, Theorem 1] we get a group G definable over acl(A)
and a definable embedding of τ into the set of generic types of G. Clearly,
G satisfies our demands.

In order for the assertion of Proposition 1.1 to be true we do not need
meagerness of p. Indeed, below we show that it is sufficient to assume there
is a cl(∅)-definable regular group G non-orthogonal to p. By Corollary 1.3,
when p is meager then there is such a group. Then Corollary 1.6 below shows
that we can strengthen the conclusion of Proposition 1.1 by requiring that
a′i ∈ cl(ai) for i < 3.

Suppose a is proper, a ∈ cl(A). We say that cl(a) is geometrically de-
finable over A if for some formula ϕ(x) over A of p-weight 0, we have
ϕ(C) ⊂ cl(a) and ϕ(C) 6⊂ cl(∅). If moreover a is a generic element of a
0-definable regular group G, then we say that a/G− is geometrically defin-
able over A if for some ϕ as above, ϕ(C) ⊂ a + G−. Here G− = cl(∅) ∩ G.
Notice that if cl(a) is geometrically definable over A, then the point corre-
sponding to cl(a) in the geometry induced by cl is Aut(C/A)-invariant.

For the rest of this section assume that there is a 0-definable locally
modular abelian group G, and p is the generic type of G0. Recall that proper
means p-proper here. We shall use the following lemma.

Lemma 1.4. Assume a is proper , tp(a/cl(∅)) is not modular , a′ ≡
a (cl(∅)), a′^a (cl(∅)) and c ∈ cl(aa′) ∩ G0 \ cl(∅). Then there are proper
b ⊃ a and b′ ⊃ a′ with a′b′ ≡ ab (cl(∅)) such that if c′ ≡ c (ab′) then
c− c′ ∈ G− and if a′′c′ ≡ ac (b′) and c− c′ ∈ G− then a′′ ∈ cl(a).

P r o o f. Notice that for any c′ ∈ G0 ∩ cl(aa′) \ cl(∅), c′ ∈ cl(c) (otherwise
a ∈ cl(cc′), hence tp(a/cl(∅)) would be modular). Let b0 ⊂ A = cl(a′) ∩
acl(aa′c) be so large that a′ ⊂ b0 and ac^A (b0). Clearly b0 is proper (see
the proof of Proposition 1.1). We shall prove that

(a) c′a
s≡ ca (b0) implies c− c′ ∈ G−.

To prove (a), consider c∗a∗
s≡ ca (b0) with c∗a∗^ca (b0). We have

wp(aca∗c∗) = 3, c^c∗ and a^a∗ (cl(∅)). Hence by modularity there is c0 ∈
cl(aa∗)∩G0\cl(∅) (p is modular). If c0 6∈ cl(cc∗), then a ∈ cl(cc∗c0), meaning
that stp(a/cl(∅)) is modular, a contradiction. So c0 ∈ cl(cc∗)∩cl(aa∗). More-
over, for each c′0 ∈ G0∩cl(cc∗)∩cl(aa∗)\cl(∅), c′0 ∈ cl(c0). Since c0 ∈ cl(cc∗),
by [Hru], for some pseudo-endomorphisms α, β of G0, c0 ∈ αc+βc∗. Clearly
α, β are invertible, hence without loss of generality α = 1. (One can show
that this implies β = −1, but we will not need this.) Anyway, α, β are de-
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finable over cl(∅), so expanding b0 a little, we can assume they are definable
over b0.

Now suppose c′a
s≡ca (b0), and we must show c−c′ ∈ G−. Since stp(ca/b0)

is regular, c′a /̂ ca (b0) and ca^c∗a∗ (b0), we get c′a^c∗a∗ (b0) and c′a
s≡

c∗a∗ (b0).
Hence c′ + βc∗ ∈ cl(aa∗) and c + βc∗ ∈ cl(aa∗), which gives c′ + βc∗ ∈

cl(c+βc∗) (this holds because of the remark at the beginning of the proof).
Hence for some γ, c′+βc∗ =∗ γc+γβc∗. So (1−γ)βc∗ =∗ γc− c′. We could
have chosen c∗^cc′. If γ 6= 1 then c∗ ∈ cl(c, c′), a contradiction. So γ = 1,
which means that c− c′ ∈ G−. This shows (a).

Next we show

(b) a′′c′
s≡ ac (b0) and c− c′ ∈ G− implies a′′ ∈ cl(a).

We keep the notation of the proof of (a). Suppose a′′c′
s≡ac (b0) and c− c′ ∈

G−; we must show a′′ ∈ cl(a). As above we have aca∗c∗
s≡ a′′c′a∗c∗ (b0). In

particular, c + βc∗ =∗ c′ + βc∗ ∈ cl(aa∗) ∩ cl(a′′a∗). Hence a, a′′ ∈ cl(c +
βc∗, a∗) ∩ cl(b0c). Hence a′′ ∈ cl(a), proving (b).

Properness implies definability of p-weight 0 on a weak p-formula. Hence
replacing in (a), (b), b0 by some b′ with b0 ⊂ b′ ⊂ acl(b0), we may drop
“s” in

s≡ in (a), (b). Choose b with ab ≡ a′b′ (cl(∅)). Clearly b, b′ satisfy our
demands.

Theorem 1.5. Assume a0, . . . , an are proper and a0 ∈ cl(a1, . . . , an).
Then there are proper a′i ⊃ ai, i = 1, . . . , n, such that cl(a0) is geometri-
cally definable over a′1, . . . , a

′
n, and if a0 ∈ G0 then a0/G

− is geometrically
definable over a′1, . . . , a

′
n.

P r o o f. At each point of the following proof we can replace cl(∅) by
a sufficiently large finite subset. We can assume A = {a1, . . . , an} is cl-
independent. We shall prove that cl(a0) is geometrically definable over some
suitable a′1, . . . , a

′
n, leaving the proof that a0/G

− is definable over a′1, . . . , a
′
n

to the reader. We say that A is scattered if for any a ∈ A, stp(a/cl(A\{a}))
is not modular.

Rearrange the ai’s so that (for somem), {a1, . . . , am} is a maximal subset
of A which is scattered. Let i > m. First suppose tp(ai/cl(∅)) is not modular.
Since tp(ai/cl(a1, . . . , am)) is modular, for some a′i ∈ cl(a1, . . . , am), a′i ≡
ai (cl(∅)) and cl-independence of A gives a′i^ai (cl(∅)). So choose ci in G0∩
cl(ai, a′i) \ cl(∅).

When tp(ai/cl(∅)) is modular, we choose ci ∈ G0 ∩ cl(ai) \ cl(∅), and
replace ai by aici. We see that

a0 ∈ cl(a1, . . . , am, cm+1, . . . , cn).
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Notice that by Lemma 1.4,

(a) ci/G
− are geometrically definable over a1, . . . , am, a

′′
m+1, . . . , a

′′
n for

some proper a′′i ⊃ ai (i > m).

If tp(a0/cl(∅)) is modular, then necessarily m < n. In this case let c0 ∈
G0 ∩ cl(a0) \ cl(∅), and we see that c0 ∈ cl(cm+1, . . . , cn) and a0 ∈ cl(c0),
and the rest is easy.

If tp(a0/cl(∅)) is not modular, we proceed as follows. Choose a′0, . . . , a
′
m

with a′0 . . . a
′
m

s≡ a0 . . . am (cl(∅)) and a′0 . . . a
′
m^a0 . . . amcm+1 . . . cn (cl(∅)).

For i ≤ m choose ci ∈ cl(aia′i) ∩G0 \ cl(∅). Hence

c0 ∈ cl(a1, . . . , am, c1, . . . , cn).

Since {a1, . . . , am} is scattered, c0 ∈ cl(c1, . . . , cn), that is, c0 ∈
∑
i>0 αici

for some αi ∈ End∗(G0). For each i ≤ m choose proper b′i ⊃ a′i as in
Lemma 1.4 (for a := ai, a′ := a′i, c := ci). Let q = stp(b′0 . . . b

′
m/cl(∅)). By

Lemma 1.4, for each i ≤ m there is ϕi(x, y, y′) over cl(∅), true of (ci, ai, b′i),
such that ϕi(x, y, y′) implies that (x, y, y′ are proper and if ϕi(x∗, y∗, y′)
then y = y∗ implies x− x∗ ∈ G−, and x− x∗ ∈ G− implies y∗ ∈ cl(y)).

Thus a0, . . . , an satisfy a formula χ(x0, . . . , xn) over {cm+1, . . . , cn}∪cl(∅)
implying the following: for generic x′0, . . . , x

′
n in q(C), and for some zi in

ϕi(C, xi, x′i) (i ≤ m), we have

z0 ∈
∑

0<i≤m
αizi +

∑

i>m

αici.

We shall show that χ defines geometrically cl(a0) over a1, . . . , am, cm+1/G
−,

. . . , cn/G
− and cl(∅).

Suppose χ(a′′0 , a1, . . . , am). Without loss of generality b′0 . . . b
′
m^a′′0a1 . . .

. . . an (cl(∅)). Choose c′i in ϕi(C, ai, b′i) for 0 < i ≤ m and c′0 in ϕ0(C, a′′0 , b
′
0)

with c′0 ∈
∑

0<i≤m αic
′
i +
∑
i>m αici. By the choice of ϕi’s we have c′i− ci ∈

G− for 0 < i ≤ m, hence also c0 − c′0 ∈ G−. This in turn gives a′′0 ∈ cl(a0),
hence χ defines geometrically cl(a0) over a1, . . . , am, cm+1, . . . , cn and cl(∅).
Since χ refers to ci/G− rather than to ci (i > m), we conclude that χ defines
geometrically cl(a0) over a1, . . . , am, cm+1/G

−, . . . , cn/G− and cl(∅). By (a)
we are done.

Notice that if m = n then we do not have to enlarge ai’s, it suffices to
add some parameters from cl(∅).

The next corollary shows that when G is present, we can improve Propo-
sition 1.1.

Corollary 1.6. Assume G is a 0-definable locally modular abelian
group, and p is the generic type of G0. Assume {a0, a1, a2} is a cl-triangle
over cl(∅), with ai, i < 3, proper. Then for some proper a′i ⊃ ai, i < 3,
{a′0, a′1, a′2} is a dcl-triangle over cl(∅).
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P r o o f. The proof is similar to [Hru, 5.10], only we do not minimize
the multiplicity, but rather some local binary rank. By Theorem 1.5 we
can assume that cl(ai) is definable over {a0, a1, a2} \ {ai} for each i < 3.
In other words, for some θ(x0, x1, x2) over cl(∅), true of (a0, a1, a2), the
following condition (as well as its symmetric variants) holds:

(a) θ(x0, x1, x2) ∧ θ(x′0, x1, x2) implies x′0 ∈ cl(x0) and x0 ∈ cl(x1, x2).

Let θ′(x0, x1, y) be a Boolean combination of formulas of the form
θ(x0, x1, yi), i < ω, and let a′2 be proper and such that a2 ⊂ a′2 ∈ cl(a2),
θ′(x0, x1, a

′
2) ` θ(x0, x1, a2), and θ′(x0, a1, a

′
2) is consistent and has min-

imal possible binary θ(x0; z)-rank (under the previous restrictions). Let
r = tp(a1/cl(∅)).

Claim. If a1^a′′2a
′
2 (cl(∅)) and θ′(x0, a1, a

′′
2) is consistent with

θ′(x0, a1, a
′
2) then θ′(x0, a1, a

′′
2) is equivalent to θ′(x0, a1, a

′
2).

P r o o f. Suppose a′0 realizes θ′(x, a1, a
′′
2)∧ θ′(x, a1, a

′
2). Thus {a′0, a1, a

′
2}

and {a′0, a1, a
′′
2} are cl-triangles over cl(∅). By the choice of θ, a′2 and a′′2 are

cl-interdependent. Thus if θ′(x, a1, a
′′
2), θ′(x, a1, a

′′
2) are not equivalent, then

one of the formulas θ′(x, a1, a
′
2)t∧ θ′(x, a1, a

′′
2)v, t, v = 0, 1, is consistent and

has smaller θ(x, z)-rank, where ϕ0 = ϕ and ϕ1 = ¬ϕ. This contradicts the
choice of θ′.

Let a′0 realize θ′(x, a1, a
′
2). So a′0 ∈ cl(a0). Define an equivalence rela-

tion E on tp(a′2/cl(∅)) by aEa′ iff for generic a′1 realizing r, θ′(x, a′1, a) is
equivalent to θ′(x, a′1, a

′). Clearly we can replace a′2 by a′2/E. By the claim,
a′2 ∈ dcl(a′0, a1).

To proceed further, replacing a0 by a′0, a2 by a′2 and θ by θ′, and switching
the roles of a0, a1, a2, we can assume that in addition to the properties from
the beginning of the proof, θ(a0, a1, a2) witnesses a0 ∈ dcl(a1, a2). Since
a0 ∈ dcl(a1, a2), we do not have to minimize any rank now, so for some
equivalence relations E′, E′′, replacing a1 by a1/E

′ and a2 by a2/E
′′, we

get what we want.

The next corollary generalizes Proposition 1.1. It follows from Corol-
lary 1.6, since for meager p, by Corollary 1.3, a suitable G exists.

Corollary 1.7. If p is meager and {a0, a1, a2} is a cl-triangle over cl(∅)
with ai, i < 3, proper , then for some proper a′i ⊃ ai, i < 3, {a′0, a′2, a′3} is a
dcl-triangle over cl(∅).

Despite its simple formulation, the proof of Corollary 1.7 is rather tedious
(after tracing it all the way backwards): given a cl-triangle {a1, a2, a3} we
first find another cl-triangle, which is a dcl-triangle (Proposition 1.1). This
provides us with a cl(∅)-definable group G (Corollary 1.3). Referring to the
very regular structure of forking dependence on G0, we find that cl itself
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has some definability properties (Theorem 1.5). This enables us to return
to {a0, a1, a2}, and replace it by an equivalent dcl-triangle. It might be
interesting to find a more direct proof of Corollary 1.7, without reference to
groups.

On the other hand, we know that for any locally modular non-trivial
p, after adding some parameters, a group G non-orthogonal to p exists,
hence eventually cl has the definability properties listed in Theorem 1.5 and
Corollary 1.6. Is Corollary 1.7 true for an arbitrary (also non-meager) locally
modular regular type p?

2. M-rank and meager groups. In this section we assume that T
is small, superstable and p∗ is a meager stationary type over ∅. We shall
prove that if T has few countable models then the M-rank of any type is
finite. Also, we shall improve Saffe’s condition from [Ne2]. Now we recall the
definitions.
M-rank, defined in [Ne1], measures the size of the sets of stationar-

izations of complete types over finite sets. It is defined by the following
conditions. Suppose A is finite and p ∈ S(A).

(a) M(p) ≥ 0.
(b) M(p) ≥ α + 1 iff for some finite B ⊃ A and a non-forking extension

q of p over B, M(q) ≥ α and TrA(q) is nowhere dense in TrA(p).
(c) M(p) ≥ δ for limit δ if M(p) ≥ α for every α < δ.

M(a/A) abbreviates M(tp(a/A)). I(T,ℵ0) < 2ℵ0 implies M(p) < ∞. (In
fact, we are going to prove that in this caseM(p) < ω.) We refer the reader
to [Ne3] for the basic properties of Tr. By smallness, M has the following
extension property:

If B ⊇ A are finite and p ∈ S(A), then there is a non-forking extension
q of p over B with M(p) =M(q).

Also, M satisfies Lascar’s inequality:

M(a/A) ≤M(ab/A) ≤M(a/Ab)⊕M(b/A).

We call a definable regular abelian group meager if its generic types are
meager. Suppose G is a 0-definable meager group and p∗ is the generic type
of G0. We recall some notation from [Ne2, Section 2]. Let G be the set of
generic types of G. So G ⊂ Str(∅). Let Gm be the set of modular types in G.
Let Gm be the subgroup of G generated by Gm, which is

∧
-definable over

∅. For p, q ∈ G, p + q = stp(a + b) for any independent realizations a, b of
p, q respectively. For any A, Sgen(A) = {tp(a/A) : a ∈ G is generic over A}.
Notice that G is a p∗-formula. In [Ne2] we prove that Gm is closed nowhere
dense and G \ Gm is open in Str(∅). We restate here Theorems 2.1 and 2.7
(Saffe’s condition) from [Ne2] in the following form.
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Theorem 2.1. Assume T has < 2ℵ0 countable models, A is finite and
p ∈ Sgen(A). Then (1) or (2) below holds.

(1)
⋃{r + Gm : r ∈ Tr(p)} is open in Str(∅).

(2) The set {r + Gm : r ∈ Tr(p)} is finite.

When in Theorem 2.1 case (1) holds, we call p big . Otherwise we call p
small . Here we shall improve Theorem 2.1 by showing that if p is big then
p is isolated (and for isolated p, (1) holds trivially).

In the proofs we will measure not only complete types, but also some
closed subsets of G. Specifically, suppose X ⊂ G is closed and A-invariant for
some finite set A (that is, for every f ∈ AutA(C), f [X] = X). Then clearly
for every p ∈ Sgen(A), either Tr(p) ⊂ X or Tr(p) ∩X = ∅.

We define M(X), the M-rank of X, as the first α such that for every
p ∈ Sgen(A) with Tr(p) ⊂ X, M(p) ≤ α. In the next lemma we collect the
basic properties of this notion.

Lemma 2.2. Suppose X,Y ⊂ G are closed and C-invariant for some
finite set C.

(1) For p ∈ G, M(X) =M(p+X).
(2) M(X ∪ Y ) = max{M(X),M(Y )}.
(3) If G′ is a generic subgroup of G

∧
-definable over C and X is the

trace over ∅ of the set of generic types of G′, then M(X) = M(p) for any
p ∈ Sgen(C) with Tr(p) open in X.

P r o o f. (1) Without loss of generality, p is realized in C by some a.
For q ∈ Sgen(C) let a + q = tp(a + b/C), where b realizes q. Notice that
b and a + b are interalgebraic over C. Hence M(q) = M(a + q). Let Y =
{q ∈ Sgen(C) : Tr(q) ⊂ X} and Y ′ = {q ∈ Sgen(C) : Tr(q) ⊂ p + X}. The
mapping q 7→ a+ q is a bijection between Y and Y ′. So (1) follows.

(2) is easy. For (3), notice that by the smallness of T there is some
p ∈ Sgen(C) with Tr(p) open in X (more precisely, first we find that Tr(p)
is not nowhere dense in X, then by [Ne3, Fact 0.1] it follows that Tr(p) is
open in X). Since finitely many translations of Tr(p) by generic types of G′

cover X, we are done by (2).

For G′ and X as in Lemma 2.2(3) we define M(G′) to be M(X).

Theorem 2.3. Assume T is superstable and I(T,ℵ0) < 2ℵ0 . Then for
every p, M(p) is finite.

P r o o f. By [Ne2], for every p, M(p) < ∞. So if M(p) is infinite for
some p, then for some p, M(p) = ω. Let α be the minimal ordinal such
that some type p of ∞-rank α has infinite M-rank. By [Ne3, Theorem 1.2],
there is a finite set A and a formula ϕ(x) over A of ∞-rank α, isolating
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a complete type p0 over A, such that all stationarizations of p0 are non-
orthogonal and meager, M(p0) is infinite and ϕ is a p0-formula over A. By
Corollary 1.3, expanding A a little we get an A-definable meager group G
of ∞-rank α, non-orthogonal to p0. Without loss of generality, we add A
to the signature and let p∗ be the generic type of G0. It is easy to see that
if p ∈ Sgen(∅) is isolated then M(p) is infinite. In fact, [Ne3, Theorem 1.7]
implies M(p) = ω + n for some finite n. Now we prove that M(Gm) < ω.

Let a ∈ G0 be generic. By modularity, for every type p ∈ Gm there is a
formula θp(x, a) such that p ∈ Tr(θp(x, a)) and Tr(θp(x, a)) ⊂ Gm. Hence for
some p, Tr(θp(x, a)) has non-empty interior in Gm. By the smallness of T ,
for some r ∈ S(a)∩ [θp(x, a)], Tr(r) has non-empty interior in Gm. By [Ne3,
Fact 0.1], X = Tr(r) is open in Gm. So let θ(x, a) ∈ r be a formula implying
θp(x, a) with Tr(r) = Tr(θ(x, a)). By [Ne3, Lemma 1.1], M(X) ≤ M(r).
Since θp(x, a) forks over ∅, we have R∞(r) < α, henceM(r) < ω. It follows
that M(X) < ω. Since X is open in Gm, there is an r′ ∈ Sgen(a) with
Tr(r′) ⊂ X and Tr(r′) open in Gm. So M(r′) < ω. By Lemma 2.2(3),
M(Gm) < ω.

Let m = M(Gm). Let q ∈ Sgen(∅) be isolated. Since M(q) is infinite,
there is a finite set B and a non-forking extension q′ ∈ S(B) of q with
M(q′) = m+ 1. By Theorem 2.1 there are 2 cases.

C a s e 1: q′ is small . Hence Tr(q′) ⊂ ⋃
i pi + Gm for finitely many

p1, . . . , pn ∈ Tr(q′). By Lemma 2.2, M(
⋃
i pi + Gm) = m, hence M(q′) =

M(Tr(q′)) ≤ m, a contradiction.

C a s e 2: q′ is big . In this case there is an isolated type q′′ ∈ S(B), which
is a non-forking extension of q, such that for p ∈ Tr(q′), p+Gm meets Tr(q′′).
Let a realize p and b realize r|Ba for some r ∈ (p + Gm) ∩ Tr(q′′). Since
M(a+ Gm) = m, we have M(b/aB) ≤ m. By the M-rank inequalities,

M(b/B) ≤M(ab/B) ≤M(a/B)⊕M(b/aB) ≤ 2m+ 1 < ω.

However, M(b/B) =M(q′′) is infinite, since q′′ is isolated, a contradiction.

The next theorem improves Theorem 2.1.

Theorem 2.4. Assume T is superstable, with few countable models, and
G is a 0-definable meager group. Then for every finite A and p ∈ Sgen(A),
either p is isolated or Tr(p) ⊂ ⋃i ri+Gm for some finitely many r1, . . . , rn ∈
Tr(p).

P r o o f. Let k∗ = M(G). By Theorem 2.3, k∗ is finite. Suppose the
theorem is false. Choose k minimal such that for some finite set A there are
non-isolated types pn ∈ Sgen(A), n < ω, with the following properties:

(a) M(pn) = k for every n.

(b) For every r, r + Gm meets Tr(pn) for at most finitely many n.
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To find k and pn, n < ω, choose a finite set A′ and a big type p ∈ Sgen(A′)
which is a counterexample to the theorem. So p is non-isolated and Tr(p)
cannot be covered by finitely many sets of the form r+ Gm. Let a realize p
and let r∗ = stp(a). Choose En ∈ FE(∅), n < ω, such that En+1 refines En
and stp(a) ≡ {En(x, a), n < ω}. By smallness, choose pn ∈ Sgen(A′a) with
pn ∈ [En(x, a)] \ [En+1(x, a)] and Tr(pn) open in Tr(p). Notice that

(c)
⋂
n

cl
( ⋃
m>n

Tr(pm)
)

= {r∗}.

Also, every pn is big. Otherwise, some open non-empty subset U of Tr(p)
is covered by finitely many sets of the form r + Gm. It follows that any
r′ ∈ Tr(p) has an open neighbourhood with this property, and since Tr(p) is
compact, finitely many such sets cover Tr(p), contradicting the assumption
that p is big.

Now, r∗ + Gm is disjoint from any Tr(pn). Indeed, r∗ + Gm is A′a-
invariant, hence if r∗+Gm meets Tr(pn), then Tr(pn) ⊂ r∗+Gm, and pn is
small, a contradiction.

Now suppose for some r, r+ Gm meets Tr(pn) for infinitely many n. By
(c) we get r∗ ∈ r+Gm, hence r∗+Gm = r+Gm, and r∗+Gm meets Tr(pn)
for some n, a contradiction.

It follows that (b) holds. Since k∗ is finite and M(pn) ≤ k∗, we see that
for some k ≤ k∗, M(pn) = k for infinitely many (without loss of generality
all) n. Also since p is non-isolated, any pn is non-isolated. This shows that
we can find k and pn ∈ Sgen(A), n < ω, as required. For every finite set B
we have

(d) for at most finitely many n, pn has infinitely many non-forking exten-
sions over AB,

(e) for at most finitely many n, there is an r ∈ G with r|AB modular and
r + Gm meeting Tr(pn).

Indeed, if pn has infinitely many non-forking extensions over AB, then there
is a p′n ∈ Sgen(AB), a non-forking extension of pn, such that Tr(p′n) is
nowhere dense in Tr(pn). Consequently, M(p′n) < M(pn). If this happens
for every n ∈ X (for some infinite X ⊂ ω), then the types p′n, n ∈ X,
contradict the minimality of k. This proves (d).

To prove (e), notice that if q ∈ Sgen(AB) and b realizes q with stp(b/AB)
modular, then q is small. (Indeed, otherwise there is an isolated (hence
non-modular) q′ ∈ Sgen(AB) and b′ realizing q′ with b /̂ b′; but then q′ is
modular, a contradiction.) Hence Tr(q) is covered by finitely many sets of
the form r + Gm. It follows that Gm is of finite index in the group Gm′

generated by realizations of types r ∈ G with r|AB modular. Hence in fact
there are finitely many types r1, . . . , rl ∈ G such that every r ∈ G with r|AB
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modular belongs to some ri +Gm (this is proved also in [Ne2, Lemma 2.4]).
By (b), for all but finitely many n, Tr(pn) is disjoint from any ri + Gm,
hence (e) follows.

Now we choose recursively ni, i < ω, so that for every j < ω the following
holds:

(f) Whenever ai realize pni , i < j, then pnj has finitely many non-forking
extensions over Aa<j ; also for r ∈ G, if r|Aa<j is modular then
Tr(pnj ) ∩ (r + Gm) = ∅.

Throughout, a<j denotes {ai : i < j}. If (f) holds for every j′ < j, then
clearly there are finitely many possibilities q1, . . . , ql (for some l) for the type
tp(a<j/A). Let bi realize qi and B = {bi : i < l}. Applying (d), (e) we get
the required nj .

Now suppose ai realize pni , i < ω. We show that {ai : i < ω} is inde-
pendent over A. If not, then there is a first aj which depends on a<j over
A. So for r = stp(aj), r|Aa<j is modular, contradicting (f).

Since the types pn, n < ω, are non-isolated, we see that for every j, pnj
is non-isolated over A ∪ {ai : i 6= j}. Hence by the omitting types theorem,
for any X ⊂ ω we can find a countable model M of T containing A and ai,
i ∈ X, and omitting the types pni , i 6∈ X. This shows that T has 2ℵ0-many
countable models, a contradiction.

Corollary 2.5. Assume T is superstable, with < 2ℵ0 countable mod-
els, and G is a 0-definable locally modular abelian group. Then M(G) =
M(Gm) + 1 when G is meager , and M(G) =M(Gm) otherwise.

P r o o f. For the “otherwise” part notice that if G is not meager then Gm
is open in G, and apply Lemma 2.2(3).

I would like to use this opportunity to retreat from Example 1.11 in [Ne3].
The type p appearing there is not regular, and has∞-rank ω+ 1. Moreover,
using the “definability lemma” [Ne2, Claim 2.14] and [Ne2, Lemma 2.13]
instead of [Ne2, Lemma 2.4], one can prove that Theorem 2.4 is true not
only within a meager group, but also within a p-formula for any meager type
p. We shall prove even more, improving [Ne2, Corollary 2.15]. We say that
a complete type p is meager if every stationarization of p is meager.

Theorem 2.6. Assume T is superstable with few countable models, A is
finite and p ∈ S(A) is meager. Then exactly one of the following conditions
holds.

(1) For some a1, . . . , an realizing p, for every r ∈ TrA(p), r|Aai is mod-
ular for some i.

(2) p is isolated.
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P r o o f. We can assume that M(p) > 0 and that no r ∈ TrA(p) is
modular (when every r ∈ TrA(p) is modular, (1) holds). As p is meager, p
is regular and non-trivial. We find that

(a) each non-orthogonality class on TrA(p) is open, and there are finitely
many of them.

The proof of (a) is similar to [Ne2, Lemma 1.6(1)]. If (a) is false, then each
non-orthogonality class on TrA(p) is meager, and there are 2ℵ0 of them. As
in the proof of [Ne2, Lemma 1.6(1)], varying dimensions we can construct
many countable models.

Adding to A elements of p-weight 0 or realizing over A a modular type
does not affect (1) nor (2) (we replace p by a non-forking extension over
the new A, with the same M-rank). So we can assume that all types in
TrA(p) are non-orthogonal. Also, we can assume that there is a meager
group G definable over A, with principal generic type p∗ non-orthogonal to
p. Choose an r+ ∈ TrA(p) and c∗ realizing r+. Without loss of generality,
there is no r′ ∈ G \ Gm with r′|Ac∗ modular (if necessary, we can replace G
by a subgroup of finite index in G; the set of r∗ ∈ G with r∗|Ac∗ modular
is a finite union of disjoint translates of Gm). Since r+|Ac∗ and p∗|Ac∗ are
modular and non-orthogonal, there are a, b realizing r+, p∗ respectively such
that

(b) {a, b, c∗} is a forking triangle over A.

Choose a formula ϕ(x, y, z) true of (a, b, c∗), witnessing forking of any of a,
b, c∗ over the other two, in a definable manner (as in (a) in the proof of
the claim in [Ne2, 1.6]). By Theorem 2.4 we know that the theorem is true
when p is a generic type of G. Now, ϕ(x, y, c∗) determines a correspondence
between some subsets of TrA(p) and G: r ∈ TrA(p) and r∗ ∈ G correspond
to each other if for some a, b realizing r, r∗ respectively, ϕ(a, b, c∗) holds.
The main point of the proof is to transfer (via this correspondence) some
properties of G to TrA(p).

Let X = {r∗ ∈ G : r∗ corresponds (in the above sense) to some r ∈
TrA(p)} and Y = {r ∈ TrA(p) : r corresponds to some r∗ ∈ X}.

Clearly both X and Y are closed, r+ ∈ Y and by the open mapping
theorem Y is open in TrA(p). They are (respectively) the range and domain
of the correspondence established via ϕ. Choose q∗ ∈ Sgen(Ac∗) with TrA(q∗)
open in X and let Y ′ = {r ∈ Y : r corresponds to some r∗ ∈ TrA(q∗)}.
Clearly Y ′ is clopen in Y . There are two cases, depending on whether q∗ is
small or big.

C a s e 1: q∗ is small . So choose finitely many b1, . . . , bn realizing q∗ such
that for any r∗ ∈ TrA(q∗), r∗|Abi is modular for some i. It follows that for
any r ∈ Y ′, r|Abic∗ is modular for some i, that is, there is a br realizing
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r with br ∈ clp(Abic∗). Since p is meager, the division ring underlying the
geometry on r+(C) is countable (and even locally finite, see [Ne2, 2.3, 2.5]).
Hence as in [Ne2, Lemma 2.13] there are countably many elements ci, i < ω,
realizing types in Y ′ such that for any r ∈ Y ′, br ∈ clp(Aci) for some i. It
follows that for some i, the set of r ∈ Y ′ with br ∈ clp(Aci) is not meager
in Y ′. This easily implies that the set Z of r ∈ Y ′ with r|Aci modular has
non-empty interior in Y ′. Since Y ′ is open in Y and Y is open in TrA(p),
we see that Z has non-empty interior in TrA(p). So we can choose finitely
many conjugates of ci over A so that the corresponding conjugates of Z
cover TrA(p). Hence (1) holds.

C a s e 2: q∗ is big . By Theorem 2.4 in this case q∗ is isolated and TrA(q∗)
is open in G. In this case we shall prove that p is isolated. Let A′ = Ac∗ and
choose p′ ∈ Sp,nf(A′) with TrA(p′) open in Y ′. Clearly it suffices to prove
that p′ is isolated. Notice that still every r ∈ TrA(p′) corresponds to some
r∗ ∈ TrA(q∗), and every r∗ ∈ TrA(q∗) corresponds to some r ∈ TrA(p′). Also
TrA(p′) is canonically homeomorphic to TrA′(p′). Since forking is meager on
TrA(q∗), we also find that forking is meager on TrA′(p′). Similarly we show
that

(c) for any a realizing an r ∈ TrA′(p′), the set CLA′(a) = {r′ ∈ TrA′(p′) :
r′|A′a is modular} is closed and nowhere dense in TrA′(p′),

(d) for any finite B, the set CLA′(B) = {r ∈ TrA′(p′) : r|A′B is modular}
is a finite union of sets of the form CLA′(a), a |= r ∈ TrA′(p′).

Statement (d) may be also deduced from (c) as in [Ne2, Lemma 2.13]. Using
(c) and (d) and assuming that p′ is non-isolated, we can proceed as in the
proof of Theorem 2.4 (using [Ne2, Claim 2.14]) constructing many countable
models of T . Thus p′ must be isolated.

It is obvious that conditions (1) and (2) are mutually exclusive.

When a meager type p ∈ S(A) satisfies (1) of Theorem 2.6, we may
regard it small. Hence we can restate Theorem 2.6 by saying that a non-
isolated meager type is small. In the following corollary, (1) is basically a
variant of Theorem 2.6 and (2) corresponds to Corollary 2.5.

Corollary 2.7. Assume T is superstable with few countable models, A
is finite, p ∈ S(A) is regular and forking is meager on TrA(p). Then

(1) p is meager and isolated , and
(2) M(p) = 1 + max{M(q) : q ∈ Sp,nf(AB), B is finite and q is small}.
P r o o f. (1) As in [Ne2, Lemma 1.6(1)] we deduce that p is non-trivial

(the assumption of almost strong regularity there may be weakened to reg-
ularity). By the proof of (a) of Theorem 2.6 we can assume that all station-
arizations of p are non-orthogonal. Considering Φ = TrA(p), by [Ne1, end of
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Section 1] we find that p is weakly meager, hence meager. Hence either (1)
or (2) of Theorem 2.6 holds. But if condition (1) of Theorem 2.6 holds, then
any r ∈ TrA(p) has a forking extension over A ∪ {a1, . . . , an} and forking
is not meager on TrA(p). So condition (2) of Theorem 2.6 holds and p is
isolated.

(2) follows from Theorem 2.6 just as Corollary 2.5 follows from Theo-
rem 2.4.

3. Between meager and strongly regular types. Suppose T is su-
perstable with few countable models and p is a non-trivial regular station-
ary type. Meagerness and strong regularity may be regarded as two extreme
properties of regular types. In this section we investigate these and some
intermediate properties of regular types. In [Ne2] I conjectured that p is
either meager or non-orthogonal to a strongly regular type. This is true
when T is 1-based. Indeed, in this case, without loss of generality, p is a
generic type of a 0-definable locally modular abelian group G, which is a
p-formula. If forking is not meager on G, then for some formula ψ(x) forking
over ∅, Tr(ψ) ∩ G is non-empty and open in G. By [H-P], ψ is a Boolean
combination of cosets of acl(∅)-definable subgroups of G. It folows that for
some non-generic 0-definable subgroup H of G and for a generic a ∈ G0,
Tr((H + a)(x)) ∩ G is non-empty and open in G. Thus G/H is a strongly
regular group non-orthogonal to p. The next corollary deals with the case
where G is meager.

Corollary 3.1. Assume T is superstable, 1-based , with few countable
models and G is a 0-definable meager group. Then for some non-generic
0-definable subgroup H of G, G/H is a meager group with M(G/H) = 1.
Clearly , G/H is non-orthogonal to G.

P r o o f. 1-basedness implies there is a 0-definable subgroup H of G such
that for generic a ∈ G0, Tr((a+H)(x))∩G = Gm. Let G′ be the set of generic
types of G/H and Gm′ the set of modular types in G′. ClearlyM(Gm′) = 0,
in fact Gm′ is a singleton. Hence by Corollary 2.5, M(G/H) =M(G′) = 1.

Working within a p-formula, we can refine the argument yielding Corol-
lary 3.1.

Proposition 3.2. Assume T is superstable, 1-based , p is a regular sta-
tionary type and ϕ(x) is a p-formula over A.

(1) If p is not meager then for some a ∈ ϕ(C) and b ∈ aclA(a), stp(b/A)
is strongly regular , non-orthogonal to p.

(2) If p is meager then for some a ∈ ϕ(C) and b ∈ aclA(a), tp(b/A) is
regular , isolated , non-orthogonal to p and M(b/A) = 1.
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P r o o f. Without loss of generality A = ∅.
(1) Suppose ψ(x, c) is a formula forking over ∅ with Tr(ψ(x, c)) ∩ Pϕ

non-meager in Pϕ. We will use only the following (weak) consequence of
1-basedness.

(a) If a realizes ψ(x, c) then acl(a) ∩ acl(c) \ acl(∅) 6= ∅.
By (a), for each a ∈ ψ(C, c) we can choose ba ∈ acl(a) ∩ acl(c) \ acl(∅) and
a formula χa(x, y) ` ϕ(x) true of (a, ba), witnessing that ba ∈ acl(a) and
a ∈ clp(ba). Clearly χa(x, ba) forks over ∅.

By compactness, there is a∗ ∈ ψ(C, c) and b = ba∗ such that Tr(χ(x, b))∩
Pϕ is non-meager, where χ = χa∗ . Without loss of generality, Tr(χ(x, b)) is
open in Pϕ, and so Tr(χ(x, b)) ∩ Pϕ = [δ] ∩ Pϕ for some δ(x) over acl(∅).
Since for a ∈ χ(x, b) we have b ∈ acl(a) and a ∈ clp(b), we see that whenever
χ(a′, b′) holds and wp(a′) > 0 then stp(b′) is regular, non-orthogonal to p
and χ(x, b′) ` Pϕ(x), that is, Tr(χ(x, b′)) ⊂ Pϕ.

Choose a′ ∈ δ(C) ∩ Pϕ(C) such that Tr(χ(a′, y)) has maximal size and
r0 = stp(b) ∈ Tr(χ(a′, y)). To prove the proposition, we show that r0 is
strongly regular.

Let Tr(χ(a′, y)) = {r0, . . . , rk} for some k. Choose χi ∈ ri for i ≤ k such
that χi, i ≤ k, are pairwise contradictory. So for some δ′(x) ∈ stp(a′), δ′ ` δ,
and if a′′ ∈ δ′(C) then Tr(χ(a′′, y)) meets each [χi]. Let χ′0(y) be

χ0(y) ∧ ∃x (δ′(x) ∧ χ(x, y)).

By the maximality of k we see that for a′′ ∈ δ′(C) ∩ Pϕ(C),

Tr(χ(a′′, y)) ∩ [χ′0] = {r0}.
(Clearly, r0 ∈ Tr(χ(a′′, y)) since δ(a′′) holds.) If b′′ realizes r′′ ∈ Stry(∅) ∩
[χ′0] \ {r0}, then for some a∗ ∈ δ′(C), χ(a∗, b′′) holds. Thus wp(a∗) = 0 and
also wp(b′′) = 0 (as b′′ ∈ acl(a∗)). Hence χ′0 witnesses that r0 is strongly
regular.

(2) If p is meager then by [Ne2, Corollary 1.8] the set Pϕ has non-empty
interior in S(acl(A)). So we can assume that ϕ isolates p and A = ∅. Without
loss of generality, p ∈ S(∅) and ϕ isolates p. By [Ne2, Claim 2.14] choose a
formula ψ(x, y) such that for any a realizing p,

Tr(ψ(x, a)) = {r ∈ Tr(p) : r|a is modular}.
Fix an a realizing p. As in the proof of (1) we find a formula χ(x, y) implying
y ∈ acl(x), and a b such that Tr(χ(x, b)) is an open subset of Tr(ψ(x, a)).
Without loss of generality, χ(a, b) holds and χ(a, y) ` tp(b/a). Choose E ∈
FE(∅) such that

Tr(χ(x, b)) ∩ [E(x, a)] = Tr(ψ(x, a)) ∩ [E(x, a)].
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Let q = tp(b). Clearly, q is regular, non-orthogonal to p, hence meager. Also,
q(y) is isolated by the formula ∃x (ϕ(x) ∧ χ(x, y)). Let

E′(y, y′)

= ∀x ∃x′ ((χ(x, y)→ χ(x′, y′) ∧ E(x, x′)) ∧ (χ(x, y′)→ χ(x′, y) ∧ E(x, x′))).

Clearly E′ is a finite equivalence relation.
Suppose r ∈ Tr(q) ∩ [E′(x, b)] and r|b is modular, that is, for some

b′ realizing r, b′ /̂ b. Choose a′ with χ(a′, b′) and E(a, a′). So a′b′ ≡ ab,
Tr(ψ(x, a′)) = Tr(ψ(x, a)) and

Tr(χ(x, b′)) ∩ [E(x, a′)] = Tr(ψ(x, a′)) ∩ [E(x, a′)].

It follows that

Tr(χ(x, b)) ∩ [E(x, a)] = Tr(ψ(x, a)) ∩ [E(x, a)] = Tr(χ(x, b′)) ∩ [E(x, a)].

Since stp(a) is in this set, there is a′′
s≡ a realizing χ(x, b′). In particular,

b′ ∈ acl(a′′). It follows that r is realized in acl(a). This shows that for any
finite B and small q′ ∈ Sq,nf(B),M(q′) = 0. By Corollary 2.7(2),M(q) = 1.

The theory in Example 1.10 of [Ne3] is not small. However, modifying
this example, for any n > 0, one can get an example of a 1-based superstable
meager group G with Th(G) having few countable models and M(G) = n.
Notice that by Theorem 2.3, for superstable T with few countable models,
trivially M ≤ U holds (see [Ne1]), answering a question from [Ne2]. Still
we do not have any example of a small superstable T with a type p with
ω ≤M(p) <∞.

Conjecture 3.3 (M-gap conjecture). In a small superstable theory there
is no type p with ω ≤M(p) <∞.

See [Ne5] for a partial result regarding this conjecture. Regarding Corol-
lary 3.1 and Proposition 3.2, when T is not 1-based, but has few countable
models, we can still prove that there is a finite bound m such that every
meager type is non-orthogonal to a meager group of M-rank ≤ m. The
proof uses some ideas from [T].

Following [T] we say that a regular type p over a finite set A is eventually
strongly non-isolated (esn, for short) if some non-forking extension p′ of p
over some finite A′ ⊃ A is strongly non-isolated, that is, for every finite
B ⊃ A′, p′ is almost orthogonal to any isolated type in S(B). By [T], for
regular types, being esn is invariant under non-orthogonality.

Below we shall give a characterization of non-trivial regular esn types
in a small superstable T . First we prove the following fact, following easily
from [H-S].

Fact 3.4. Assume T is small , superstable and p is a non-trivial regular
type. Then there is a finite set A and a regular type p′ ∈ S(A) which is
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non-orthogonal to p and almost strongly regular (asr) via some ϕ(x) ∈ p′.
Moreover , all stationarizations of p′ are non-orthogonal.

P r o o f. By [H-S] there is a p-formula ψ(x) over some finite set A. By
smallness, for some formula ϕ(x) over A, for some type p′ ∈ S(A), Pψ(x) ∪
{ϕ(x)} is consistent and implies p′(x). It follows that every stationarization
of p′ is regular and non-trivial, and p′ is asr via ϕ. By [Ne2, Lemma 1.6], there
are finitely many non-orthogonality classes on TrA(p′), and all of them are
open in TrA(p′). Hence expanding A by an element of acl(A), and modifying
ϕ a little, we can assume that all stationarizations of p′ are non-orthogonal
to p.

Notice that the formula ϕ(x) from the conclusion of Fact 3.4 is necessarily
a p-formula over A (see [Ne2, Lemma 1.6]). The next proposition is a kind
of dichotomy theorem for non-trivial regular esn types.

Proposition 3.5. Assume T is small , superstable and p is a non-trivial
regular type. Then p is eventually strongly non-isolated iff (1) or (2) below
holds.

(1) For some p′ as in Fact 3.4, p′ is non-isolated.
(2) p is meager.

Moreover , conditions (1) and (2) are mutually exclusive.

P r o o f. ⇒ Suppose p is a non-trivial regular esn type and (1) fails. We
shall prove (2). Choose a p-formula ϕ(x) over a finite set A. It suffices to
prove that forking is meager on Pϕ. Suppose not. So choose a formula ψ(x)
over Ab0 forking over A, with TrA(ψ) ∩ Pϕ non-empty and open in Pϕ. Let
n = w(b0/A). We see that there is no A-independent set J ⊂ ψ(C) of size
> n. So we can choose a maximal finite A-independent set J ′ ⊂ ψ(C) ∩
Pϕ(C). In particular, every r ∈ Pϕ ∩ TrA(ψ) has a forking extension over
AJ ′. By definability of p-weight 0 on ϕ, there is a single formula ψ′(x) over
AJ ′, forking over A, with TrA(ψ′) ∩ Pϕ non-meager in Pϕ. So without loss
of generality b0 ⊂ J ′.

Next we can choose an A-independent tuple b ⊂ Pϕ(C) of minimal size
such that for some formula ψ(x) over Ab, forking over A, TrA(ψ) ∩ Pϕ is
not nowhere dense in Pϕ. Say, b = 〈a, a1, . . . , an〉, b′ = 〈a1, . . . , an〉, and let
r = stp(a/A). Since r is esn, for some finite B extending A, with a^B (A),
tp(a/B) is stationary and strongly non-isolated. Without loss of generality,
b^B (A). Let A′ = Bb′. Obviously ϕ(x) remains a p-formula over A′, the
new set P ′ϕ (= Pϕ evaluated in S(acl(A′))) is the set of non-forking exten-
sions of the types from Pϕ over acl(A′). Since P ′ϕ is closed in S(acl(A′)), we
can regard it as a type over acl(A′), in variable x. First notice that

(a) {ψ(x)} ∪ P ′ϕ(x) forks over A′.
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Suppose not. Choose c realizing {ψ(x)} ∪ P ′ϕ(x) with c^b (A′) and
c^A′ (A). Then c^b (A), a contradiction.

Also we have

(b) TrA′(ψ) ∩ P ′ϕ has non-empty interior in P ′ϕ.

Suppose not. Then TrA′(ψ) ∩ P ′ϕ is nowhere dense in P ′ϕ. In particular,
TrA(TrA′(ψ)∩P ′ϕ) is nowhere dense in Pϕ. Let X be the set of r′ ∈ Pϕ having
a forking extension over Ab′. Using the minimality of b and definability of
p-weight 0 on ϕ we see that X is a meager subset of Pϕ. On the other hand,
clearly

TrA(ψ) ∩ Pϕ ⊂ X ∪ TrA(TrA′(ψ) ∩ P ′ϕ),

hence TrA(ψ) is meager in Pϕ, a contradiction.
By the proof of Fact 3.4 we find a formula ϕ′ over A′ below ϕ and a

type q ∈ S(A′) such that P ′ϕ ∩ [ϕ′] ⊂ TrA′(ϕ) ∩ P ′ϕ and P ′ϕ(x) ∪ {ϕ′(x)} is
consistent and implies q. We see that q is asr via ϕ′. As in Fact 3.4 we can
assume that all stationarizations of q are non-orthogonal. Since (1) fails, q
is isolated. On the other hand, ψ witnesses that q is not almost orthogonal
to tp(a/A′), a contradiction.
⇐ Supposing (1) or (2) holds, we must show that p is esn.

C a s e 1: (1) holds. [T, 3.1.3] proves that in this case p′ is strongly non-
isolated. For the sake of completeness we include a short proof. Say, p′ ∈
S(A) is asr via ϕ ∈ p′. Suppose B is a finite extension of A and q ∈ S(B) is
isolated and not almost orthogonal to a non-forking extension of p′ over B.
We can choose A, B, p′ and q so that U(q) is minimal possible. Let a realize
q and choose b realizing p′ with b^B (A) and a /̂ b (B). The dependence
of a and b over B is witnessed by a formula χ(x, y), true of (a, b). Take
any c realizing an isolated type in S(Ba) such that χ(a, c) holds. Since q is
isolated, also tp(c/B) is isolated. It follows that a /̂ c (B) and tp(c/B) is
orthogonal to p′. Hence b^c (B) and b /̂ a (Bc). Putting B′ = Bc we see
that q′ = tp(a/B′) is isolated, U(q′) < U(q) and q′ is not almost orthogonal
to tp(b/B′), contradicting the minimality of U(q).

C a s e 2: (2) holds, so p is meager . Without loss of generality, p is the
principal generic type of a 0-definable meager group G. We will show that
p is strongly non-isolated.

Choose a decreasing sequence of formulas ϕn, n < ω, over ∅, such that
p ≡ {ϕn(x) : n < ω}. We can assume that for each n, ([ϕn]\[ϕn+1])∩G′ 6= ∅,
where G′ = G \ Gm. We proceed as in the proof of Theorem 2.4. Choose
isolated pn ∈ Sgen(∅), n < ω, with ϕn ∧ ¬ϕn+1 ∈ pn. As in the proof of
Theorem 2.4 we see that

(c) for every r ∈ G, r + Gm meets Tr(pn) for at most finitely many n.
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Now suppose B is finite and ψ isolates a complete type q over B. For n < ω
let p′n ∈ Sgen(B) be a non-forking isolated extension of pn over B. Suppose
q is not almost orthogonal to p|B. By definability of p-weight 0 on G, for
every n large enough, q is not almost orthogonal to p′n. Without loss of
generality, this holds for every n. Let a realize q. Choose an realizing p′n
with an /̂ a (B). In particular, an /̂ aB. We claim that

(d) there is an infinite X ⊂ ω such that {an, n ∈ X} is independent.

Suppose not. Then for some finite m, every an depends on a<m. In other
words, for every n, rn|a<m is modular, where rn = stp(an). By [Ne2,
Lemma 2.4] (or see the proof of Theorem 2.4), there are finitely many types
r0, . . . , rl ∈ G such that every type r with r|a<m modular belongs to ri+Gm
for some i. This contradicts (c), proving (d).

By (d) we see that w(aB) is infinite, contradicting superstability of T .
In fact, this last step does not require superstability, instead we could use
smallness (see [Ne4]).

To prove that conditions (1) and (2) are mutually exclusive, suppose (2)
holds, that is, p is meager. If (1) holds for some p′ ∈ S(A), which is asr via
ϕ ∈ p′, then ϕ is a p-formula over A and Pϕ = TrA(p′). In this case [Ne2,
Corollary 1.8] says that P ′ϕ = {r ∈ Pϕ : r is not modular} is non-empty and
open in S(acl(A)), while p′ being non-isolated implies that Pϕ is nowhere
dense in S(acl(A)), a contradiction.

Notice that Proposition 3.5 provides us also with a characterization of
a meager type in a small superstable theory: a regular non-trivial type p is
meager iff p is esn and every asr type p′ non-orthogonal to p is isolated.

Corollary 3.6. Assume T is superstable and I(T,ℵ0) < 2ℵ0 . Then
there is a natural number m such that for every meager type p there is a
meager group G non-orthogonal to p with M(G) ≤ m.

P r o o f. The proof relies on [T, Lemma 3.3.3]. Suppose the conclusion
fails. Then there are meager types pn, n < ω, such that for each n 6= k,
pn is orthogonal to any conjugate of pk. By Proposition 3.5, the types pn,
n < ω, are esn. In this situation, [T, Lemma 3.3.3] says that T has 2ℵ0-
many countable models. The proof consists in varying dimensions of types
pn, n < ω, in countable models of T .

Question 3.7. Is it possible to get m = 1 in Corollary 3.6?
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