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Abstract. We prove that, under CH, for each Boolean algebra A of cardinality at most
the continuum there is an embedding of A into P(w)/fin such that each automorphism
of A can be extended to an automorphism of P(w)/fin. We also describe a model of
ZFC + MA (o-linked) in which the continuum is arbitrarily large and the above assertion
holds true.

It is well known that, under CH (the continuum hypothesis), each
Boolean algebra of cardinality at most 2¢ can be embedded in P(w)/fin
(see e.g. [5]). This implication cannot be reversed: there is a model of set
theory in which 2 > w; and the above conclusion still holds ([1]). It is also
known that CH is equivalent to the following condition: each Parovi¢enko
algebra (i.e. algebra of cardinality 2*, atomless and having neither countable
limits nor countable unfilled gaps) is isomorphic to P(w)/fin. We begin by
proving the following.

ProrosiTiON 1. If CH holds, then for every Boolean algebra A of car-
dinality at most the continuum there is an embedding i : A — P(w)/fin
such that each automorphism of i(A) can be extended to an automorphism
of P(w)/fin.

Proof. Assume CH. Let A be a Boolean algebra of cardinality at most
the continuum. We will construct an extension A* of A such that:

1. A* is a Parovicenko algebra;
2. Unecw, Aa = A*, where (A, @ @ < w) is an increasing sequence of
algebras satisfying the following two conditions:

(x) card A, <2 Ag = A, Ay =,y Aa for every limit A < wy,
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(xx) for every automorphism ¢, of A, there exists an automorphism
Pas1 of Agiq such that ¢ C doy1-

It is clear that if an algebra A* satisfies the above conditions then each
automorphism of A can be extended to an automorphism of A*. Thus to
prove our theorem it suffices to construct A*.

Fix a pairing k : w1 Xw; — w; (one-to-one and onto) such that k(¢, &) > ¢
for all {,£ < w;. It remains to describe the successor step from « to a + 1.
Suppose that we have defined a sequence (A, : v < «) satisfying (inductive)
conditions (x) and (*x).

Let £,(¢,a,c) abbreviate the statement: ¢ is an automorphism of A,
such that ¢(a) = c.

Assume that at each stage v < a we chose an enumeration (1:2 €& <w)
of the collection of the following families:

{(eiydj 2, g <w) 3P Vi, j < w [E(d,ai,¢:) NEL (D, bi, di)l},

where (a;,b; : 1,7 < w) is a countable ordered gap ag < a1 < ... < by < by of
elements of A, {(b; 17 < w) : P Vi < w Ey(¢,ai,b;)}, where (a; i < w) is
a decreasing chain of elements of A, and the set of all atoms of the algebra
A,. (Since we assumed CH, we have at most w; objects to enumerate.)

We identify A, with the field B(X,) of open-closed subsets of the associa-

ted Stone space X,. The ordinal o determines a certain object, namely a:g,

where ¢ and (¢ are ordinals such that k((,§) = a (( < ). If ZL‘g is a family
of chains or gaps, we take A,41 to be the subfield of P(X,) generated by
A, = B(X,) and by

{1 = Nttty <o )

when mg is a collection of gaps, or by

{b: ﬂbi:(bi:i<w)€xg}

i<w
when z¢ consists of countable chains. Using the Sikorski theorem (on exten-
ding homomorphisms, see e.g. [7], [5]) we extend each automorphism of A,

to an automorphism of A, and therefore (%), (%) hold.

Now, suppose that a:g is a set of nonzero elements of A,. Each element

of the family is an atom of A¢ but it need not remain an atom in A,. If
there are at least countably many elements e; < a, a € xg, then we put
Aqt+1 = A,y (Note that the property (xx) implies that if some element of

a;g is an atom then all elements of the set are atoms.) Suppose that each

a € mg is a finite sum of atoms a = e; + ... + e,. (n is the same for all
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elements of xg by (x%).) Atoms of A, correspond to isolated points of X,.

We delete the isolated points e; < a for all a € mg, and put into their
places copies of a one-point compactification of the discrete w. Let X411
denote the topological space thus obtained. We put A,41 = B(Xa41). Since
X, is a continuous image of X,41, we have A, C A,+1. Obviously, each
automorphism of A, can be extended to an automorphism of A,,;. This
finishes the proof. m

Now we consider the case of =CH. It is known that there exists a model of
ZFC+MA +—-CH in which the algebra P(w;) is not embeddable in P(w)/fin
([2]). On the other hand, it is consistent with ZFC and MA(c-linked) that
the cardinality of the continuum is arbitrarily large and each Boolean algebra
of cardinality < 2¢ can be embedded in P(w)/fin ([1]). Thus the existence
of such embeddings does not imply CH. The assertion of Proposition 1 is
stronger and we may ask if the converse holds. The answer is negative. We
prove that:

THEOREM 1. It is consistent with ZFC + MA (o-linked) that the cardina-
lity of the continuum is arbitrarily large and for each Boolean algebra B of
cardinality < 2%, there is an embedding i : B — P(w)/fin such that each
automorphism of i(B) can be extended to an automorphism of P(w)/fin.

Proof. Let V be a ground model satisfying the generalized continuum
hypothesis (GCH). Thus there exists a regular cardinal x in 'V such that
k > wp and if K = AT, then cf(\) > w, moreover ¢, (the diamond principle)
holds in the form:

There is a sequence (Ty : a < K, cf(a) = wy) such that for every set
X C H(k) the set {a < k:cf(a) = w1, X N Hy =Ty} is stationary in k.

H(k) denotes as usual the family of all sets of hereditary power < k,
H(k) = Uper Ha, and (H, : a < k) is a continuously increasing sequence
of sets of cardinality < k.

We will define a finite support iteration (P, : o < k) having the c.c.c.
(countable chain condition) such that, in the corresponding generic exten-
sion V[G], the conclusion of Theorem 1 will be satisfied. The model V will
be extended in such a way that given a system of generators for a certain
Boolean algebra B (card B < 2v) there will be an embedding sending the
generators to generic sets added at some steps a < k. The embedding will
be defined by induction: If a certain monomorphism embeds the subalgebra
By of B generated by the initial a (o < 2¢) generators and if the image
(under the monomorphism) of each of them is a generic subset of P(w)/fin
then the next generator determines in By two sets (which form a gap): one
consists of elements less than the generator (called the “lower class”), and
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the elements of the other (called the “upper class”) are disjoint from the
generator. An image of the gap is a gap in the subalgebra of P(w)/fin which
is generated by some generic sets. The monomorphism can be extended if
there is an element of P(w)/fin which fills this gap. Thus, to ensure embed-
dability of Boolean algebras, we will add generic sets X, C w filling gaps
in subalgebras of P(w)/fin generated by some previously added Xz, < a.
Simultaneously, in a similar way, we will extend automorphisms of the sub-
algebras. In constructing embeddings of Boolean algebras and extensions
of their automorphisms, we have to avoid the following problem: It is well
known that there are gaps in P(w)/fin which are unfillable by c.c.c. forcing.
It could happen, unless steps are taken to prevent it, that an image (under
an extension of an automorphism of one of the embedded algebras) of some
gap filled in a later step is an unfillable gap.

To ensure that every automorphism of an embedded Boolean algebra can
be extended we use the < principle. It guarantees that each such automor-
phism is “approximated” by an increasing sequence of automorphisms which
belong to models V[G|a]. To be more precise: if F' is a canonical P,-name
for some automorphism f of a given algebra B (from the model V[G]) then
there is a subset A of k such that

card A =k and U (FNH,) = U T,
a€A acA
and T, is a Py-name for an automorphism from V[G|a]. We will extend
automorphisms using those of the T,’s which are their names. To obtain
MA (o-linked) we will enumerate at some stages (with repetition) all o-linked
forcings R with card R < « (cf. [1], [4]).

Assume the following notation:

Let X be a set and let T¢ denote a homomorphism. Then for € € {—1, 1},
eX denotes X, if ¢ =1, or \ X, if ¢ = —1. Moreover, Tg isTe, ife =1, or
Tgl, if ¢ = —1. (We abbreviate (T¢)" to T¢g".)

For ¢ : a — {0,1} let B(p) be the subalgebra generated by {Xpz :
©(B) = 1}, where Xg is a generic subset of w added at stage 5. If s is a
finite sequence with dom(s) C {8 : ¢(8) = 1} and rg(s) € {—1,1} then

X(s)= (] Xen [) (w\X).
s(§)=1 s(¢Q)=-1

Thus B(p) consists of finite unions of sets of the form X (s). A gap in B(yp)
is a system of the form

L=({X(s):s€S}H{X(t):teT}),
where X(s) N X(t) =, 0 foralls€ SandteT.
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An increasingly ordered gap L of type (X\,7y) is a gap as above such that

there are enumerations S = {so : @ < A} and T' = {tg : § < ~} satisfying
ap <z <A = X(Say) S X(Sa,),
Pr<P2<v = X(tg) S« X(ts,)-

We assume that each gap except the increasingly ordered ones satisfies
the condition: if s1,...,s, € S and X(s) C, X(s1)U...UX(sy,) then s € S
(and similarly for T').

We will use two notions of forcing: Kunen’s forcing filling a gap, and
the other, which adds an uncountable antichain to Kunen’s forcing of type
(wl,wl).

Now we describe the two forcings:

Let £ = {X(s) : s € S} {X(t) : t € T}) be a gap. Kunen’s forcing
Q(L) consists of elements of the form (ug,x,, wy), where u, and w, are
finite subsets of S and T' (respectively) and z, is a finite zero-one sequence.
Moreover,

U x(s)n [ X(t) € dom(ay).

S€uq tEwq
Let p = (up, zp, w,) and q = (uq, Tq, Wq); then p is an extension of q (written
p < q) iff uy C up, wy C wy, 4 C z, and for each i with dom(z,) < i <
dom(x,),

ifi e | J X(s) then z,(i) =1 and ifie |J X(t) then z,(i) = 0.
S€uq tewq
It is known that if £ is separated, then Q(£) has the c.c.c.

Now let £ = ({X(sq) : @ < wi1},{X(t3) : B < wi}) be an increasingly
ordered gap. A condition of forcing E(L) is a finite set e consisting of se-
quences of the type (a,sq,ts) such that if («,sa,ta), (5,53,t3) € e and
a # 3 then either X (so) N X (tg) # 0 or X(sg) N X (ta) # 0. E(L) is ordered
by inverse inclusion. It is well known that if £ is an unfilled gap then E(L)
has the c.c.c. and

E(L) IF “Q(£) has an uncountable antichain”.

The definition of the iteration is inductive and uses a “bookkeeping”
technique. At each inductive step a < k we enumerate some objects in
V(PC‘)7 and at higher stages we add some generic sets to them. The objects
occur in an order determined by a function Nb. To be more precise, we
divide k into five unbounded sets:

A={a<k:cf(a)=w}, M={aeckr\A:aisodd},
E=k(A), Q=kM), Qy=k(x\(AUM)),

where k: K — k \ (AU M) is an increasing bijection.
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Let {v, : @ < Kk} be an increasing enumeration of the set {f < k: 8 >
A}, if K = AT or of the set {8 < k : 3 is a cardinal and cf(3) > w}, if K is a
limit cardinal.

Let n: k X kK — Kk be a pairing function satisfying:

£,C < n(£ Q) for all £,¢ < &,

n(a,B) € M for all « € M, 8 < &,
n(a, 8) € Q1 for all « € @1, B < k,

n(a, B1) < n(a, B2) foralla € A, 81 < B2 < k,
n(a, )6@2 foralla € A, B < Vg,
n(a, ) € forall « € A, (> v,,

n(ay, f1) < n(ag,ﬁ) for B1 < Va,, a1 < ag, < K.

Using this function we will define (by induction) a function Nb. At stages
& € M, we will add generic filters to o-linked forcings. In steps £ € @1, we
add (by Kunen’s forcing) the generic set X¢ which fills a gap consisting of
some sets previously added (in @; steps). In the model V[G], each Boolean
algebra will be embedded in a certain algebra generated by sets obtained in
these steps. At stage & € Q2 we also add (by the same forcing) the generic
set X¢ which separates a gap, but this gap is generated by sets previously
added both in 1 and Q2 steps. In the model V[G] each of these sets X¢,
€ € @2, will be an image (under one of the extended automorphisms) of
some element of P(w)/fin which appeared in some model V[G|d], § < . In
steps £ € E we will add uncountable antichains to Kunen’s forcing to keep
gaps in the ranges (of the extended automorphisms) unfilled.

The sequence in which new elements of P(w)/fin appear is important
in our construction. It will be described by the function Ind from P(w)/fin
into k, defined inductively simultaneously with iteration. We begin with the
condition: if z € P(w)/fin NV then Ind(x) = 0. At each higher stage we
extend the function Ind according to the rule:

If Pii1lF “z¢dom(Ind) and x € P(w)/fin” then Ind(z)=a+ 1.

If £ <k, cf(§) = wy and P¢ I “T¢ is an automorphism of B(y)” (T¢ is an
element of the {-sequence), then we begin to define (inductively) families
of monomorphisms according to the following conditions:

(a) T¢ = Te.

(b) For v > ¢,

P, I “T{ is a monomorphism from a subalgebra of P(w)/fin into P(w)/fin”.

(¢) If v1 < 72 then T® is an extension of T,".
(d) If 1 < 72, 0 < & < 4, Pe, IF “Tg, is an automorphism of B(p;)”
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(1 =1,2) and
Pmax(¢,,¢,) P “For some ordinal o, ¢1 [0 = ¢2 [0 and
Te, and T, agree on B(y1[0)”,

then
T, {X € P(w)/fin : Ind(X) < o} Ndom(T,})
=T 1{X € P(w)/fin : Ind(X) < o} Ndom(T,}).

(e) If A < a is a limit ordinal then T = {J, ., T}
At each stage we will compute card P(w)/fin using the following two

(well known) theorems (see e.g. [5], [6]):

THEOREM 2. Assume that P has the c.c.c. in 'V and let v be a cardinal in
V such that V IF “card P < v, v¥ = v”. Let Q be such that P I+ “card Q < v”.
Then cardP+Q < v in V.

THEOREM 3. Assume that P has the c.c.c. in'V and \,v > w are cardi-
nals in 'V such that V IF“card P < v and A = v*”. Let G be P-generic over
V. Then 2¥ < X in V[G].

Thus we have to show that for each «, P, has the c.c.c. We will do that
in the second part of the proof; now we assume that it is true.

We describe the inductive step o« = a 4+ 1. Assume that the forcing
P, and families of monomorphisms T, g (¢ < v < a) satisfying the above
conditions (a)—(e) are already defined. Assume also that card P, < v, and
Py IF “2¥ < wv,”. Since the cardinality of each of the forcings occurring in
Cases 1 to 5 below is < v,, by Theorems 1 and 2 we have card Po41 < vq41
and P, IF “2¥ <wu41”.

We distinguish five cases. In Cases 1, 2 and 5 we set T, g“ =Tg.

Case 1: o € M. We enumerate all P,-names of o-linked forcings of
cardinality < x so that each forcing occurs x times in the enumeration and
the following holds:

If R is £th element of the enumeration then P, IF “card R < £7.
We extend the function Nb: if
P, IF “Ris o-linked and cardR < 37

and R is the fth element of the above enumeration then Nb(R) = n(a, 3).
If there are 7 < « and 8 < k such that a = n(v, ), then we put

Pat1 = Pa xR,
where P, IF “R is o-linked and card R < k” and Nb(R) = a.



134 M. Grzech

Case 2: a € Q1. In this case we enumerate all pairs (£, ¢) of P,-names
such that P, forces the following properties:
(a) ¢ € D,, where D, consists of all » € V' with dom(¢)) < a,

rg(¢) € {0,1} and I = {y : ¢(y) = 1} C @1, and such that if {7 : £ < 6}
is an increasing enumeration of I", then for each { < § there is a gap L¢ in

B9 [ve + 1) satisfying ve41 = Nb(Le, ¥ [7e + 1).
(b) £ is a gap in B(y).

Each of these pairs occurs k times in the enumeration.
If there are v < « and 3 < k such that n(vy, 3) = « then we put
Pat1 =PaxQ(L),
where P, IF “L is a gap in B(y)” for some ¢ € D,.
Case 3: cf(a) =wy. If
P, IF “For some v < a and ¢ € D, T, is an automorphism of B(p)”
then two cases are possible:

(x) Pq IF “There is no £ < a such that T¢ is an automorphism of B(1))
and T, and T¢ agree on B(t¢), where 1¢ = ¢ [ 0¢ = 9 | g¢ for some ordinal
o¢ < &7, and

(xx) Po IF “There are ordinals &, g¢ and a function ¢ € D¢ such that
0¢ <& <, cf(§) = wr, Ye = @l oe =] oe, Te is an automorphism of B(1))
and Ty, is an extension of T¢ [ B(1¢)”.

Let 7 denote the set of all pairs (o¢,&) such that P, forces that T is
an automorphism of B(¢), ¢ = ¢ [ ¢ = ¢ | ¢ and T, is an extension
of Te | B(vpe). Let ¢ = sup{oe : (0¢,€) € T}. We enumerate all triples
(X,T,,en) of P,-names such that

Po I “X € P(w)/fin",
and Ind(X) < dom(y) (case (x)), or ¢ < Ind(X) < dom(yp) (case (xx)),

e €{-1,1}, n € w. We fix a function j from the set of these triples into x
with the following properties:

(a) If X € Baom(p) = {Xy 17 € Q1, v < dom(p)} and Y & Baom(y)
then

J(X,Tw,en)) < j(Y,Ty,em)) for all n,m < w.

(b) If X1, X5 € Bdom(tp) [resp. Y., € Bdom(cp)} and Ind(Xl) < Ind(Xg)
[resp. Ind(Y7) < Ind(Y3)] then

J(X1,Ta,en)) < j((X2,To,em))  [resp. j((Y1,Ta,en)) < j(Ya, Tw,em))].
(c) For all X with Ind(X) < dom(y) and all n € w,
J(X, To, —n)) = j((X, Tasn)) + 1,
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]((Xa To,n+1)) =j((X, Ta, _n)) +1
Since P, IF “card P(w)/fin < v,”, the domain of the sequence of the triples
is < v,.

Using ordinals > v, we also enumerate all triples (£, Ty, en) of P,-names
such that P, forces: £ = ({X(sy) : v < wi},{X(tg) : B < wi}) is an
increasingly ordered gap of the type (wi,w1), Ind(X(s,)) < dom(y) and
Ind(Y(t3)) < dom(yp) for all v < wy and § < wy, and Q(L) does not have
the c.c.c. We can assume that (£, T,,—n) follows (£,T,,n) and precedes
(L, Tp,n+1).

We extend the function Nb to the set of objects described above in the
following way:

Nb((X,Ty,en)) = n(a, j(X, Ty, en))
and if (£,T,,n) is the fth element of the (second) enumeration then
Nb((£, Ta, n)) = n(a, B).
We set
Poa+1 = Pa.
We also define T¢ = T2+t = T, in case (x) and T = T2 = monomor-
phism generated by To and U, ¢er 7€ [ {X € P(w)/fin : Ind(X) < ¢}
in case (xx). The families T defined at earlier stages are not changed:
Tot =T

It is easy to check by using Sikorski’s theorem and the following lemma

that the above definitions are correct.

LEMMA 1. Let X be an element of P(w)/fin in 'V, let p = (up, x,, w,) €
Q(L) and let X, stand for a generic subset added by Q. Then we have:

if plb “X C, X, then X C, | ) X(s),

Ss€up
if plb “XNX, =0 then X C, ] X(1).
tewp
Case 4: o € Q2. Suppose that o = Nb((X,T,en)), where
P, Ik “T, is an automorphism of B(y), X & B(p)".

Ife=1and X ¢ dom(T¢) or e = —1 and X ¢ rg(T¢") then we extend the
monomorphism T¢".
Suppose that € = 1. Let £ be a gap in rg(Tga) defined by X:

L=({T)"(2): 2 S XHA(TH)™Y) : X S YY)

(P, forces all the properties). All elements of the gap have been defined at
the previous stages, because of the definition of j (Case 3). We set

Pot1 = PaxQ(L).



136 M. Grzech

We extend T¢* setting
Tf“ = homomorphism generated by T¢" U {((Tg‘)‘sn (X), Xat1)},
where
Xot1 ={t€w:Ip e [z,(i) = 1]},
and G C Q(£) is a generic filter. If T¢ is a P,-name such that

Py IF “T¢ is an automorphism of B(1) and
for some ordinal o, ¢ [0 =1 [p and T and T agree on B(¢|p)”,

and Ind(X) < dom(B(v)), then
T£a+1 = homomorphism generated by T¢" U {((T¢")""(X), Xa+1)},

and TCO‘Jrl = T¢ in the remaining cases. If ¢ = —1 we proceed with the
construction in a similar way: we add a generic set to the domain of T
and to the domains of each of the T:*’s which agree with T¢* on an “initial
segment” of their domains.

(It is easy to prove, by using Lemma 1 and Sikorski’s theorem, that the
definitions of the monomorphism 7' are correct.)

Case 5: a € E. Assume that a = Nb((£,T,en)), where P, IF “L is
an increasingly ordered gap in P(w)/fin and Q(£) does not have the c.c.c.”
Suppose that £ = ({X(s¢) : ¢ < w1}, {X(t3) : f < wi}) and let £* denote
the gap

{(T3) (X (s¢)) : ¢ <wr 1 {(T9)™ (X (tp)) : B < wi}).
We set
Poty1 =Po*E(L*) and To =17

For limit ordinals A < k we define Py as a direct limit of {P, : @ < A}.
We also assume P,,1 = P, in all cases not mentioned above. This completes
the definition of the iteration.

We conclude this part of the proof by checking that the above construc-
tion is correct, i.e. that there is no gap £ of the type (w1,w;), consisting
of generic subsets of w, which is an image (under one of the extending
monomorphisms) of some gap £’ such that Q(L’) does not have the c.c.c.
and which is filled by the generic set X, at some stage v < k.

Cram 1. Let B; (i = 1,2) denote one of the following subalgebras
of P(w)/fin : B(p;) (where ¢; € Dy,); the domain of TS'; the range of
T¢. Assume that ;) X(s:) € Br, UjL, X(t;) € B and U, X(si) C
Uj—, X(t;). Then there are finite functions r1,...,r), such that rg(r;) C
{-1,1} (I=1,...,k) and for each £ € Ule dom(r;) we have X¢ € By N By
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and

n

U X(Sz) g*

i=1 l

C=

X(m) S, | X(ty):

m
1 j=1

This is proved by using Lemma 1.

LEMMA 2. Let a < k. Assume that P, has the c.c.c. Suppose that P,
forces the following:

(1) For each 3 < o and each ¢ € Dg, if L, is a gap in B(y), then Q(Ly,)
has the c.c.c.

(2) If L = (S¢,Ue) is a gap in the domain or range of (Tf‘)dC such that
Po IF “Q(L) has the c.c.c.” and for all X(s) € S¢ and X(t) € U there are
Uiy X (si) € S¢ and UL, X(t;) € Ue such that

X(s) = U X6 nx(1) = [J X(t5)

i=1

=
>
—~
Reg
~—
N—
N—

A Ind( X(si)> < Ind ((Tg)s’f(

,C§|

&
Il
_

.
Il

R

=
s
o

=

/\Ind( X(tj)) < Ind ((Tf‘)sk< |

<
Il

-
<
Il

—

then P, |- “Q((Tg)sk(ﬁ)) has the c.c.c.”

(3) Le = ({I2™(X(s,)) : X(s,) € S} {TQ™(X(,)) : X(t,) €
U}) is an increasingly ordered gap such that Pe I “T¢ is an automorphism
of B(v), L = (S,U) is an increasingly ordered gap of the type (wi,w1) in
P(w)/fin and Q(L) does not have the c.c.c.”

Under the above assumptions, there is an oy < wi such that for each
v > ag and any finite subsets {X(s1),..., X(s™)}, {X(#t'),..., X(t™)} of
the lower and upper classes (respectively) of the gap L, or L¢ the following
holds:

X(sy) Z« U X(Si) or X(ty) Z« U X(tj)

where X (sqa,), X (54) and X (ta,), X(t,) are elements of the lower and upper
classes of L¢ (respectively).

Proof. Assume to the contrary that for every v € w; there are s, ...
., 80 t], ... Y, such that
n m
[X(s) S XD A [x) €0 U x@)).
i=1 j

Jj=1
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Applying Claim 1 to X(s,) Cx UL, X(s]) and X(t,) S, Uj~, X(t])
(for each v < w;) we obtain elements (J;2, X (r}), U2, X (p]) such that
X(sy) Cx U?ll X(r]) Cu U?:l X(s7), X(ty) Cs UT:H X(p}) Cu U;n:1 X(t;.’)
and X, € BNrg((T¢)=™) for each n € Ui2; dom(r;) UUJS2) dom(p;). (Here
B denotes B(y) or the domain or range of 7¢*.) Thus

r— ({OX(T;Y) :7<w1},{UX(p}) ;7<w1})

is a gap in B Nrg(T¢).

If B = B(yp) then L is a gap in B(p N1). Thus L, the image of £’
under (7)™, is a gap in B(¢) and by (1), Q(£) has the c.c.c., but by
(3) it does not have the c.c.c., a contradiction.

If B = dom(Ty) then (T¢)~=*™ (L") = L" is a gap in dom((7¢")**™). By
(2), Q(L") has the c.c.c. but by (3) it does not have the c.c.c., a contradic-
tion. m

We show that the assertion of Theorem 1 holds in the extension V[G],
where G C P, is a generic filter. It is clear that V[G] IF “2¥ = k” and (by
Theorems 2 and 3), V[G|a] IF “2¥ < k” for each a < k. Let B be a Boolean
algebra in V[G] with card B = k. There are elements b, € B for v < k such
that B = {J,., Ba, where B, is the subalgebra generated by b,, v < a.

Assume inductively that we have an embedding i : B, — P(w)/fin such
that i(be) = Xpg, with B¢ € @y for each § < a. We define a sequence
Yo sup{fe : £ < a} — {0,1} putting ¢, (8¢) = 1 for each £ < «, and
©va(€) = 0 otherwise. Thus B(y,)/fin is an isomorphic image of the algebra

“' o= (T )-( 1T )

s(Q)=1 s(m)=-1
where s is a finite function on « with rg(s) C {—1,1}. The next generator
b, determines a gap

L5 = ({b(s) : b(s) < ba}, {b(t) : b(t) - bo = 0})

in the algebra B,. Let £ be the image of £B~ under i. So £ is a gap in
B(p,) and

L= ({X(si)} {X(t:)}),
where s; is defined on {f¢ : £ € dom(s)} by the equality s;(8¢) = s(§) (¢; is
defined similarly).
Let v > sup(pq), v € Q1 and v = Nb(L, ¢, ). We define i(b,) = X, and
Yat1 = Pa U{(8,0) : dom(ps) < B < v} U{(y,1)}. This extends i to an
embedding from B,y1 onto B(@a+1)/fin (we check this using Lemma 1).
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Let & = U, ¢a- It is clear that B is isomorphic to B(®).

Let f be an automorphism of B. Then io f oi~! is an automorphism of
B(®) and there is a canonical name F for it, F' C H(k), consisting of some
pairs ((z,4)("+), p), where 2, y are canonical names for the elements of B(®)
and the set F(x,y) = {p € P, : ((z,y),p) € F} is an antichain. Since P,
has the c.c.c., the set

Ny ={a<k:Va,y [z,y e VP = F(z,y) CP,]}
is wi-club (closed and unbounded) in . For any a € N; the restriction
F,=Fn(VF) xp,)
is a P,-name and F,[G|a] = io foi~t N V[G|a]. So, for all @ € Ny, the
monomorphism F, [G|a] belongs to V[G|a]. On the other hand, the sets
No={a<k:f<a, cfla) =w;, FNH, =F,}
are wi-club for all 8 < k. From the diamond principle it follows that there
is an increasing sequence {yg € N1 N Ny : 3 < s} such that F.,, = T,,.
Let A(F) = Ug., T95H anﬁd f = A(F)[G]. Then f is an automorphism of
P(w)/finand io foi~! C f.

It remains to show that P, has the c.c.c. for each o < k. Let Pfx consist

of all p € P, satisfying the following conditions:

1. For each v € supp(p) N (Q1 U Q2) there are u,(p), z,(p), w,(p) such
that

[43

PIvIE “p(v) = (uy(p), 24(p), wy(p))”

and dom(s) C supp(p) for each s € u,(p) U w,(p). Moreover, for each v €
supp(p) N (Q1UQ2), the number dom(z,(p)) is constant (independent of ).
We write {(p) for this value.

2. For each 7 € supp(p) N E there are (a1, Saystay)s-- - (Qn, Say, s ta,,)
such that

plyIE “p(7) = {(a1,Sartar)s - (O, Say s ey )}

and dom(s,,) U dom(t,,) C supp(p) for ¢ < n.

Let PX C P/, be the set of all p € P/, with the property:

3. If v € M then there is an n € w such that
plyIE “hy(p(7)) = n”,
where h. is a Py-name of a function such that
P,IF “hy:Ry > wand Vn € w [h;l(n) is linked]”.
(We can choose the h., since P, I “R, is o-linked”.)

LEMMA 3. For each p € P, and m € w, there is a q € P}, such that p > q
and 1(q) > m.
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Proof. The proof (except for the case § € F) is similar to the proof of
Lemma 4.4 in Chapter 9 of [5].

Assume (inductively) that the lemma holds for a, § = a+1, 3 € supp(p)
and 3 € E. There is a p; < p [ such that

P1 I+ “P(ﬁ) = {(041780417ta1)7- < (an?san’ta")}”

for some Pg-names (a1, Sa;sta,),-- -5 (Qns Sa,, ta, ). We may assume that
dom(s,,) U dom(t,,) C supp(p) for i@ < n. By the inductive assumption
there is a p, < p; such that p, € Pj and I(py) > m. Thus, the element
Py * p() has all the required properties. m

We precede the next two lemmas with the following note: Fix o < k and
suppose that P, has the c.c.c. and the assumptions of Lemma 2 are satisfied.
Let P, force that £ is the image under T of an increasingly ordered gap
L' such that

P, IF “Q(L’) does not have the c.c.c.”

Suppose that {p, : £ < w1} C P, is a set of pairwise compatible conditions
and that e; are P,-names of conditions of the forcing E(L) such that

VE <wi [pe I “ee = {(ai,saﬁ,tag), o (aﬁg,saig,tais)}”].

1

Let z;, i = 1,...,n, be finite functions with dom(z;) C ﬂ£<w1 supp(pg) N
(Q1UQ2). From Lemma 2 it follows that there are (at most) two possibilities:

1. There is an uncountable set B C w; such that

VE1,82 € B [re, 6, IF “eg, = eg,7],

where re, e, < Pg, ;s Pe,-
2. Any set A C w; satisfying the following condition:

If £&1,6 € A then for some ig € {1,...,n¢,} and jo € {1,...,n¢,} we
have

n

pe, b “X(s,e) Cu [ JX(21)” and pg, I “X(t,e) S w\ | X(2:)"

=1 =1

and for all re, e, < Pe, Peys

re el Yk € {1,... ng,} [0f! # o] and VI € {1,... ng, } [0 # o]
is at most countable.

LEMMA 4 ([5]). Let p IF “X(s) € fin” and v = maxdom(s). If p € P,
then there is an r € P, with r < p and I(p) = I(r) such that if r [y IF “r(y) =
(ul,, zl,wl)”, then r Ik “s Ty € ul” (if s(y) = —=1) orr Ik “s[vy € wl” (if

s(7) = 1).
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LEMMA 5. Assume that p,q € P}, satisfy the following conditions:

1. pla and q |« are compatible.
2. If £ € supp(p) Nsupp(q) N M and

pIElE “p(&) € he'(n)” and qlél “q(é) € he(m)”
then n = m.
3. If § € supp(p) Nsupp(q) N (Q1 U Q2) and
prEtE “p(§) = (ug, g, wp)” and ql&lE “q(§) = (uf, 2, wi)”
then xz = xg

4. Let € € supp(p) Nsupp(q) N E and
pIEI “p(€) = {(af 506 tas): -+ (A% 805 stas )}

O‘ng

q fg I- “q(é-) = {(ﬁfa Sﬁf’tﬁf)a ceey (57%5355?“& ) t/gfng)}”'

Define A = {i : (a,s ag,tae) € p(€) and of # ﬁf for all j such that
( g,sﬁg,tﬁg) € q(&)} (Be is defined in a similar way). Assume that for any

i € A¢ and j € B¢ there is no s; with dom(s;) C supp(p) N supp(q) such
that

plF “X(s 5 UX si)” and qlb “X(tge) Cow )\ UX(sl)”
Then p and q are compatible.

Proof. Denote by A the set supp(p) Nsupp(q) N E. The required condi-
tion will be constructed in the following way: First we define extensions of
the conditions p and q by extending zero-one sequences :Up and mg such that

pIélE “p(€) = (ug, aZ,wg)” and ql&IF “q(§) = (ug, 2, wi)”.
This will be done in such a way that if p € A and if some extension r of the
conditions p and q forces
X($0,) =1 X N0 ei“X%i, i€ A,
and
X(tgl.)—le .ﬁslanggnj, J € By,
then for some n > [(p),
0 € = —1 0 eri = —1
. 9 I3 9 o 5 5
x&i(”):{l ey =1 3375(”):{1 =1
) ‘gk 9 ) v, )
xfi C Iﬁi’ {L‘,ylz' C f,yli.
Thus we obtain extensions p’ and q’ which force “n € X (s,,)” and “n €
X (tg;)" respectively. In the next step of the proof we will consider the
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conditions (uvlz-,x%i,w%i) and (uﬁi’xﬁi’wﬁi) and extend some of x., z¢ for
v € dom(s), s € Ui Ui, § € dom(t), t € Uugg Utg . We will repeat this step
for all z, which have been just extended. Finally, we extend each remaining
x, with v € (supp(p) Usupp(q)) N (Q1 U Q2). The construction should be
careful in order to avoid a situation where for some vy € (supp(p)Nsupp(q))N
(Q1 U Qz2) there are s € u?, t € wd and n > [(p) such that the extensions
p’ and q’ force that “n € X(s)” and “n € X(¢)”. (Such conditions p’ and ¢’
are incompatible.)
For all ¢ € supp(p) Nsupp(q) N E = A we define a function

P (a+ 1) N (supp(p) Usupp(q)) N (Q1 U Q2) — {1,0}.

(At the end of the proof we will extend the sequences x., with v € (supp(p)U

supp(q)) N (Q1 U Q2) putting Z(n,) = ¥2(y), where n, = I(p) + k(o) and
k is an increasing enumeration of the set A.)
Let r < pla,q[a force that
X(sa;) =1 Xy N.oNep Xoi € Ay,
and '
X(tﬁi) = €]1X ; ﬂ...ﬂe;angznj,

(We denote af, 3 by ay, 3; respectively.) We put

j € B,.

; 1 ifel=1
Q(~AV) — l )
ve() {o ifel = —1,i€ Ay, I <ny,
and i
e ={y 190
0 ifey, =—1, j€ B,, k<m,.
Note that there are no sy, s}, s} with dom(sy), dom(s}), dom(s}) C

supp(p) N supp(q) such that

pl- « ﬂ ﬂ st,yli HUX(SZ:) - UX(Sf) and

i€AL IEN!

N ) <x s Ui

€AY IEN]

qlF « ﬂ ﬂ angiﬁUX(s;’) g*w\UX(sf) and

jEB, ke M
N N exg e Uxe
JEBY keM}
(where A}, A7 C Ay, By, B] C B,, Nj,N/" C n; and M}, M C m;). Thus,
if we put 7.,: (I(p)) = ¥2(4}) and Tk (I(p)) = spg(éf) then the extensions we
have obtained will be compatible.
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Let p [ IF “p(y}) = (’U/,Yl,x,yl,w,yl)” and s € Uy, b€ Wy If we put
jvf(l(p)) = W2(~}) then the sequences Z., v € dom(s) U dom(t), have to
be defined in such a way that the extension we obtain forces “I(p) & X(s)”
when ¥¢(4}) = 0, and “I(p) € X (t)” when ¥¢(v}) = 1. (Similar conditions
should hold for q.)
For each X%i, Xfi we define

[y ite=1,
T\ wy ifel =1,
where

Pf%i I “p(’)/l) (u'yﬁx'yl’wfyl) :
(The definitions of v,; are similar.)

k

Let {s} : @ < k,} be an enumeration of all s € U;ca, Up<p, vy:- We

enumerate also 5, = {—s}(y)X, : v € dom(s})} = {e}X{,... e X} }.
Denote by I(a) the intersection 51(1)X1(1) Nn...N 5I;(Qk )Xj("k )» Where a :

ko +13i— a(i) <k, and by I the set of all the functions a. (J(b) and J
are defined in a similar way for v, .)
k

Thus
Uz
€A, =1 Sevwf a€l
where amin = min{af,...,af }. Tt is easy to check that there exist se-

quences a € I and b € J such that
pIF “X(Samm) NI(a) £ 07 and qlb “X(tg,,.) NI() #. 07
and the following holds: for any
a,a" Ca, V,0"Ch A, A CA,
N!,N!" Cn;, M;,M]’»' C my, B’Q,B;’ C B,,
there are no sj, s}, sll, s‘,g, sy which satisfy the conditions below:

(1) The domains of the functions are subsets of supp(p) N supp(q).

(2) pl-“1(@)n () () eiXy; nUX 6 nUX 60 S U X Gsp)

1€A, lEN]
ﬂ ﬂ E%X,ﬁ - UX(sl ) and I(a UX st)
i€AY IENY

(3) qlF “J(b ﬂ ﬂ ekX£J DUX sy ﬁUX st) Cy w\UX sf),

JEB, keM’
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N N 8ng;‘ S X (s)) and JO) S [ X (s7)7.
i€ By ke M)/
For ¢ such that X5 = Xé(i) or X5 = Xg(j) we define
() = 1 if 52(“ =1 (resp. 5{)0) =1),
0 if e,y = —1 (resp. 5{,(3‘) =-1).
We proceed with the construction in the following way:
We replace {X,: : i < n, I < n;} and {Xy : j <m, k < m;} with
) k
{Xé(i) 4 € dom(a)} and {Xg(j) : j € dom(b)} and repeat that until each
v is empty for each X5 = X;k(i) and X5 = ng(j), where a;, and by, are the
sequences obtained in the (k — 1)th iteration of the construction. Thus

plk “X(sa,. ) NI(ag) N...NT(ax) #« 07,
qlb “X(tg,..)NJI(bo)N...NT(bg) #. 0"

and there are no s; with dom(s;) C supp(p) Nsupp(q) such that
pIb “X (Sapm) NT(ao) N... N 1(ax) S, | J X (s1)7,
qlF “X(tg,,) NI(be) V... NI(b) Cow\ | JX(s1)".

Let
I

{V:X’Y:Xéj(i)a jSk‘OT’Y:%ia ieAQv lgnl})
{§:X§:Xgi(j), i<kor&=¢, je B, Il <m;}.
(

We defined ¥¢(f3) for f € I' U Z. It remains to define ¥¢(3) for f ¢ I' U =.
Assume that g is the [th element of A and let ¢ = I(p) + {. Denote by P
the formula “c € X¢”, and by P, the conjunction A¢cgom(s) $(§)Pe, where

—
—

_ [P ifs(§) =1,
s(€)Pe = {ﬁPg if (&) = —1.

Consider the following scheme: If £ € (supp(p) Usupp(q)) N (Q1 UQ2) = 2

then R is the formula
\/ P, A \/ P,

P y,,d P q
seuEng tEwéuwE

(we assume that Re is false if uf Uud or wi Uw{ is empty), and K¢ is the

formula
(V Po=P)a( \/ Pi=(-Py).

P q p q
sEugLJuE ifEu)SU'w5
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We want to find an assignment such that

(%) /\ —Re¢ A /\ K¢ is true

£en £en

and
(xx) Pg is true if ¥¢(B) = 1, and P¢ is false if ¥¢(3) =0 for g€ I'U =.

(Since p and q are compatible there exists an assignment such that (x) is
true, but (%x) need not be satisfied.)
Suppose to the contrary that for all assignments which satisfy (xx) the

\/Rg\/\/( \ Ps/\ﬂP§>v< \ Ptng)

en en P9 P q
13 3 seugLJu§ tengJw&

is true. (Note that this sentence is an alternative of sentences P, when q I
“X(v) =4 07.) Thus there are &,...,&§ € 2 and (i,...,(q € I'U = such
that
\ ePg A Ae()Pg AP A AP
e€O
is equivalent to

\/Rgv\/( \ Ps/\ﬁpg)\/( \V Pt\/P§>

ey en P9 P ,,9
13 3 seuguu5 t€w£Uw5

(2, 2"CRand O ={e:e:1+1— {-1,1}}).

Since p [ @ and q [ a are compatible, {(1,...,(s} # 0. It is easy to see
that there are (y,...,(; € I' and (;11,...,(q € =. We divide the set of
&;’s into three disjoint sets: &1,...,&, € supp(p) \ supp(a), & 4+1,---,&, €

supp(p)Nsupp(q), &1,41, - - -, & € supp(q) \supp(p). Thus each e = (e1, €2, €3)
and dom(e;) is equal to {1,...,01}, {li +1,...,lc} or {la+1,...,1} respec-
tively. Denote by I(a®) (resp. J(b°)) the intersection mCi(s)GF X¢.y (resp.

Cigeey(©

ﬂCi(s)EE XCi(e))- There are two possibilities:

L. I(aEhEQ’EB) N miedom(eleg)(sl‘?Q)(i)X& = 0.
2. There is . € supp(p) Nsupp(q) such that

plb “I(@™==)n () (a1e2)()Xe, Cu Xoo N [ e2()Xe,”

i€dom(eez) i€dom(ez)

and

alF “JEes)n () esli)Xe, g*w\(xgsm N 52(¢)X&)”.
i€dom(es) i€dom(ez)

Thus
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plF “X(sa..)NI(ao)N...NI(az) C, I( U a)
€O

cUUUELn N =0Xe,)
€1 €2 €3 i€dom(ez)
and
qlk “X(ngin) N J(bo) Nn...N J(bk) C, J( U b61,82,53>
e€cO
o\ (UUU(xen N =xe))
€1 €2 €3 i€dom(ez)

a contradiction.

Thus there is an assignment satisfying (xx) such that (%) is true. We

define
1 if P¢ is true,

o(¢) —
ve(e) = {0 if P is false.

It is easy to prove (by induction) that there is r € P! satisfying the
following conditions:

(1) U(r) = U(p) + card A.
(fH) If&e Randrf&IF “(&) = (u'@az'&,wé)” then H(p) = xz and
ze(l(p) + 1) = W2 (€), where p; is the ith element of A.

The proof (except for the case € FE) is identical to the proof of
Lemma 4.5 of [5] (Ch. 9).

Assume that § € E and (3 is the ith element of A. Let ry < p[/3,q[0 be
an element of P’ﬁ satisfying (1) and ({1). Thus

r I “)((Sa_ﬁ) N X (tﬁﬁ) =, @77’
i J
where

pIAIE “p(8) = {(aF. 84 T0a).- - (00500 otz )},

1

qlp I+ “q(ﬂ) = {(51673557%?)7 ) (575716’35513’%513)}”.

If af & Ag or 5? ¢ Bg then
ry I+ “X(Sa@) N X(tgg) 75 0.

If aiﬁ € Ag and ff € Bg then
ril- “l(p) +ie X(s,8)N X(tes)".
i J
Thus ry IF “7 = p(B) Uq(B) € Eg” and r = ry x 7 is the required element. m

LEMMA 6. Assume inductively that:

(1)o Py has the c.c.c.
(2)o If L is a gap in B(yp) and ¢ € D, then P, I- “Q(L) has the c.c.c.”
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(B)a If ¢ < o and L = (S¢,U¢) is a gap in the domain or range of
(T&)%* such that P, I “Q(L) has the c.c.c.” and for all X(s) € S¢ and
X(t) € Ue there are U;_; X (si) € S¢ and Uj~, X(t;) € Ug such that

X(s) = | X(s) A x() = J X ()

i=1

=
Ja

A Ind( X(si)> < Ind ((Tg)fk(

I
=
.
I
=

(2

Alnd ( U X(@-)) < Ind ((Tg)5k<

j=1
then Py IF “Q((Tg)ek(ﬁ)) has the c.c.c.”
Then Poy1 has the c.c.c. and the conditions (2)a+1—(3)a+1 hold.

Proof. Let P = {p¢ : { € w1} C Poy1. Then, by Lemma 3, for each
pe there is p; < p, with p; € P’ 1. Applying the A-system lemma we find
aset Py C {p; : § € w1} of cardinality w; consisting of conditions whose
supports have a common root. By Lemma 2 deleting (at most) countably
many conditions we can divide P/, into w sets P} on which the assumptions
of Lemma 5 are satisfied. Thus there are no uncountable antichains in P,y.
Conditions (2)4+1—(3)a+1 are proved in a similar way. m
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