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The Dugundji extension property can fail in
ωµ-metrizable spaces

by

Ian S. S t a r e s and Jerry E. V a u g h a n (Greensboro, N.C.)

Abstract. We show that there exist ωµ-metrizable spaces which do not have the
Dugundji extension property (2ω1 with the countable box topology is such a space). This
answers a question posed by the second author in 1972, and shows that certain results of
van Douwen and Borges are false.

1. Introduction. For a topological space X, let C(X) denote the vector
space of continuous real-valued functions on X. If A is a subset of a space X
and Φ : C(A)→ C(X) is a map such that Φ(f) extends f for each f in C(A),
then Φ is called an extender (in this setting, the Tietze–Urysohn theorem [9,
2.1.8] says that for every closed set A in a normal space X, there exists an
extender Φ : C(A)→ C(X)). The same terminology is used when consider-
ing bounded functions and maps Φ : C∗(A) → C∗(X). K. Borsuk was the
first to construct an extender with interesting properties [3, Theorem 3]. He
proved that for every closed, separable subset A of a metric space X there
is an extender Φ : C∗(A) → C∗(X) which is linear (with respect to the
natural vector space structure on C∗(A) and C∗(X)) and norm preserving
(with respect to the sup norm on C∗(A) and C∗(X)). J. Dugundji improved
Borsuk’s result in three ways [7]. He dropped the hypothesis of separability
from the closed subset A, he considered all continuous functions, and his
extender preserved convex hulls.

Definition 1.1. A space X is said to have the Dugundji extension
property if for every closed subspace A of X there is a linear extender
Φ : C(A) → C(X) such that for each f ∈ C(A), the range of Φ(f) is
contained in the convex hull of the range of f .
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Thus, we can state succinctly Dugundji’s theorem: all metric spaces have
the Dugundji extension property. It is known that the Dugundji extension
property holds in several classes of generalized metric spaces (see [1], [4],
and [12]).

In this paper we give conditions under which certain normal spaces fail
to have the Dugundji extension property (Theorem 1.4). In fact, we consider
the following weaker extension property.

Definition 1.2. If for each closed subspace A of a space X there is an
extender Φ such that Φ(f) ≤ Φ(g) whenever f ≤ g ∈ C(A), then X is said
to satisfy the unbounded monotone extension property.

For the definitions of basic terms see [9]. In our theorem, we use the
following definition.

Definition 1.3. Let A ⊆ X. A family B of open subsets of X is called
a total-π-base for A in X provided that

(i) each element of B has non-empty intersection with A,
(ii) each non-empty open set which contains a point of A contains a

member of B and
(iii) if B0 ⊇ B1 ⊇ B2 ⊇ . . . is a countable decreasing chain of elements

of B then
⋂
n∈ω Bn 6= ∅.

Theorem 1.4. If A is a first category , closed subset of a normal space
X, and there exists a total-π-base B for A in X, then there does not exist
an extender Φ : C(A) → C(X) satisfying the conditions for the unbounded
monotone extension property.

Easy applications of Theorem 1.4 show that certain ω1-metrizable spaces
do not satisfy the Dugundji extension property (see Examples 2.2 and 2.3).
These examples have several interesting consequences. They show that a
result of Eric van Douwen in his thesis [6, Theorem 7, p. 52; p. 58, line 2]
and a result of C. J. R. Borges [2, Theorem 2.1] are false. The present paper
resulted from the discovery by Stares that the proof by Borges has a gap
[12]. In addition, our examples answer a question raised in 1972 by Vaughan
[13, p. 264], and give another interesting difference between the classes of
strongly zero-dimensional metric spaces and ωµ-metrizable spaces. Indeed,
R. Engelking [8] proved that in a strongly zero-dimensional metric space,
every closed subset is a retract, a stronger property than the Dugundji
extension property.

2. Proof and examples

P r o o f o f T h e o r e m 1.4. By way of contradiction, assume such an
extender Φ : C(A) → C(X) exists. Since A is first category there exist open
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sets Ei in X for i ∈ ω such that A ∩ Ei is dense in A and A ∩ (
⋂
iEi) = ∅.

We construct, by induction, Bi ∈ B, continuous functions fi : X → [0,∞),
and open sets Mi = {x ∈ X : Φ(fi¹A)(x) > i} satisfying the following
properties: B0 is any member of B such that B0 ⊆ E0 and f0 is the constant
function with value 1, and the following hold for i ≥ 1:

(1) clX(Bi) ⊆ Bi−1 ∩Mi−1 ∩ Ei,
(2) fi(clX(Bi)) = i+ 1, and fi(X \Bi−1) = 0.

We construct Bn and fn. By (2), Bn−1∩A ⊆Mn−1, hence Bn−1∩Mn−1∩
A is a non-empty open subset of A, so by denseness Bn−1 ∩ Mn−1 ∩ En
contains a point of A. By regularity of X, we may pick Bn ∈ B such that

clX(Bn) ⊆ Bn−1 ∩Mn−1 ∩ En.
It is then clear that (1) holds for Bn. By the Tietze–Urysohn theorem there
exists a continuous fn : X → [0,∞) such that fn(clX(Bn)) = n + 1, and
fn(X \Bn−1) = 0; so now (2) is also satisfied. This completes the induction.

Define h : A → R by h =
∑∞
i=1 fi¹A. To see that this infinite sum is

well-defined and continuous on A, note that for any a ∈ A there exists n such
that a 6∈ En ⊇ clX(Bn); so (X \ clX(Bn)) is a neighborhood of a on which
h =

∑n
i=1 fi¹A, a finite sum of continuous functions. By the hypothesis

on B, there exists y ∈ ⋂{Bi : i ∈ ω}. Now pick an integer m such that
Φ(h)(y) < m. By the monotonicity of Φ, we have Φ(fm¹A)(y) ≤ Φ(h)(y).
By (1), y ∈ ⋂{Mi : i ∈ ω} ⊆Mm, so we have the contradiction

m < Φ(fm¹A)(y) ≤ Φ(h)(y) < m.

We take the following as the definition of ωµ-metrizability (see [11] for a
list of references concerning ωµ-metrizability).

Definition 2.1. If ωµ is a regular, uncountable cardinal then a space
X is said to be ωµ-metrizable if there is a collection {Uα : α < ωµ} where
each Uα is a pairwise disjoint open cover of X, Uα refines Uβ if α > β, and⋃{Uα : α < ωµ} is a base for X.

We now present three examples. A simple application of Theorem 1.4
shows that each example fails to have the Dugundji extension property.
The first two examples are both ω1-metrizable and hence give the result
stated in the title (among other things). The third example, which is not
ωµ-metrizable, is the well-known Michael line [9, 5.1.32]. That the Michael
line does not have the Dugundji extension property was shown in [6] and
[10]. Our theorem gives a simpler proof of this, and stems from attempts to
generalize van Douwen’s proof [6] that the Michael line does not satisfy the
unbounded monotone extension property.

Example 2.2. The set 2ω1 with the countable box topology is an
ω1-metrizable topological group without the Dugundji extension property.



14 I. S. Stares and J. E. Vaughan

Let X denote the countable box topology on the set 2ω1 . This is the
topology having as a base all sets of the form [x¹α] for α < ω1 and x ∈ X,
where [x¹α] = {y ∈ X : y(β) = x(β) for all β < α}. Let Uα = {[x¹α] :
x ∈ X} for α < ω1. It is clear that these Uα satisfy the conditions of
Definition 2.1. The subset A is defined to be the set of functions with cofinite
support, i.e.,

A = {x ∈ X : |{α < ω1 : x(α) = 0}| < ω}.
Obviously, A is closed. To check that A is a first category set we define
open sets En for n ∈ ω by En = {x ∈ X : |{α < ω1 : x(α) = 0}| > n}.
Each En is open and A ∩ En is dense in A for all n ∈ ω. Since any point
in
⋂
n∈ω En must have infinitely many coordinates equal to 0, we have

A ∩⋂n∈ω En = ∅.
To complete the example we need a total-π-base B for A in X. Let B

be all the basic open sets in X which have non-empty intersection with
A (thus B is a clopen base for A in X). If B0 ⊇ B1 ⊇ B2 ⊇ · · · is a
decreasing chain of elements of B then it is clear that

⋂
nBn 6= ∅. All the

hypotheses in Theorem 1.4 are satisfied and therefore, X does not satisfy
the unbounded monotone extension property and hence, does not have the
Dugundji extension property.

The space X in the above example is the special case µ = 1 of the spaces
(2ωµ)ωµ , for ωµ a regular uncountable cardinal. These spaces are known
to be ωµ-metrizable [5, p. 384]. In the same way as in the above exam-
ple we can show that (2ωµ)ωµ does not have the Dugundji extension prop-
erty. Thus for every regular, uncountable ωµ, there exists an ωµ-metrizable
space which does not have the unbounded monotone, or Dugundji, extension
property.

Example 2.3. The countable product L(ω1)ω with the box topology does
not have the Dugundji extension property. Thus a box product of a countable
family of ω1-metrizable spaces, each having the Dugundji extension property ,
need not have the Dugundji extension property.

By L(ω1) we mean the space derived from the space ω1+1 with the usual
order topology by isolating all the points except the point ω1. By setting
Uα = {(α, ω1]} ∪ {{β} : β ≤ α} for α < ω1 we get collections satisfying
the conditions of Definition 2.1 and therefore L(ω1) is ω1-metrizable. Our
example X will be the product of countably many copies of L(ω1) with the
box topology. By [14, Theorem 2.9], X is also ω1-metrizable. The subspace
A is defined by A = {x ∈ X : |{i < ω : x(i) 6= ω1}| < ω}. As before,
A is a closed first category set. The total-π-base B is, as in the previous
example, the collection of all basic open sets in X which have non-empty in-
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tersection with A. By Theorem 1.4, X does not have the Dugundji extension
property.

It is easy to show that L(ω1) has the Dugundji extension property. In
fact, if a space has at most one isolated point then a linear extender Φ can
be found which is range preserving.

Example 2.4 (Heath and Lutzer [10], van Douwen [6]). The Michael line
M does not have the Dugundji extension property.

Recall that the Michael line M is the set R of real numbers with the
topology obtained by starting with the usual topology and declaring all
irrational points to be isolated [9, 5.1.32]. Take the closed set A to be
the set of rational numbers in M, and for B take a base of intervals for
the rational numbers with the following properties: B =

⋃{Bn : n ∈ ω}
such that

(1) each Bn is a countable family of pairwise disjoint open intervals of
length at most 1/(n+ 1) covering the rational numbers,

(2) the closure (in R) of each interval in Bn+1 is contained in some
interval in Bn.

References

[1] C. J. R. Borges, On stratifiable spaces, Pacific J. Math. 17 (1966), 1–16.
[2] —, Absolute extensor spaces: a correction and an answer , ibid. 50 (1974), 29–30.
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