
FUNDAMENTA
MATHEMATICAE

150 (1996)

On homogeneous totally disconnected 1-dimensional spaces

by

Kazuhiro K a w a m u r a (Saskatoon),
Lex G. O v e r s t e e g e n (Birmingham, Ala.)

and E. D. T y m c h a t y n (Saskatoon)

Abstract. The Cantor set and the set of irrational numbers are examples of 0-
dimensional, totally disconnected, homogeneous spaces which admit elegant characteri-
zations and which play a crucial role in analysis and dynamical systems. In this paper we
will start the study of 1-dimensional, totally disconnected, homogeneous spaces. We will
provide a characterization of such spaces and use it to show that many examples of such
spaces which exist in the literature in various fields are all homeomorphic. In particular, we
will show that the set of endpoints of the universal separable R-tree, the set of endpoints
of the Julia set of the exponential map, the set of points in Hilbert space all of whose
coordinates are irrational and the set of endpoints of the Lelek fan are all homeomorphic.
Moreover, we show that these spaces satisfy a topological scaling property: all non-empty
open subsets and all complements of σ-compact subsets are homeomorphic.

1. Introduction. All spaces in this paper are separable and metric.
Homogeneous 0-dimensional spaces have been extensively studied. Classical
results include simple characterizations of the Cantor set C (Brouwer, [4]),
the rationals Q (Sierpiński, [26]) and the irrationals P, the Cantor set minus
a point and C × Q (Alexandroff and Urysohn, [2]). This completed the
classification of all homogeneous zero-dimensional absolute Borel sets of class
less than or equal to 1. It was not until 50 years later that this line of research
was continued by van Mill [19] who characterized products of Q, P and C and
later by van Engelen [7, 8] who finished the classification of all homogeneous
irreducible Borel sets in the Cantor set.

Totally disconnected, one-dimensional spaces have an equally long his-
tory but, as far as we know, no nice characterizations of such spaces exist.
The first example of a totally disconnected space of positive dimension was
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due to Sierpiński in 1921 ([25], see also [12]). Probably the best-known ex-
ample is due to Erdős [9]: the set of points in Hilbert space all of whose
coordinates are rational. J. H. Roberts produced an embedding of this set
into the cone over the Cantor set [22]. It is well known that totally discon-
nected sets of all dimensions exist [18, 11].

In this paper we will consider topologically complete, totally discon-
nected sets which are almost 0-dimensional (cf. Definition 1) but not 0-
dimensional. It was proved in [21] that these spaces are one-dimensional.
The set E in Hilbert space all of whose coordinates are irrational is one
such space. We will refer to E as complete Erdős space. It turns out that
these kinds of spaces have come up in various examples, in particular, as the
set of endpoints of certain dendroids. For example, Lelek [13] constructed a
smooth fan L with a one-dimensional set of endpoints. Mayer [14] showed
that the set of endpoints of the Julia sets of certain exponential mappings
is also a totally disconnected one-dimensional set. Subsequent theorems by
one of the authors and others on the uniqueness of Lelek’s fan [6, 5] and
Julia sets of exponential mappings [1] as well as the desire to understand the
homeomorphism groups of the universal Menger continua and group actions
by isometries on R-trees have encouraged us to study these sets more closely.

In this paper we will provide a characterization of the set of endpoints
of Lelek’s fan and use it to show that several of the above examples are
homeomorphic. The notion of an almost 0-dimensional space was inspired
by results in [20] and appeared first in [21] where it was shown that every
almost 0-dimensional space embeds in the set of endpoints of some R-tree
and, hence, is at most 1-dimensional.

Definition 1. We say that a space X is almost 0-dimensional provided
there exists a basis B such that for each B ∈ B, X \ Cl(B) is a union of
clopen sets. In this case we say that X is almost 0-dimensional with respect
to the basis B.

Note that every almost 0-dimensional set is totally disconnected. Clearly
every 0-dimensional space is almost 0-dimensional. A totally disconnected
space X is called pulverized provided it can be embedded in a connected
space Y such that the complement in Y of the image of X under this embed-
ding consists of a single point. All of the above examples of 1-dimensional,
totally disconnected, topologically complete, homogeneous spaces are pul-
verized sets. We do not know whether all pulverized and dense Gδ-subsets
of complete Erdős space are homeomorphic. Such a result would provide a
positive solution to the following problem (see [10]):

Problem 1. Let X be an almost 0-dimensional , 1-dimensional , topo-
logically complete, pulverized , homogeneous space. Is X homeomorphic to
complete Erdős space?
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We denote by B(x, r) the ball of radius r about x and by Cl(A) the
closure of the set A. The sets of real numbers and integers are denoted by
R and Z, respectively.

2. Preliminaries. A space is uniquely arcwise connected if it is arcwise
connected and if it does not contain a homeomorphic copy of the unit circle
in the plane. If X is a uniquely arcwise connected space, we will denote by
[x, y] the unique irreducible arc joining the points x, y ∈ X.

A space X is said to be an R-tree if it is locally arcwise connected and
uniquely arcwise connected. It is known (see [17]) that a non-degenerate
R-tree has dimension one. An R-tree admits a convex (i.e. each subarc is
isometric to an interval of real numbers) metric d which is compatible with
the topology [15]. Every connected subset of an R-tree is an R-tree. A com-
pact R-tree is called a dendrite. A point x of an arcwise connected space X
is said to be an endpoint of X if x is an endpoint of each arc in X which
contains x. It is easy to see (see [17]) that the set of endpoints of an R-tree
is totally disconnected and almost 0-dimensional. Let us recall that a con-
tinuum X is said to be hereditarily unicoherent if K ∩ L is connected for
every pair K, L of subcontinua of X. A continuum X is called a dendroid if
it is arcwise connected and hereditarily unicoherent. By a fan we will mean
a dendroid having exactly one ramification point; we will call this point the
vertex of X. A fan X is said to be smooth if the sequence of arcs [v, xn]
converges to the arc [v, x] for every sequence xn converging to x, where
x, xn ∈ X and v is the vertex of X.

Definition 2. A Lelek fan L is a smooth fan with a dense set of
endpoints.

It was shown in [6, 5] that any two smooth fans with a dense set of
endpoints are homeomorphic (i.e. the Lelek fan is topologically unique).
Such a fan was constructed by Lelek in order to show that there exists a fan
with a 1-dimensional set of endpoints. We will denote the set of endpoints
of the Lelek fan L by E(L).

Throughout this paper we will assume that a Lelek fan (cf. [5]) is embed-
ded in the cone C over a Cantor set C which we consider to be a subset of the
plane consisting of straight line segments joining the points in C ⊂ [0, 1]×{0}
to the vertex v = (1/2, 1). The line segment joining a point c ∈ C to v will
be denoted by [v, c]. We will denote the second coordinate projection of C
to [0, 1] by π and refer to it as a level function, and let g : C \ {v} → C
denote the natural monotone retraction. For a subset L ⊂ C, we will often
denote g|L by gL, or simply by g. Points in C will be denoted by (c, y),
where the point (c, y) ∈ [v, c] is the unique point with second coordinate
y. If X ⊂ C, where C is the cone over the Cantor set in the plane, we
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define
4(X) =

⋃

x∈X
[v, x].

3. Characterization theorem. In this section we will provide a charac-
terization of the set of endpoints of the Lelek fan in terms of covers by clopen
sets and a metric d. We will show in the next section that several well-known
examples of totally disconnected 1-dimensional homogeneous spaces satisfy
the conditions of this theorem and, hence, are all homeomorphic to the set
of endpoints of the Lelek fan.

In a related paper J. H. Roberts [22] produced an embedding of the
1-dimensional subset of Hilbert space consisting of points all of whose coor-
dinates are rational into the cone C over the Cantor set. The proof below is
a modification of his argument. We will construct our embedding in such a
way that the closure of the image set in C is a Lelek fan.

Theorem 3 (Characterization Theorem). Let X ⊂ Y be a separable
metric spaces with metric d, x0 ∈ Y and {Un} a sequence of finite covers of
X by clopen sets such that :

(1) For all n, the elements of Un are pairwise disjoint and Un+1 refines
Un.

(2) For all n, and all Un ∈ Un such that Un+1 ⊂ Un for each n,∣∣∣
⋂
Un

∣∣∣ ≤ 1

and⋂
Un 6= ∅ iff there is M such that d(x0, Un) < M for all n.

(3) For all x ∈ X and all n, let Un be the unique element of Un contain-
ing x. Then

lim
n→∞

diam(B(x0, d(x0, x) + 1/n) ∩ Un) = 0.

Then X is homeomorphic to the set of endpoints of a smooth fan. Moreover ,
if in addition,

(4) for all n, U ∈ Un, ε > 0 and R > d(x0, U), there are m > n and
V ∈ Um (V ⊂ U) such that

|d(x0, V )−R| < ε,

then X is homeomorphic to the set E(L) of endpoints of the Lelek fan L.

P r o o f. Let {Un} be a sequence of finite clopen covers satisfying (1)–(3).
We will index the elements of Un by U(i1, . . . , in) so that for each n and
each in, U(i1, . . . , in−1, in) ⊂ U(i1, . . . , in−1). With each x in X we can
associate a unique nest {U(i1, . . . , in)}n of elements of Un which contain
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x. Let |Un| = c(n) and Z(c(n)) = {1, 2, . . . , c(n)}. Then
∏
Z(c(n)) = C

is a Cantor set which can be embedded in [0, 1] × {0} in the plane in a
natural way. The function ϕ : X → C which assigns to each point x the
point y = (i1, i2, . . .), where x ∈ U(i1, . . . , in) for each n, is one-to-one
and continuous. We will parameterize the interval [v, y] by the projection
(π|[v,y])−1. Consider the function h : X → [0, 1] defined by

h(x) =
d(x0, x)

d(x0, x) + 1
.

Then h is a continuous function of X to [0, 1]. Given a point x ∈ X (and ϕ(x)
in C), denote by f(x) the unique point on the arc [v, ϕ(x)] whose second
coordinate is h(x). Then the function f : X → C defined above is clearly
a one-to-one continuous function of X into the cone C over the Cantor set
C. We will show that 4(f(X)) is a smooth fan and f : X → E(L) is the
required embedding.

• 4(f(X)) is compact. Note that it suffices to show that the limit of
each convergent sequence {f(xi)}, where xi ∈ X, belongs to 4(f(X)).
Hence, suppose that lim f(xi) = (x, y), where (x, y) ∈ [v, c] for some c =
(i1, i2, . . .) ∈ C and y < 1. (The case y = 1 is trivial.) Since y < 1, the
sequence {d(U(i1, . . . , in), x0)}n is bounded. Hence, by (2),

⋂
U(i1, . . . , in)

is a unique point z ∈ X. By definition, ϕ(z) = c. Recall that f(xi) ∈
[v, ϕ(xi)]. Since limϕ(xi) = c, xi ∈ U(i1, . . . , in) for i sufficiently large.
By (3), lim inf d(xi, x0) ≥ d(z, x0) (note that by (2) and (3), d(x0, z) =
lim d(x0, U(i1, . . . , in)). Hence, lim inf h(xi) ≥ h(z) and (x, y) ∈ 4(f(X)).

• f : X → E(4(f(X))) is a homeomorphism. It remains to be shown
that f−1 is continuous. Using the notation from the last case above, as-
sume in addition that lim f(xi) = (x, y) = f(z). Then limh(xi) = h(z) and
lim d(x0, xi) = d(x0, z). Hence by (3), limxi = z as required. By the defini-
tion of 4(f(X)) and its compactness it follows immediately that 4(f(X))
is a fan. This completes the proof of the first part of the theorem.

• 4(f(X)) is a Lelek fan. In order to complete the proof we must show
that if, in addition, (4) holds then 4(f(X)) is a Lelek fan. Hence, we
need to show that its set of endpoints is dense. Hence, assume (x, y) ∈
4(f(X)) is a point on the arc [v, ϕ(u)] for some point u ∈ X. Then
y ≥ h(u) and R = y/(1− y) ≥ d(x0, u). Put ϕ(u) = (i1, i2, . . .). By (4)
and (2), it follows that for each clopen set U(i1, . . . , in) and each R =
y/(1− y) ≥ d(x0, u) there exists a point vn ∈ U(i1, . . . , in) with d(x0, vn) =
R. The point vn can be constructed by considering a nest of clopen subsets
Hm ∈ Um of U(i1, . . . , in) such that limm d(x0, Hm) = R. Since ϕ(vn) =
(i1, . . . , in, i′n+1(n), i′n+2(n), . . .) converges to ϕ(u) as n→∞, {f(vn)} is the
required sequence of endpoints converging to (x, y).
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4. Equivalent subsets of E(L). The space E(L) of endpoints of a Lelek
fan L shares many properties with the set of irrational numbers. We will
show in this section that any two non-empty open sets and the complements
of any two σ-compact spaces in E(L) are homeomorphic.

Theorem 4. Let G be a non-empty open subset of the set E(L) of end-
points of the Lelek fan L. Then G is homeomorphic to E(L).

P r o o f. Let F = E(L) \ G. Then 4(Cl(F )) is a compact subfan of L.
Let

φ : L→ K = L/4(Cl(F ))

denote the natural projection. Then K is a non-degenerate smooth fan.
Moreover, it is not difficult to see that K is a Lelek fan and that φ|G :
G→ E(K) is a homeomorphism from G onto the set E(K) of endpoints of
K. Since all Lelek fans are homeomorphic [5, 6] and every homeomorphism
preserves endpoints, the desired result follows.

Note that the required homeomorphism from G to E(L) in the above
theorem moves points near the boundary of G near the vertex v. In order
to perform an inductive proof on a (possibly dense) countable union of
closed subsets Fn ⊂ E(L), we must be able to obtain arbitrarily small
homeomorphisms. Lemma 5 assures the existence of such homeomorphisms
in some cases. The following lemma follows essentially from the fact that the
Lelek fan is unique (see [5, 6]). The proofs in these papers can be modified
to keep control of the “π-levels” under the homeomorphisms (see also [1,
Theorem 3.2], where the level function π is explicitly used).

Lemma 5. Let X and Y be Lelek fans with level functions πX and πY ,
respectively , let ε > 0 and let Φ : X → Y be a continuous function such that

|πY ◦ Φ(x)− πX(x)| < ε/2, x ∈ X.
Then there exists a homeomorphism Ψ : Y → X such that for all x ∈ X,

|πX(x)− πX ◦ Ψ ◦ Φ(x)| < ε.

Theorem 6. Let {Fn} be a sequence of nowhere dense closed subsets of
E(L), where L is a Lelek fan, such that 4(Fn) is a compact subset of L for
each n, and let G = E(L) \⋃Fn. Then G is homeomorphic to E(L).

The following corollary follows immediately.

Corollary 7. Let {Fn} be a sequence of nowhere dense compact sub-
sets of E(L), where L is a Lelek fan. Then E(L) \⋃Fn is homeomorphic
to E(L).

The proof of Theorem 6 follows from the following lemmas and Theo-
rem 11.
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Lemma 8. Let {Fn} be a sequence of nowhere dense closed subsets of
E(L) such that 4(Fn) is a compact subset of L for each n. Then

⋃
Fn is

the union of a countable sequence of nowhere dense and pairwise disjoint
closed subsets Kn of E(L) such that 4(Kn) is a compact subset of L for
each n and 4(Kn) ∩4(Km) = {v} whenever n 6= m.

P r o o f. Since 4(Fn) is compact, g(Fn ∩π−1([0, 1− 1/i])) is compact for
each i. Hence g(Fn) is a σ-compact subset of C. Since g(Fn) \ g(

⋃n−1
i=1 Fi) is

a countable union of pairwise disjoint compact sets for each n,
⋃∞
n=1 g(Fn)

is a countable union of pairwise disjoint compact subsets Em of C. Then
Hm = (g|L)−1(Em) ∪ {v} are compact subfans of L and E(Hm) = Km are
the required pairwise disjoint closed subsets of E(L).

Lemma 9. Let {Fn} be a sequence of nowhere dense pairwise disjoint
closed subsets of E(L) such that 4(Fn) is a compact subset of L for each
n and let G = E(L) \⋃Fn. Then G is homeomorphic to a subset G′ of the
set of endpoints E′ of a Lelek fan L′ such that E′ \G′ is countable.

P r o o f. By Lemma 8, we may assume the sets 4(Fn) are compact sub-
fans of L which meet pairwise only in the vertex v. Moreover, we may
assume in addition (by subdividing 4(Fn) into narrow strips if necessary)
that limn diam(g(Fn)) = 0. Define an equivalence relation ' on L as fol-
lows: (c, s) ' (d, t) if and only if either (c, s) = (d, t), or s = t < 1 and there
exists an n such that {(c, s), (d, t)} ⊂ 4(Fn). Then L/' is a fan. Since G
is dense in E(L) and, hence, in L, L′ = L/' is a Lelek fan. Let p : L→ L′

denote the natural projection. Since p−1p(x) = x for each x ∈ E(L) \⋃Fn,
p|E(L)\∪Fn : E(L) \⋃Fn → G′ = E(L′) \ p(⋃Fn) is a homeomorphism.
Since g(p(Fn)) is a point for each n, the proof is complete.

Lemma 10. Let x 6= y ∈ E(L) and let z be an interior point of the
arc [v, y]. Suppose that U and V are clopen disjoint neighborhoods of g(x)
and g(y) in C such that d(x, z) < diam(U ∪ V ). Then there exists a map
f : L→ L which satisfies the following conditions:

(5) f is surjective and f(v) = v.
(6) f |[v,e] : [v, e]→ [v, f(e)] is a linear homeomorphism for each endpoint

e ∈ E(L).
(7) f[v,y] = id[v,y], f(x) = z and f−1([v, y]) = [v, y] ∪ [v, x].
(8) f |L\([v,y]∪[v,x]) is a homeomorphism and f |g−1

L
(C\U∪V ) = idg−1

L
(C\U∪V ).

(9) d(f, id) < diam(U ∪ V ), where d is the standard sup metric on the
space of continuous functions.

P r o o f. Let δ = diam(U ∪ V ) − d(x, z). We can write U \ {g(x)} and
V \ {g(y)} as unions of pairwise disjoint clopen sets {Un} and {Vn}, respec-
tively such that
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(10) dH(g−1
L (Un ∪ {v}), [v, x]) < min(1/2n, δ/4) for n > 1 and

lim
n

diam(Un) = 0,

where dH denotes the Hausdorff metric. Similarly
(11) dH(g−1

L (Vn ∪ {v}), [v, z]) < min(1/2n, δ/4) for n > 1 and

lim
n

diam(Vn) = 0.

(12) Lim sup g−1
L (Un) = [v, x] and Lim sup g−1

L (Vn) = [v, z].

Further we may assume that all of the Un and Vn are homeomorphic. By
the proof of Lemma 5 we can define a map f : L → L which satisfies (9)
and the following conditions:

(13) f ◦ g−1
L (U1) = g−1

L (U), f ◦ g−1
L (Un) = g−1

L (V2n−2) if n > 1,

(14) f ◦ g−1
L (Vn) = g−1

L (V2n−1) for n = 1, 2, . . . ,

(15) f([v, x]) = [v, z], f |L\([v,z]∪[v,x]) is a homeomorphism,

(16) f−1([v, z]) = [v, z] ∪ [v, x] and f |g−1
L

(C\U∪V ) = idg−1
L

(C\U∪V ).

This is the required map. Since f−1(E(L)) = E(L) \ {x}, f |E(L)\{x} :
E(L) \ {x} → E(L) is a homeomorphism.

Theorem 11. If F = {x1, x2, . . .} is a countable set , then E(L) \ F is
homeomorphic to E(L).

P r o o f. We will construct a continuous function f : L → L such that
f−1(E(L)) = E(L) \ F and f |E(L)\F : E(L) \ F → E(L) is the required
homeomorphism.

By induction we define a sequence {fn : L → L} of continuous surjec-
tions, a sequence {yn} of points in E(L) \ F , sequences {Un} and {Vn} of
clopen subsets of C and a sequence {δn} of positive numbers satisfying the
following conditions:

(n-1) d(fn ◦ fn−1 ◦ . . . ◦ f1, fm ◦ fm−1 . . . f1) ≤ 1/2m for each m ≤ n, and
d(fn, idL) < min{1/2n, δn−1}.

(n-2) Un and Vn are clopen neighborhoods of g(xn) and g(yn), respec-
tively, and fn|L\g−1(Un∪Vn) = id, fn(g−1

L (Un∪Vn)) = g−1
L (Un∪Vn).

(n-3) fn|L\([v,xn]∪[v,yn]) : L\ ([v, xn]∪ [v, yn])→ L\ [v, yn] is a homeomor-
phism.

(n-4) f−1
n (E(L)) = E(L) \ {xn} and fn|E(L)\{xn} : E(L) \ {xn} → E(L)

is a homeomorphism.
(n-5) δn = inf{d(fn◦fn−1◦. . .◦f1(x), fn◦fn−1◦. . .◦f1(y)) | d(x, y) ≥ 1/2n

and either x, y ∈ Um or x, y ∈ Vm for some m ≤ n}.
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• n = 1: Take a point y1 ∈ E(L) with d(x1, y1) < 1/4 and d(g(x1), g(y1))
< 1/4. Let z1 ∈ (v, y1) ∩ B(x1, 1/4). Choose disjoint clopen neighborhoods
U1 and V1 of g(x1) and g(y1) so that diam(U1 ∪ V1) < 1/4. By Lemma 10,
there exists a map f1 : L → L satisfying (5)–(9), where {x1, y1, z1} replace
{x, y, z}, respectively. Let U1 denote the family {Ui} ∪ {Vi} of clopen sets
in the proof of Lemma 10. Define δ1 by

δ1 = inf{d(f1(x), f1(y)) | x, y ∈W1 ∈ {U1, V1} and d(x, y) ≥ 1/4}.
• n > 1: For convenience we will describe the case n = 2 which reveals

the general procedure. We will choose a point y2 and clopen neighborhoods
U2 and V2 of g(x2) and g(y2) as follows:

If g(x2) 6∈ U1∪V1, choose y2 ∈ E(L)∩B(x2, 1/8) so that g(y2) 6∈ U1∪V1

and d(x2, y2) < 1/8. Take z2 ∈ (v, y2) such that diam({x2, y2, z2}) < 1/8
and take clopen neighborhoods U2 and V2 of g(x2) and g(y2), respectively,
in C so that (U2 ∪ V2) ∩ (U1 ∪ V1) = ∅ and diam(U2 ∪ V2) < 1/8.

If g(x2) ∈ U1 ∪ V1, let g(x2) ∈ W ∈ U1. Take a point y2 ∈ g−1
L (W ) ∩

E(L) \ F and z2 ∈ (v, y2) so that diam({x2, y2, z2}) < 1/8. In this case
choose clopen neighborhoods U2 and V2 of g(x2) and g(y2), respectively, so
that U2 ∪ V2 ⊂W and diam(U2 ∪ V2) < 1/8.

In either case we can use Lemma 10 to find a function f2 : L → L
satisfying (5)–(9), where {x2, y2, z2} replace {x, y, z}, respectively. Let U2

denote the family of clopen subsets used in the proof of Lemma 10 and let

δ2 = inf{d(f2 ◦ f1(x), f2 ◦ f1(y)) | x, y ∈W ∈ {U2, V2} and d(x, y) ≥ 1/8}.
Inductively we can define the desired sequences. By (n-1) and (n-5), f maps
distinct maximal segments in (L \ F ) ∪ {v} into distinct segments in L.
Also, by (n-1) and (n-5), f maps each maximal segment in (L \ F ) ∪ {v}
homeomorphically into L. It follows that f−1(E(L)) = E(L) \ F . Since f
is a continuous map of the compact space L and f−1(f(x)) = {x} for each
x ∈ E(L) \ F , it follows that f maps E(L) \ F homeomorphically onto
E(L).

A space X is said to be countably dense homogeneous if, for each pair
A,B of countable dense subsets of X, there is a homeomorphism f : X → X
such that f(A) = B. By an application of the methods employed in [3, 5]
and a limit argument similar to the above theorem, we can prove:

Theorem 12. E(L) is countably dense homogeneous.

The crucial fact used to establish Theorem 11 is that each point of E(L)
can be removed by a small move of L. Below we will give an example which
shows that this is not the case for nowhere dense closed subsets of E(L)
which do not separate E(L) ∪ {v}.
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Example 13. There is a nowhere dense closed subset F of E(L) such
that [E(L) \ F ] ∪ {v} is connected and for each map f : L → L such
that f−1(E(L) \ F ) = E(L) \ F and f |E(L)\F : E(L) \ F → E(L) is a
homeomorphism onto E(L), we have f(F ) = v.

P r o o f. Recall that the Lelek fan L is constructed as a subset of the cone
C over the Cantor set C and vertex v. Points in L will be denoted by (c, t),
where c ∈ C, t ∈ [0, 1] and v = (c, 1) for all c ∈ C. L has a natural metric %
such that %(v, e) = 1 for some e ∈ E(L) and % is convex on each arc [v, c],
for any c ∈ C. Let D be another Cantor set and define a fan K by

K = L× D/{v} × D.
By the Characterization Theorem [5], K is a Lelek fan. The fan K has a
natural metric d induced by % such that d is also convex on each arc [v, x],
x ∈ K.

Fix a point d ∈ D and define a compact subset F0 of K by

F0 = {((c, 1/2), d)}c∈C.
Let F = E(K) ∩ F0. Then F is clearly closed in E(K) and Cl(F ) = F0.
We will show that F is the desired closed set. It is easy to see that the set
[E(K)\F ]∪{v} is connected. Let f : K → K be a map as in the hypothesis
and suppose that f(z) 6= v for some z ∈ F . Choose a neighborhood W of
z such that v 6∈ W ∪ f(W ). Note that f(K \ E(K)) ⊂ K \ E(K). For any
point x ∈ Cl(W ) ∩ Cl(F ), let h(x) = d(f(x), ef(x)), where ef(x) denotes
the unique endpoint of K such that f(x) ∈ [v, ef(x)]. This defines an upper
semicontinuous function h : Cl(W ) ∩ Cl(F )→ R.

Let An = {x ∈ Cl(W ) ∩ Cl(F ) | h(x) ≥ 1/n}. Then An is a closed
subset of Cl(W ) ∩ Cl(F ) and Cl(W ) ∩ Cl(F ) =

⋃
An. By Baire’s theorem,

there exists n and a non-empty open subset U of Cl(W ) ∩ Cl(F ) such that
U ⊂ An. Then h(x) ≥ 1/n for each x ∈ U \F . However, by the definition of
F and the fact that Cl(F ) ⊂ Cl(E(L)×{d} \F ), there is a point y ∈ U \F
such that d(f(y), ef(y)) < 1/(2n), a contradiction.

5. Applications. In this section we will show that many of the known
examples of homogeneous, pulverized, topologically complete, almost 0-di-
mensional and 1-dimensional spaces are homeomorphic. In particular, we
will show that complete Erdős space E and the set of endpoints of the
universal R-tree are homeomorphic to the set of endpoints of the Lelek fan.
We do not know of an example of a space satisfying all these properties
which is not homeomorphic to the set of endpoints of a Lelek fan.

Complete Erdős space. Recall that complete Erdős space E is the set of
points in `2 all of whose coordinates are irrational. Hence
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E =
{

(x1, x2, . . .) ∈ R∞
∣∣∣
∑

x2
i <∞ and all xi irrational

}
.

The argument below can be outlined as follows. We will first construct a
sequence of closed finite covers Vn of `2 which satisfy (2)–(4) of Theorem 3
but not (1). Next we construct an inverse limit space Y∞ which contains
a copy of E so that Y∞ satisfies all conditions of Theorem 3. This will be
done in such a way that the elements of Vn correspond to pairwise disjoint
clopen sets in Y∞. Hence Y∞ is homeomorphic to the set of endpoints of the
Lelek fan. Finally, we show that the complement of the image of E under
this embedding satisfies the conditions of Theorem 6 and we can conclude
that E is homeomorphic to the set of endpoints of the Lelek fan.

Denote by πi the ith coordinate projection of `2 onto R and let Q =
{q1, q2, . . .}. Define Pmn = π−1

n (qm). Then E = `2 \
⋃
n,m P

m
n . Enumerate the

planes Pmn as P (1), P (2), . . . so that for each ε > 0 and each n there exists
a k such that for each i ≤ n and each |x| ≤ n there exists P (j) with j ≤ k
and such that

P (j) = Pmi = π−1
i (qm) and |x− qm| < ε.

The required covers Vn are obtained by taking the closures of compo-
nents of `2 \

⋃n
j=1 P (j). The metric d on `2 is the usual metric associated

with the norm ‖x‖ =
√∑

x2
i on `2 and x0 = O = (0, 0, . . .). Note that the

elements of the covers Vn are not pairwise disjoint; they can intersect on
the planes P (j). It is not difficult to see that this sequence of covers and the
point x0 = O satisfy condition (4) of Theorem 3.

To see that (2) holds observe that for any nest {Vn} of elements of Vn

we have |⋂Vn| ≤ 1, and
⋂
Vn = ∅ if d(O, Vn) → ∞. Hence let {Vn} be a

nest for which there exists an N > 0 such that d(O, Vn) ≤ N for each n.
Choose vn ∈ Vn ∩ `2 such that d(O, vn) = d(O, Vn) ≤ N for each n. Hence,∑∞
i=1(πi(vn))2 ≤ N and {πi(vn)}n is a bounded sequence of real numbers

for each i. Let yi be a cluster point of this sequence. By the definition of Vn,
limn πi(Vn) = limn πi(vn) = yi for each i. Thus,

⋂
Vn = {y} = (y1, y2, . . .) ∈

R∞. It remains to be shown that y ∈ `2. Suppose this is not the case. Then
there exists k such that

∑k
i=1 y

2
i > N + 2 and hence, for n sufficiently large,∑k

i=1(πi(vn))2 > N + 1. This contradicts the fact that d(O, vn) ≤ N for
each n and establishes condition (2).

To see that (3) holds for any x ∈ `2 and any nest of elements Vn of
Vn which contain x (this sequence is not necessarily unique) suppose x =
(x1, x2, . . .) ∈ `2 and let ε > 0. Put d = d(x, x0). Choose n0 such that∑∞
i=n0

x2
i < ε/10. Hence

∑n0−1
i=1 x2

i > d − ε/10. Next choose n1 such that
1/n1 < ε/10 and for each y ∈ Vn ∩B(x0, d+ 1/n1):

|xi − yi| <
√
ε/(4n0) for each i ≤ n0,(17)
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n0−1∑

i=1

y2
i > d− ε/9,(18)

∞∑

i=n0

y2
i < ε/8.(19)

Note that for each y ∈ B(0, d+1/n1),
∑
y2
i < d+ε/10, and

∑n0−1
i=1 (yi−xi)2

< ε/4. Then

[d(x, y)]2 =
n0−1∑

i=1

(xi − yi)2 +
∞∑

i=n0

(xi − yi)2 < ε/4 + 2
( ∞∑

i=n0

x2
i +

∞∑

i=n0

y2
i

)

< ε/4 + 2(ε/10 + ε/8) < ε.

This establishes condition (3) of Theorem 3.
The required inverse sequence will be constructed inductively. Put Y0 =

`2 and recall that V1 is obtained by intersecting the closures of components
of R∞ \P (1) with `2. Suppose P (1) = P rj = π−1

r (qj) and let V1 = {L̂0, R̂0},
where L̂0 = {x ∈ `2 | πr(x) ≤ qj} and R̂0 = {x ∈ `2 | πr(x) ≥ qj}. Hence
L̂0 ∩ R̂0 = P (1). Let L0 = L̂0 × {0}, R0 = R̂0 × {1}, let Y1 = L0 ∪ R0 and
let f1

0 : Y1 → Y0 be the natural projection. Inductively assume that Yn and
fnn−1 have been defined. Let P (n+ 1) = Pmi = π−1

i (qm). Let L̂n = {x ∈ Yn |
πi ◦ fn0 (x) ≤ qm} and R̂n = {x ∈ Yn | πi ◦ fn0 (x) ≥ qm}. Put Ln = L̂n × {0}
and Rn = R̂n × {1}. Let Yn+1 = Ln ∪ Rn and let fn+1

n : Yn+1 → Yn be
defined by fn+1

n (x, i) = x for i ∈ {0, 1}. Let Y∞ = lim←(Yn, fnn−1) and let
fn : Y∞ → Yn denote the natural projection. Points in Y∞ will be denoted
as y = (y0, y1, y2, . . .), where yi ∈ Yi and f i+1

i (yi+1) = yi. We will use the
following metrics dn and d∞ on Yn and Y∞, respectively:

dn(x, y) = d(f0(x), f0(y)) +
n∑

i=1

δi(x, y)/2i,

where

δi(x, y) =
{

0 if fni (x), fni (y) ∈ Li−1 or fni (x), fni (y) ∈ Ri−1,
1 otherwise.

Moreover, the metric on Y∞ is given by

d∞(x,y) = lim
n→∞

dn(fn(x), fn(y)).

It is not difficult to see that these metrics generate the standard topology on
Yn and on the inverse limit Y∞, respectively. Also note that the projection
map fn : Y∞ → Yn is a contraction and that f0 is a perfect map.
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Claim 1. Y∞ contains a homeomorphic copy , denoted by E∞, of E.

P r o o f. Let E0 = E ⊂ `2. Let En = (fn0 )−1(E0). Then fnn−1|En : En →
En−1 is a homeomorphism for each n. Hence E∞ = lim←(En, fnn−1|En) is
homeomorphic to E.

Claim 2. Put Un = {(fn)−1(C) | C is a component of Yn} and let
0 ∈ Y∞ be a point such that 00 = O = (0, 0, . . .) ∈ Y0 = `2 ⊂ R∞. Then
Un and 0 satisfy the conditions of Theorem 3.

P r o o f. Un are clearly finite clopen covers of Y∞ which satisfy (1). To
see that (2) holds note first that {f0(U)}U∈Un = Vn. Let {Un} be a nest of
subsets of Y∞ with Un ∈ Un and let Vn = f0(Un). Clearly if d∞(0, Un) →
∞, then d(O, Vn) → ∞. Thus

⋂
Vn = ∅ and, hence,

⋂
Un = ∅. Hence

assume that d∞(0, Un) < N for each n. Then d(O, Vn) < N for each n. By
condition (2) for Vn,

⋂
n fm(Un) = {ym} is a point in Ym for each m. Hence⋂

Un = {(y0, y1, . . .)} as required.
To see that (3) holds recall that we have established this condition for

O and Vn. Let y = (y0, y1, y2, . . .) ∈ Y∞, R = d∞(0,y) and let Un be the
unique element of Un which contains y. Put Rm = dm(0m,ym). Since fm0 |C
is an isometry for each component C of Ym, (3) holds for each Ym with
respect to dm and fm(Un). Hence, for each ε > 0 we can choose N > 0 such
that

∑∞
n=N 1/2n < ε/4 and diamYN (B(O,Rm + 1/n) ∩ fm(Un)) < ε/2 for

n ≥ N . Then diamY∞(B(O,R + 1/n) ∩ Un) < ε/2 + 2ε/4 = ε for n ≥ N as
required. This establishes condition (3). Finally, condition (4) follows from
the corresponding condition for Vn in Y0 and the definition of d∞. This
completes the proof of Claim 2.

Hence by Theorem 3, there exists a homeomorphism Ψ : Y∞ \ {0} →
E(L), where E(L) is the set of endpoints of a Lelek fan L. Let Ψ(E∞) =
G ⊂ E(L). Then G is homeomorphic to E. In order to apply Theorem 6
we must show that the complement of Ψ(E∞) is a countable union of
closed sets Fn ⊂ E(L) such that 4(Fn) is a compact subset of L. Put
Fn = Ψ ◦ f−1

0 (P (n)). Then Fn is clearly a nowhere dense closed subset
of E(L). Moreover, since each f−1

0 (P (n)) = F̂n is a closed subset of Y∞,
the non-empty sets of the form U ∩ F̂n, where U ∈ Um, satisfy condi-
tions (1)–(3) of Theorem 3. It follows from the proof of Theorem 3 that
the homeomorphism whose existence follows from its conclusion coincides
with Ψ |

F̂n
. Hence, Ψ |

F̂n
maps F̂n onto the endpoints of a (compact) fan as

required.

The set of endpoints of the separable universal R-tree. Details of the
construction of a (separable and metric) universal R-tree can be found in
[16]. The argument below is similar to the argument given above for complete
Erdős space. Hence we will only outline the proof. One can think of the
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universal R-tree U as an infinite half ray to which, at each rational number,
a countable number of half rays is attached. Repeating this construction for
each of the added half rays ad infinitum results in a locally and uniquely
arcwise connected space which is a countable union of half rays with the
property that each subarc contains a countable and dense set of branchpoints
each of order ℵ0. Moreover, the arclength metric induces the correct topology
on U . After adding endpoints to all paths of finite length from a given point,
the universal R-tree U is obtained.

We will denote the sets of branchpoints and endpoints of U by B(U)
and E(U), respectively. It is known [16] that there exists a countable set
D = {d1, d2, . . .} ⊂ U \ [E(U) ∪ B(U)] such that for each subarc A of the
R-tree, D ∩ A is dense in A. Moreover, there exists a countable sequence
{Kn} of subcontinua of U \ E(U) such that

E(U) = U \
⋃
{Kn}.

Choose a branchpoint x0 ∈ U . The required sequence of covers Vn is
obtained by taking the closures of components of X \ {d1, . . . , dn}. It is not
difficult to see that Vn satisfy (3)–(4) of Theorem 3. We must establish
condition (2). Let {Vn} be a nest of elements of Vn. Clearly, |⋂Vn| ≤ 1
and, if d(x0, Vn) → ∞,

⋂
Vn = ∅. Hence, assume there exists N such that

d(x0, Vn) ≤ N . Choose vn ∈ Vn such that d(x0, vn) = d(x0, Vn). Then
{d(x0, vn)} is a non-decreasing bounded sequence. Let lim d(x0, vn) = d. If
there exists a k such that vm = vk for all m ≥ k, then

⋂
Vn = {vk} and we

are done. If such a k does not exist, then [x0, vn] is an increasing sequence
of arcs in U all of length smaller than d (recall that vn is the closest point in
Vn to x0 and Vn+1 ⊂ Vn). Since, by construction, each path of finite length
in U has an endpoint in U , there exists a point w in Cl(

⋃
[x0, vn])\⋃[x0, vn].

Then w ∈ ⋂Vn as required.
The proof now proceeds as in the above case. The role of the planes P (j)

will be played by the points di. After construction of Y∞ = lim←(Yn, fnn−1),
the subset E(U)∞ which is homeomorphic to E(U) and the homeomorphism
Ψ : Y∞ → E(L), it remains to be shown that E(L) \Ψ(E(U)∞) satisfies the
conditions in Theorem 6. To see this, recall that E(U) = U \⋃Kn, where
Kn are subcontinua of U . Then Hn = f−1

0 (Kn) are compact subsets of Y∞
and we can arrange the construction so that 4(Ψ(Hn)) is a subfan of L and
Ψ(E(U)∞) = E(L) \⋃Ψ(Hn) as required.

Endpoints of the Julia set of the exponential map. It was shown in [1]
that the Julia set of the exponential map λez for many parameters (includ-
ing 0 < λ < 1/e) is homeomorphic to a Lelek fan minus its vertex. Hence
its set of endpoints is homeomorphic to the set of endpoints of the Lelek
fan.
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