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gehtren sie zu verschiedenen Komponenten von M, woraus her-
vorgeht, dass die letzteren mit den Teilstrecken S identisch sind.
Nun stimmt aber bekanntlich die Dimension einer kompakten
Meng(; mit der grossten unter den Dimensionen ihrer Komponenten
tiberein 7), und daraus folgt: dim M@ =1 (n=1,2,...)

Es gilt offenbar w
M= N® 4+ N® 4 3 Mo,

nwl
wo die Menge N (bzw. N®) aus den Punkten (1,4, 0) (4 ¢N)
(baw. (0,0,2) (z¢ N)) gebildet ist. In dieser Zerlegung von M gind
alle Summanden abgeschlossen; ferner sind die ersten zwei von
jhoen nulldimensional, alle tibrigen eindimensional, also ist nach dem
,Summensatz* der Dimensionstheorie auch M eindimensional.

Wir behaupten jetzt: Zu jedem kompakien Raum I gibt es eine
Teilmenge My der Kurve M und eine oberhalb stetige Zerlegung von
M, in Kontinua, welche einen mit B hombomorphen Hyperraum liefert.

Bekanntlich ist es bei jedem vorgegebenen kompakten Raum E
moglich die Cantorsche Menge N eindeutig und stetig auf B abzu-
bilden 8, Wir denken uns eine derartige Abbildung f zwischen N
und R hergestellt. Fiir einen Punkt p von R sei N, die Menge der
Punkte von N, die ihn als Bild huben. Fiir jedes p ¢ R setzen wir:

M,=28,, (y2¢N)

M, ist ein -Tedlkontinuum der Kurve M, und fur p==q ist M,. M,==0.
Die Menge My =3 M, (Summierung erstreckt tber alle p&R) be-
steht aus allen Strecken S,, mit f(y) =f(2) und ist offenbar ab-
geschlossen. Die Kontinua M, ergeben eine oberhalb stetige Zerle-
gung von AM; mit zu R homdomorphem Hyperraum womit die
eben ausgesprochene Behauptung bewiesen ist. Bemerken wir
noch, dass fiir einen zusammenhingenden Raum R M, notwendig ein
Kontinuum ist wie aus einem allgemeinen Satze von Kuratowski
hervorgeht ) 10),

) Vgl. Tumarkin, Amst. Proc. 28 (1926), 8. 1000, wo der Satz zum ersten
Mal ausgesprochen wurde. Er ist auch in dem sub ) zitierten Theorem onthalten.

%) Vgl. Hausdorff, Mengenlehre (1927), 8, 197,

") Kuratowski, Fund, Math. 11, §. 182 (Corollaire 1).

1%) (Zusatz wihrend der Korrektur). Dadurch ist u. a, gezeigt, dass jodes Konti-
nuum stetiges Bild eines eindimensionalen Kontinuwms ist. Dasselbe Resultat hat
durch eine thnliche Konstruktion Mazurkiewicz orhalten und es auf dem im
Semptember 1929 in Waurachun abgebaltenen 1 Kongress der Mathematiker der
slawischen Linder mitgeteilt,
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On Functions Possessing Differentials.
By

Grace Chisholm Young (La Conversion, Switzerland).

Introduetion.

The present paper is the outcome of a remewed effort to com-
plete the solution of the problem, attacked by my husband in 1912 1),
a subjeet to which we have returned from time to time, but without
obtaining any result we thought worthy of publication, — and re-
-considered by Pollard in 19212), the problem namely of proving
by the methods proper to the Theory of Functions of Two Real Var-.
iables, the fundamental theorem in the Theory of Funetions of
a Complex Variable (G oursat’s Theorem), which asserts that the
necessary and sufficient condition that w should be a analytic

. . d .
function of 2z is that —dg) should exist.

There is no difficulty in expressing this enuneciation in terms of
two real variables, and indeed, though first clearly brought out by
Goursat, this was cerlainly in the mind of Riemann; the theo-
rem is that _

w=u(x, y) -+ 120z, y)
involving i ==)/—1, is expressible in the neighbourhood of a point
(X, Y) in the form of a power series in (x—X)4i(y—Y),
if, and only if, the ratio

Aw/Az:(q.z(X+ h, Y+E) —u(X, Y)4
FivX -y Y — i o(X, V) (4K

1y W. IH. Young. ,On the Fundamental Theorem in the Theory of Functions
of a Complex Variable¥, (1912), Proc. London M. 8., Ser. 2, Vol. 10, pp. 1—6.

1) §. Pollard. ,On the Conditions for Cauchy’s Theorem*, (1921), ibid. Vol.
21, pp. 456—482, .
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has, as (h, k)—> (0,0), an unique and finite limit A --4B, inde-
pendent of the mode of approach of A and % to zero.

The enunciation at once suggests a query: -- What are the nec-
essary and sufficient conditions in order that the limit in question
may be unique? This leads to another fundamental theorem, form-
ing with the other the requisite links between the Theory of Fune-
tions of a Complex Varjable and that of Two Real Variables. This
theorem states that the limit is uniyue, if, and only if, u(x, ) and
v(z, y) possess first differentials at (X, ¥), and their partial differ-
ential coefficients satisfy the Cauchy-Riemann equations

du__ d v B u

W e ay

The proof of the former theorem (Gtoursat's theorem) sup-
plied by W. H. Young, and reproduced below in § 17, requires
the assumption that the partial differential coefficients of w(z, y)
and v(z,y) should be known, a priori, to be bounded functions of
(z, y), a piece of information which ought only to come, a posteriori,
as a consequence of the theorem. What I have been able to supply
is the proof that in the case of a pair of functions w(z,y) and
v(z, y) about which we do not know this, we may reduce the prob-
lem to that of funetions U(x,y) and V(v,y), about which we do
know it; functions indeed of the typically primeval type, those only
considered by Cauchy and Riemann and by the physicists and
other scientists, economists and statisticians, of today, innocent fune-
tions in fact with continuous partial differential coefficients.

It had seemed to me that our progress was being stopped by
& want of clear knowledge of differentials, and I determined to go
back to first principles, and patiently investigate the obscure corn-
ers in the theory of differentials. The result appears to justify the

doubts I felt as to the adequacy of our grasp of this subject. By *

obtaining the necessary and sufficient conditions that flee, y) should
possess a first differential, we render the definition more strictly
mathematical, and therefore more useful; but, more than this, we
also obtain new and powerful consequences of the possession of
a differential. In particular we have the theorem that, if f(x,y) has
a first differential at every point (#, ¥) of a linear neighbourhood

containing both (X, ¥ ) and (a, Y), %’; is a summable function of x,
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~and differentiation under the integral sign is allowable, that is, writing

Fie, 1) = [ flo, 9) s
we have )

OF _ [of
A

aso F(z,y), like f(x,y), has a first difierential at cach (z, ). Fi-
nally the double incrementary ratio of F(z, y), namely

(Fa+h, T+ k) —F(5, T-+8) — Fla+h, ¥)+ B, D))k
has % for unique limit when (b, k) — (0, 0), in any manner, except
when kfh has zero for a limit; and, in all manners, & times the
double incrementary ratio tends to zero.

This result should be compared with the so-called Fundamental
Theorem of Differentials ) in which no assumption is made as to
the existence of a differential except at the point (X, Y) itself,
and which states that, if %% and %g both have differentials at
(X, Y) the double incrementary ratio of F(X,Y) has an unique and
finite limit independent of the mode of approach of (h, k) to (0,0),
and that, consequently, at (X, T),

9 OF 2 3

5% 3y by %
PART I

Necessary and Sufficient Conditions for the Existence
of a Differential.

1. The definition of the differential coefficient of a function f(z)
of a single variable contains in itself a perfectly satisfactory state-
ment of the necessary and sufficient condition for the existence of

1) W. H. Young, ,On Differentials*, (1908), Proc. L. M. 8., Ser. 2, Vol. 7.
p. 162,
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that differential coefficient at a particular point x, namely the con-
dition that the incrementary ratio

{f@+h)—f @)}k
should tend to an unique limit as A~—>0 in any manner whatever.

If we admit only finite differential coefficients, we may express this
condition by saying that an equation holds of the form

fl@+h)—f@)=h(d+0).

where A is a constant, determined by x alone, and ¢ is a function
of h, determined by x, which tends to zero as h — 0.

In the case of a function f(x, y) of two variables the diferential
(first differential) plays in many ways the role of the differential
coefficient in one dimension. But the definition of the differential
does not yield at once convenient necessary and sufficient condi-
tions for the existence of the differential at a particular point (=, y).

The necessary condition that 3/; and g{—/ should exist has been, of
course, pointed out; and conditions which are sufficient, but not
necessary, have been formulated and used. The necessary and suf-
ficient conditions given below, (Theorem § 5), reduce the question
to one of the uniform convergence of certain functions of a single
variable with a single parameter. In this form the conditions are
convenient of application, the subject of such uniform convergence
having been thoroughly cleared up. »

We may, if we prefer, state the necessary and sufficient con-
ditions for the existence of a differential at a point (z, y), where
4 and -ai, in an al-
ox oy
ternative form more closely analogous to the condition for the exis-
tence of a finite difterential coefficient in one dimension. The con-
ditions are that the incrementary ratios oblained by dividing the
increment

f(‘""+h1 l/+k) -—*f((l}‘—l—h, !/) —'f(m', y+k) +f(xv ?/)

by h and k respectively, both tend to zero as h and k each tend lo
zero, provided in the former case we omit all modes of approach to
2ero which make hik tend to zero, and in the latter case those which
make k/h tend to zero.

/(& ¥) has finite partial differential coefficients
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2. The definition of a first differential is usually given in the
folowing form:

A function f(z, y) of two real variables x and y is said to possess,
or have, a first differential, or shortly a differential, at the point
(=, y), of
@ J@+hy+ k) —f(@ y)=h(4+¢) + k(B+¢¥),

provided A and B are constants, determined by (x, y), and ¢ and &*
both tend to zero, when (h, k) approaches (0, 0) in any manner whatever.

When this is verified, the differential is said to ,exist®, and its
value is then hd4 -+ kB.

This definition, though logically satisfactory, leaves, by reason
of its terseness, something to be desired in respect of mathematical
lucidity and applicability. The symbols ¢ and ¢*, introduced with-
out further elucidation. what kind of mathematical entities are
they? It is not immediately evident what is their scope, nor whether
their definition, when supplied, will be such as all mathematicians
would accept as adequate, or whether it would require an infinite
number of specifications, that is, of so-called acts of choice.

In practice it is all the more necessary to clear up these points,
because we commonly require to make, not only 4 and k, but also
z and y, variable, and to apply processes, such as integration, for
which the information conveyed by the definition is inadequate.

3. That ¢’ and ¢*, unlike 4 and B, depend on k, k, as well as on
xz, vy, is evident, It is equally evident that, for all the uniformation
conveyed by the definition, they are not determined by (%, %), when
(v, y) is fixed, as we shall, for the present, assume to be the case.
Indeed, when k and k denote fixed values, either of the pair (¢, ¢%),
gay ¢, may be given any finite value at will, the other, &% is then
uniquely determined by (1), provided % is not zero, and, if kis
zero, may itself be assigned any finite value whatever.

When, however, h and k denole variables, though either ¢’ or
¢* may be chosen arbitrarily at any one point, when we try to
choose the values of one of them, say ¢, arbitrarily in the lump,
we find this is not possible, because of the restriction, imposed by
the definition, that ¢’ tends to zero. It is not asserted, or required,
by the definition, that the mode in which ¢ tends to zero should
be definable in terms of (h, %), without involving the chosen mode


Yakuza


66 G. Chisholm Young:

in which (b, k) tends o (0,0): it is only required that, for each
chosen mode of approach of (h, k) to (0, 0), there is, at least theoret-
ically, a mode of approach to zero which may be taken for that

of ¢, and the equation (1) will then define ¢* uniquely in terms of
(h, k) and the corresponding ¢’, in such a way that ¢* also tends to

zero. But even now it is not asserted that ¢’ is wuniquely determined:

by the particular mode of approach to (0, 0) assigned to (%, k). We

cannot therefore regard ¢ and e* as ,functions“ of (k, k), even it
we do not infliet on the term ,function the fetters of single-val-
nedness, since the values of a function of (A, %) at a set of points
are determinate, even when multiple, at each of those points, and
do not depend on the choice of that set. Thus, if it were conceived
possible to give a many-valued function of (h, k) capable of serving
all our purposes, we should have to add a law corresponding to
each mode of approach of (h k) to (0, 0), so as to specify how ¢’
was to be chosen from among its many values, for each particular
(h, k) involved in that mode of approach; moreover, the function
would have to be such that, at any particular (%, k), it had every
conceivable value!

Thus ¢ and ¢* in the definition cannot as such be said to be
funetions, even multi-valued functions, of (%, k).

The dependence of ¢ and ¢* on the mode of approach of (&, %)
to (0,0) requires of itself some device in order to keep it before
our eyes. Regarding h and % as the rectangular coordinates of
a point P in a plane, any mode of approach of (h, %) to (0, 0) may
be considered as implying that the point P moves, not necessarily
continuously, so as ultimately to come fo rest at the origin 0. If
the motion is discontinuous, the simplest will be that by which P
hops from point to point of an ordered sequence of points P,, P,,..
Sometimes P will approach 0, sometimes recede, and sometimes
remain at a constant distance from 0. All we can assert is that,
sooner or later, it will get inside, and remain inside, any circle
with 0 as centre, however small. This is equally true if the motion
is continuous. The simplest case is now that of motion along a straight
line, or monotone curve, through the origin, always in the same
sense. But P might move, sometimes in one sense, sometimes in the
other; and the path might be excessively complicated and curly.
A very simple case would be motion along an Archimedean spiral
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with the origin as pole. But the path might pass more than once
through the origin before the point comes to rest, as for instance
the pen passes twice over the same point in forming the sign &.

We will therefore, as a reminder of the possibilities, adopt the
written symbol, &, to express the notion conveyed by the phrase
»any mode of approach of (h, k) to (0, 0)“. The generic point which
moves in the determinate mode &, we shall then, when desirable,
denote by (h, k, &)

5. Returning now to our definition, we see that it implies that
for each (A, k; &) there exists a pair of theoretically determinate
sets of values which we shall denote by Z'(h, k, &) and E* (b, k, &),
consisting of values ¢’ (%, k; &) and e* (h, k; &) respectively, connected
linearly by the relation (1), and that neither of these sets is empty,
while they both shrink up to the value zero, as the point (h, %, &)
progresses towards the origin (0, 0).

Geometrically, if at each point (h, k; &) we erect an ordinate
perpendicular to the plane of (h, k), and on it mark the sets E’
and E*, placing the zero point at (h, k; &), this ordinate, cut off at
the two determinate points rendering it as short as possible, eonsi-
stent with just containing both the sets, shrinks up to the origin
(0, 0), as the point i/, k; &) moves up to that origin.

At any point (b, k) the diflerent ordinates, corresponding to all
possible &'s, and all possible theoretical specifications of the corres-
ponding sets E’(h, k; &), E* (h, k; &) will completely cover the whole
ordinate line, infinite in both directions. '

6. These considerations shew that for all that the definition
logically requires, the symbols ¢ and e* are no elementary math-
ematical functional symbols. It will be now our task to show that
it is unpecessary to retain the definition in this general form, and
that, on the contrary, it is allowable to regard ¢ and e in the de-
finition - as single-valued functions of (h. k), mathematically definable.

The justification of this statement lies in the following theorem:

Theorem. The necessary and sufficient conditions that a func-
tion f(x,y) of two real variables, z and y, should have a first dijfer-
ential at the point (x,y) may be given in the following form:
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(i) (Primary, or Obvious, Condilion). )
The partial differential coefficients /g and é?j‘; exist and are

dx
finite at the point (z, y);
(#) (Secondary Condition).
The functions @,(t) and ¥,(v), each with a single real variable
and a single real continuous parameter, being defined by the equations:

o) = (fle4h y+k) — fla—-hy y) — f(z,y—+ k) + f(=, y))/h
9:(0)=0; @i(c0)=0; (t)=0;

k=ht, (0<|h|<oo; 0|t <Co0),
and (1), got from @,(t) by changing t into ©, and inlerchanging
hoand k, (escept in f(@+h,y+E), flathy) ond fla y+H),
these fumctions converge unmiformly to zero in every finite interval of
the variable, as the parameter tends to zero.

To prove the necessity of the conditions, we start with the de-
fining equation (1),in which 4 and B are given finite constants, and
€ =¢(h k; &) and ¢* = e*(h, k; &) depend on (h, k) and also on the
particular mode of approach selected and denoted by &, and are
such that, whatever mode of approach be selected, ¢’ — 0, ¢* —> 0,
wheu (h, k; &) — (0, 0).

First to prove the necessity of the Primary Condition, we take
the symbol & to denote any mode of approach for which A =0,
k=0, and we get, dividing (1), as we then may, by &,

) ¢ =(f@+hy)—flay)h—A=c®0)

say, this being independent of the mode of approach. Since, by hyp-
othesis ¢ >0, as h—0, and 4 is a given constant, this proves

where

o . oo .
that 9{5 exists and is finite, that, in fact,

@) SJ; —A

Similarly, taking the symbol & to denote any mode of approach
for which A =0, & = 0, we have,

(®) ¢ = (f(= y+Fk) —f(z y))k— B =e*(0, k),
say, and therefore

of
(®) 5= B
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This proves the necesstty of the Primary Condition.
Next to prove the necessity of the Secondary Condition, we define
a variable ¢ in terms of the pair of variables 4 and k& by

(6) t = k/h,

for all finite values of % and %, except when % and % are simul-

taneously zero. Then, if ¢{—»¢, where ¢ is finite, h—>0, k==ht
will —0.

We may therefore denote by the symbol & any mode of approach
of (h,k) to (0,0) by which k/h—>t, where ¢ is any selected finite
value, and the mode of approach to ¢ is any prescribed mode.

We then write,

o () ={f@+h y+k)— flz+h y) — [ y+k) + flz gk
(=20, k=0,

q’fl (0) = 07 ‘Pn (OO) = 09 wo (t) = 0

These equations show at once that the appearance of zero or
infinite values for ¢ during the approach of (&, k) to (0, 0) will not
disturb the existence of the unique limit zero for g, (f); we need
therefore only consider the first expression, which, since % is finite
and not zero, may be written as follows:

@i (&) ={fl@+h, y+°)—f@ g}k —{f&+ hy)— f(w y}k
— kb {f@ y+ B — f@y)ik

= {44 ¢+ (B4e*) ) —{d+ ¢ (h,0)} — {B+te*(0,k)} ¢
Since, by hypothesis, ¢, ¢*, ¢ (h, 0) and ¢*(0, k) all tend to zero,
as (h, k; & —>(0,0), and since {—>7 which is finite, this shows
that @,(f)— 0. In other words, since the approach of ¢ to t was
any prescribed mode, it shown that @, () tends uniformly to zero

as h—> 0, at every finite point #, and therefore in every finite inter-
val of values of ¢
Interchanging the rotles of h and k, and writing

¢k(1)={f(x+h1 y+k) —f(z+h: Y) _'f(w' y+k +f(x1 y)}k

i (0)=0; #(0)=0; wu()=0;
where
v =k,
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the same reasoning shows that ¢,(z) couverges uniformly to zero
as k— 0, in every finite interval of values of 2.

The necessity of both the conditions, primary and secondary, has
thus been completely proved.

Next to prove the sufficiency of the conditions, we start by
hypothecating the validity of the primary and secondary conditions
of our theorem, and we now have to deduce as a consequence an
equation of the form (1), with a proper definition of the constants
A and B, and of the symbols ¢ and e*

Since the primary condition holds, we may assign to 4 and B
definite and finite values as follows:

©) 4=, =%

Let now the symbol & denote any chosen mode of approach of
a pair of variables (h, k) to (0, 0). Then the generic point (A, k; &)
may assume the position (0, 0); but in this case the equation (1)
is identically satisfied, so that, when

X) h=0, k=0,
we take
(10) e b, k)y=2¢(0,00=0; e*h,k=¢e*0,0)=0,
and the formal equation (1) is satisfiied, with
¢ =¢(h k), &= e*(h,k)

The generic point (h, k, & may assume a position (h, 0), other
than (0, 0). In this case we may, by (9), write
St y+8) = fa ) =h[a— L +(Fatb ) — fis 3],
so that, when

(XI) =0, k=0
we take

Y= 0)=— L 4 (ft b y)— S @ n)h
e*(h k) =e*(h, 0)=0.

bl

(11)

Similarly, when
(XII) h=0, k=0,
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we take
¢ (hy k)=¢'(0, k) =0,
) enb=ron=—L+ ey +H—r6nk

Finally, (h, k, &) having any position other than those considered,
we use the identity

fathy+k)—flxy)=
(13) =fle+hy+kb—f@+hy)—f=y+B)+ (=)
+{f@+hy)— @y} +{/ @y +k)—flz 9}
which, writing :
14) ' t=rkh=1/
and taking ¢,(f) and o,(z) to be defined as in the enunciation of
our theorem, may be written in either of the following forms,
since neither & nor % is now zero:

S@dhy+h)—f, y)—h%(t)+

) +h A-—— +{f(@+h, y) —f(x, y)}/hi
+-& B-—~~ +{f@y+k —f(=, y)}/k.

T (flath y B — oy =k @+ _

a6 +h[a— L+ (fe+ b0 —fe )
+[B— Lt fe ) — £l o]

If (h, k; &) is such that
(X VI 0 < [k (R,
we take »
¢ (h, k) = @, () — -Qj—[+ {f @+ 9)— f(z, y)ifh,
(17)

b By = — 5L oy -+ f @ )
using (15); while, if

(XVIII) 0 <|h| < |Kl,
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we take

¢ k)= — L Flat by g) - flm, p)h
(18) of
¢ (b, k) = tp, (z) — oy T {/ (@ y+k)— f(@ 9}k,
using (16). In both cases we see that the formal equation (1) is
satisfied, with ¢ = ¢’ (b, k), ¢* = ¢* (h, k).

We have thus proved that the functions e'(h, k) and ¢*(h, k),
defined by the equations (10), (11), (12), (17) and (18) according as
(h k) satisfies the appropriate relation (X), (XI), (XII), (XVII) or
(XVIII), when substituted respectively for ¢’ and ¢* in the formal
equation (1), render it valid, whatever mode of approach, denoted
by the symbol & be adopted. But we then have ¢’—»0, ¢* 0,
as (h, k, &) — (0, 0); for the expressions on the right of the formulae
(11) and (12) tend to zero by the definitions of gg and 595’ and
these expressions appear again in (17) and (18); the remaining terms
in (17) and (18) also tend to zero, by the secondary condition,
since, in (17) [¢|<<1, and, in (18), [¢|<C1. Thus, however
(hy k; &) — (0, 0), all the expressions which from point to point de-
fine ¢'(h, k) and e*(h, k) tend to zero. We have thus proved the
sufficiency of our eonditions.

The whole theorem is therefore proved.

Corollary. If f(x,y) is a continuous function of (z, y), we may,
instead of introducing the function (%), say that @, (b)/t converges
uniformly to zero in any interval of values of &, not including zero,
but including, if desired, one or both of the infinite values.

Indeed, by their definitions
=1/t
P(t) =g, /.

Also when t—, t— 1%, and vice versa, when 7 is finite and not
zero; and then (k, k)—»(0, 0), provided either k—0, or h—0, Thus
the uniform convergence of ¢,(f)/¢t is the same as the uniform con-
vergence of ¥,(z). But, if ¢ denotes an infinite value, and 1/¢ the
value zero, the uniform convergence of Y (7) to zero is insufficient
to prove the uniform convergence of @ ()t to zero, since there are
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modes of approach of (# %) to (¢, 0)= (4 oo, 0) which, since & =="ht,
do not imply that k—>0. For such modes of approach however
the numerator in the expression for y,(z)== ¢, (t)/t tends to zero
in virtue of the continuity of f(z,y), while the denominator % has
no zero limit, thus these modes of approach also lead to zero as
the unique limit of ¢, (#)/t.

This proves the Corollary. At the same time we see that the
continuity of [(x,y) which we require is comtinuity with respect to
(=, y) .at all points @+ A, y) of some linear neighbourhood of the
point (x, ).

Similarly, if f(x, y) is continuous with respect to (z, y) at all
points (z, y-+k) of a certain linear neighbourhood of the point
(%, 4), we could replace the function @,(¢) in the secondary condition
by v.(7)/=.

In particular, since the equation (1) shows at once that the pos-
sessing of a differential implies that f(z,y) is continuous with res-
pect to (x, y) at the point (z, y) itself, we see that the necessary and
sufficient conditions that f(x,y) should possess a first differential at
every point (x,y) of a certain tnterval b <y <d, x constant, are
that 595 and gg should exist and be finite at each such (z,y) and that
@i (t) and @, (Bt should converge uniformly to zero as h—0, in every
interval of values of t which, in the case of @,(f) does not exceed
the finite, and in the case of @, ()/t does not contain the origin.

7. It may be remarked, as not devoid of interest, that the par-
ticular functions ¢ (h, k) and e*(h, k), defined by the formulae (10),
(11), (12), (17) and (18), are not merely single-valued, but of almost
elementary form. Each of them can be defined as the unique limit
of a fanction '

¢ (h,B)=Lt. g.(h )
0 (b 1= Lt .g* (b B

which is continuous with respect to (, k), except along the pair of

straight lines
h=+ ks

while on either of these lines, except at the origin, (0, 0), it is con-
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tinuous on one side of the line, and bas on the other side an uni-
que limit.

We may, for instance, as is easily verified, replace the formulae
defining ¢ (h, k) and e*(h, k) by the above (20) and the following;

when
(XX 0< [H<hl,

Q;(/l: k)= {f(x’i‘h’ y"i“k) "_f(xy .l/+k)}/h
" - {f(m"'_rh’ y) __/(xv y)}/'hv
1) 0 (b )= {f(@, y-+ B) — @, gl
—{fmy+ k) — f (@ yrk

the former of these formulae still holding when 0<Ck < |4/,
while, when

(XXII) 0< |k < k|,

g k)= {f@+h 9) - fl@ /b -
—{fletrhy) — fl yhfrh,
— A fla,y+rk) — flayi/rk,
the latter of these formulae still holding when 0 <Ch < |%|,
and, finally

(23) g.(0, k) =0, g (h, == 0.

(22)

8. The following corollaries to Theorem 1 constitute tests for the
existence of a differential of a convenient nature.

Covollary 2. If the double incrementary ratio of f(x,y) has
an unique and finite mized double limit, i. e. if

L) > (0,0)
where C is a fintte quantity, then f(z,y) has a first differential at

(x, y). provided §£ and aE); exist and are finite; and then the Second-
ary Oondition is satisfied without any restriction on the uniform
convergence of @(f), which is true in the whole infinite interval
0 [t <00, |

The samie is true if, without tending to an unique limit, the double
incrementary ratio is bounded above and below.
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O'mfollary 3. If f(x,y) has at (z,y) a first differential, and
P y) is a bounded function of (x,y) possessing at (x,y) finite par-

. . op d
tial differential coefficients o and 755, then p(z,y) f(x,y) has at (x,y)
a first differential.

For the Primary Condition is satisfied, the partial differential
coefficients being given by the usual formulae, and the Secondary
Condition is clearly unaffected by multiplying f(z, y) by a bounded
funetion.

9. The special case of Theorem 1 in which @,(f) converges
uniformly in the whole closed infinite interval includes, not only
the above Corollary 1, but also all the sufficient fests for the exi-
stence of a first differential which bhave hitherto been given. The
most general of these, as formulated in Hobson's Treatise on the
Theory of Functions of a Real Variable !), requires, in addition to
the Obvious Condition, that

{fl@+h y+8) —fl@-+h y)ih
should be continuons with respect to (k, k) at (k, k) = (0, 0). This
is exactly equivalent to the special case of our conditions as given
in Theorem 1.

In the special case, but not in the general case, the partial dif-
ferential coefficient of f(z,y) with respect to z, or y, (according
a8 it is @, (f) or y,(r) which converges uniformly everywhere, in-
cluding infinity), has the property given in the following theorem.

Theorem 2. If the conditions of Theorem 1 are satisfied without
the restriction on the uniform convergence of @, (f), the partial deriv-
ates of f(x,y) with respect to x are continuous with respect to y at
the point (z,y) under consideration. ‘

For the double limits of g,(f) include every repaeted limit,
which in the special case is accordingly unique, and has the value
zero. Let us form such a repeated limit by keeping & constant dur-
ing the first passage to the limit, and making ¢ move up towards
+ o0, or —oo, by non-zero values, in such a way that A, which
is equal to k/¢, moves up to zero, and describes such a sequence of

$) First Ed,, (1907), pp. 312—313; Third Ed., {1927), pp. 418—419.
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values as to give for the expression
{fle+h y+k) — /(@ y+Bi/h

as unique limit the value of any chosen derivate at (z,y - k); this
is possible by the meaning of the term ,derivate“. At the same
time the expression

tends to §£ The differen e of these two expressions being @, (f)

tends to zero during the second passage to the limit k> 0. The
derivate tends therefore to its own valueat (z,y) as limit, in other
words it is continuous with respect to .

This proves the theorem. At the same time we see why the same
cannot be asserted in the general, as here in the special, case, since
in the general case the final result need not be zero. The following
example shows a function f(z, y) having a differential at the origin,
and whose derivates, here differential coefficients, with respect to z,
are not continuous with respect to y at the origin.

Ex. 1. Let us take a function which is zero on the axes and
possesses a first differential at the origin. The primary condition is
then satisfied, the partial differential coefficients being hoth zero at
the origin; and we have, in order to satisfy the secondary condition,
to make.

. Sl )b = @(t), (k= ht, 0 <|k)
an

fb k)] = u(2), (b= ks, O<]kl)

such functions of the single variable #, or 7, that they tend un-

iformly to zero for every finite value of the variable, as the par-

ameter tends to zero. Taking a stock example, therefore, we write

Pu() = (L k(i +1/kt), (k=)

and therefore
Wu () = (L + ak/)(kfs+- k)
Both these functions satisfy our requirements. Also

k)= h gy (8) = h (1 -aka/Ry(k/h k) =
= 7t (b ak2)/(h*+ kA),
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go that we may put
F@9) =2yt (@+ayt)/x*+ 249, (zy 2 0)
S(@, 0)=f(0, ) =f(0, 0) =0.

Hence
d
7 0,0)=Lt. £(h 0)fh =0,
and
f )
LOR =Lt fOBh=a EZ0)
shewing that ¥ is not continuous with t b t the origi
52 respect to y at the origin.

10. The most familiar test for the existence of a first diffrential
is that known as Thomae's Test. As it has been stated, this asserts
that if 59{ (or %: ) exists throughout some plane neighbourhood of
a point (%,y), and is continuous at (v,y) with respect to (z,y),
while the other partial differential coefficient % (or 3%) exists
and is finite at the point (=, y) itself, then f(x,y) has a first differen-
tial at (z, y). :

This in an immediate corollary from our Theorem, using the
Theorem of the Mean; for in this case we have

wO=L wton y+b— Ly a<o<y.

But, as a matter of fact, it is unnecessary to hypothecate the
existence of g (or % ) in any neighbourhood of (z, y); the state-
ment of this simple test is then as follows:

If at a point (x,y) at which both 9%[ and 535 exist and are fin-
ite, and the partial derivates of f(z,y) with respect to z (or y) are
known to be continuous with respect to (z,y), then f(z,y) has a first
differential at the point (z, y)

For the Theorem of the Mean for Derivates 1) asserts that in

1) ,Derivates and the Theorem of the Mean“. Quarterly Journ, of Pure and
Applied Math. XL, p. 10.
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any given interval (a,b) there is a certain point, not one of the
end-points, at which the upper derivate of f(«) on one side, (say on
the left), is less than or equal to the incrementary ratio

{/ ) — f @)}/ —a),

while this incrementary ratio is less than or equal to the lower de-
rivate of f(%,y) on the other side, (the right). Using /* and f_ to
denote these derivates, this gives in our case,

fHa+0hy+B—{fla+hy) — @ /h <. ()
<SS 0hy y+ ) — { f(z 4k, 9) — [ (2 y)}fh.

Sinee, by hypothesis, —% exists at (2, y), {f(@+h, y) - fl@,y)/k

tends to this as unique limit when 2—> 0. Also since, by hypothesis,
the upper and lower derivates of f(x, y) are all continuous at (z,y),
and 6h—>0, when h—»0, the derivates which occur in our inequality

also tend to g as h—0, k—0. Therefore the extremes in our in-
equality tend to zero, and therefore also the middle term tends to
zero upiformly. Hence, by our Theorem 1, the required result follows.

We may indeed, if we please, go still further, and only hyp-
othecate, for instance, that the derivates with respect to z, instead of
being continuous with respect to (z,y), should merely be bounded,
and continuous for all modes of approach to the origin other than
such as are tangential to the axis of y. The proof is identical with
the preceding, but involves the general case of our Theorem 1, and
not, as in the preceding, the special case when the convergence is
uniform throughout.

~ 11. In couclusion we will cite an example which does not sa-
tisfy the conditions of our Theorem 1.
Ex. 2. Let
l S@y)=xsinlly, (y20),
 f(a, 0)=0.
Here
@i () =sin 1/(y+ k) —sin 1y, (y 2 0),
and :
@ity =sin 1/k, (y=0)
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Thus for points (z,y) not lying on the axis of x, @, (f) tends
uniformly to zero without exceptlon' therefore f(x,y) has a first
differential at each such point, since the partial differential coef-
ficients both exists. But at a point other than the origin on the axis
of x, the partial differential coefficient does exist, since

{f(x! k) "'f(xi

bas, as k— 0, the two infinite limits 4+ co. Thus the primary con-
dition of our Theorem 1 is violated, and therefore f(z,y) has not
got a first differential,

Finally at the origin, the primary condition is verified, but the
secondary condition is violated, since now g, (f) =sin 1/k does not
converge t6 zero at any point & Thus f(z,¥) has not a first diffe-
rential at the origin.

0)}/k = % sin 1/k,

PART II

On the Integrals of Functions Possessing Differentials.

12. In the case of a function f(x,y) possessing a first differen-
tial at the point (X, Y), there is no difficulty in integrating pro-
vided f is a measurable function, as of course in Mathematies proper
is always the case. We have the following simple theorem:

Theorem 3. 1f f(x,y)is a measurable function of z for a cer-
tain value y=Y, or certain values, y=1Y, [or is a measurable func-
tion of (x,y)), aud possesses at (X, Y) a first differential, then in
a certain rectangle (a, b; ¢, d) with such a selected point (X, Y) as
centre, f(z, Y) is a summable function of z for that value of ¥, and
Jfor all the other values of Y for which (w, Y) lies inside this wctangle
[or is @ summable function of (z,y))

For since f(x,y) has a first differential at the selected point
(X,Y), it is continuous at that point with respect to (z,y) and is
therefore bounded in some neighbourhood of that point, and there-
fore summable with respect to z for that ¥, and for any Y for
which f(z,y) is measurable, provided all the points (z, Y) consid-
ered lie in that same Deighbourhood, [or is summable with respect
to (z,y), if f(z,y) is a measurable function of (,y)]. Taking this
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neighbourhood to be a rectangle with the selected point (X, ¥) as
centre, this proves the theorem.

18. We shall now denote the integral with respect to » of any
function denoted by a small letter, such as f, by the corresponding
capital, in this case F, writing

(24) RX D)= f fl, Y) da;

and we shall discuss the properties of F' from the point of view
of differentials, agsuming that / has a first differential at a point
(X, Y), or at certain points (X, ¥'). It will be assumed, without
always specifying it, that f/ is a measurable fonetion of (x, y), —
or, at least, is measurable in as far as it is required by Theorem 3, —
and is therefore summable in a certain fundamental rectangle
(a, b; ¢, d), containing all the points involved in the integration, or
in other processes occurring in the course of our manipulations.
We then have the following preliminary theorem, involving only
the differential of 7 (2,y) at a single point (X, ¥).

Theorem. If f(x,y) possess a first differential at (X, Y), its
integral F(z,y) has a double incrementary ratio which tends to an
unique and finite mized double limit at (X, Y'), namely

Li {(F(X+H Y+ K)—FX+HY)-FX Y+ K)+

(H,K)—(0,0).

+ P OyHK = (%, ),

provided KjH has not zero for a limit; and, if K/H—0,
(F(X+ B, Y+K)— F(X+H,Y) — FX, Y4 E)+ F(X, V) H->0.

By (24), the double incrementary ratio in question is expressible

as follows:
X4-H

{f(®, Y+ K)— f(z, V) duw/HE =

= f (AX+h Y+E)—f(X+h, Y b/ HE ={ f(X, Y+K)—f(X Y Y K+
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+ f {FX+h, Y+ B)—f(X+h,Y)— (X, Y+ E)+AX,Y j}dh/HE =

={(X,Y+K)—f(X,Y)}/K+ / ¥x(v) dz. K/H,

where we have put
1="h{K.

If now K/H has not zero for a limit, H/K remains bounded,
say numerically <C N. Therefore

— NKe<C N,

so that, since, by the Secondary Condition w.(z) converges
uniformly to zero in the interval (—N, N) as K—0, there is
a value K,, corresponding to any assigned positive quantity e, such
that for all values of K numerically < K,, i(z) is numerically
<e, for all values of 7 numerically <CN. Hence

HIK |HIK)
L/-tp,(('t) dz.K/Hggfequ/mge.

0

Since ¢ is as small as we please, this integral has the unique
limit zero when (H, K)— (0, 0). Hence, since, by the Primary Con-
af

dition o exists, our double increment has the unique limit 7y

dy
This proves the first part of our Theorem.
If, however K/H—>0, and therefore H/K tends to infinity, we
may only consider values of H and K so small that H/K is numer-
ically greater than unity, and divide the interval of integration
(0, H/K) into two parts (0, a) and (e, H/K) where a denotes unity
with the same sign as H/K. By the preceding argument

j f pi) . KJH| <o [/

which is as small as we please. Also, changing the variable from ©
to ¢ =1/7, and using the function @,(f) = ¢.(7) K/h,
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'r) dz. K/IIl

f 94 (i) /H . i/

KH

< / edtfp = o(—1 4 |H/K|) < ¢| H/K]|,
- |

since, by the Secondary Condition @,(f) converges uniformly to zero
in the interval 0 <C|#|<<1.

Hence the double incrementary ratio, minus ( f(X, ¥+ K)—
—f (X, Y) ) K, is numencally

<e¢|K/H|+¢|H/K],
so that, when multiplled by K, it tends to zero, since H, K, K/H
and F(X,Y+4+K)—F(X,Y) all tend to zero, and ¢ is as small

as we please.
This proves the theorem.

14. The preceding theorem does not suggest that #'(z,y) has

a first differential at (X, ¥), since,«in general, we canuot assert that
g}; exists. If %%' does exist, it is, of course, evident, by Thomae’s
Test, as extended in § 10, without using the preceding theorem
at all, that F' has a first differential at (X, Y), since aa—f
and is continuous at (X, ¥). We have however the following the-
orem, in which we assume the existence of the differential of f(z,y)
for all points (2, ¥) of a linear interval.

exists

Theorem 5. If, not only at the point (X, Y), but also at every
point of a linear neighbourhood of that point, with y = Y, f(%, y) has
a first differential, then % is a summable function of », end 3~F

y
ewists at every point of that linear neighbourhood, and is given by
differentiation under the integral sign, viz.

9F _ ['of
o) g

where y=Y, and both a and x belong to the interval in which the
integrand is summable,
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For, by the preceding, the double incrementary ratio of F at
each of the points in question is equal to

_
= a—y—l—ele

where ¢ is an arbitrary positive quantity, |6,|<C 1, |H|<<|K|, and
K is restricted to be less in absolute value than a certain quantity
depending on the choice of e. Therefore

X4H

%f{f(x, Y4 K)— fia, Y)}dx:K%(X, Y) 46, ¢ K.

Letting H~>0,

FX Y4+E)— f(X, Y)=Kﬂ (X, ¥)— 6, ¢ K,

where |6,| is numerically <C1, and is a measurable function of in
virtue of this equation, and therefore summable, Hence also by this
equation %(X, Y) is a summable function of X, X denoting any

value in the linear interval of values of x mentioned in the enun-
ciation. Therefore, writing » in place of X and integrating from

a to X,
X

(F(X, Y +K)— F(X, V)K= f (5, ¥)dz +o f

Letting K—>0, we get finally, since ¢ is as small as we please,

f (%, Y)de.

This proves the theorem

Corollary. Under the conditions of the theorem, F(z,y) has
a first differential at each of the points (z, Y).

15. We now have the following

Theorem 6. If at every point (2, Y) of a linear neighbourhood
of (X, Y), containing (a,X), f(x,y) has a first differential, and at
each such pomt % is a differential coej_‘fment with respect to x, 1. e.

P
) =%
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then ot each point (z, X), F (2, y) has a first differential, and
oF
By =gz, Y)—g(a Y).

For, by the preceding theorem and corollary, F(z, y) has a first

o is summable with respect to x, and therefore the

differential, 3y

same is true of QQ, and
oz

oF  [of
=)
But, since ggg is, by the above, finite and summable, its integral

is, by Liebesgue’s theorem, the primitive funetion; therefore

oF (3,
=) =g ¥)~g(s ¥)

This proves the theorem.

Corollary. 1f, in addition, we hypothecate that g(a,y) 18 con-
tinuous with respect to y, and we define F(z,y) and G(x,y) as follows:

F(x, y)=ff(w, y)dw-l—fy(a,y) dy,

Cen= f o1 det Clo)

then F(x, y) possesses a first differential at each (z, Y), and we have

9y~ oz’

16. The following theorem follows immediately:

Theorem 7. If at every point of a rectangle (s, b; ¢, d) each of
the pair of functions u(®,y), v(x,y), possesses a first differential,
and these two functions u(z,y), a(x,y) satisfy the Cauchy-Riemann
equations, thal 4s
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du__
dx~ dy
and !
qu__
dy oz’

then the pair of functions U(x,y) and ¥ (x,y), obtained from u(z,y)
and v(z,y) by integration with respect to x as follows:

Ui, y)«——fu(x,y)dw-fv<a,y)dy

"

x

y
V(wvz/)=fv(w,y)dw+fu(a,y) dy,
also satisfy the Cauchy-Riemann equations, and possess differentials.
This follows from the preceding Corollary, putting first
f=ug=u = [ ola,)dy;

h

and then
/

=u, g=--v, Cly)= -/u(a. 9)dy.
%

17. The partial differential coefficients of the functions Uz, y

and ¥V (z,y) defined in the preceding paragraph, being the funetions
u(x,y) and + v(z,y), are known to possess first differentials, which

was not the case with 5; and g;f It will however be seen that

these latter partial differential coefficients do in point of fact possess,
first differentials, so that the conditions imposed on %(vy) and
v(x,y) in Theorem 7 repeat themselves with regard to the pairs
of functions obtained by any sort of differentiation as well as by
integration with suitable choice of the constants of integration. This
will be seen to follow from the following auxiliary theorem which
has been proved as here given by W. H. Young?).

1) W. H. Young, ,The Fundamental Theorem in the Theory of Functions
of a Complex Variable*, (1911), Proc. L. M. S,, Ser. 2, Vol. 10. pp. 1—6, where
the assumptions made are more general than the above, Uy & U, being merely bounded
fanctions, while U(x,y) and V(z,y) have differentials and satisfy the Cauchy-
Riemann equations.
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Theorem. (duxiliary Theorem), If throughout a circle C, with
centre the origin and radius c, the pair of jfunctions U(x,y) and
V(z,y) satisfy the Cauchy-Riemann equations:

U=V,
U,=—"V,

while these partial differential coefficients are themselves functions
possessing differentials throughout the circle C, then U (x, y) and V(a,y)
are expressible in the form of power series, convergent throughout the
circle C. '

Moreover, when we use polar coordinates, these series are power
series in r, and allied Fourier series in 6. '

We may evidently assume, without loss of generality that U (x,y)
and V(x,y) are both zero at the origin.

Since U, and V, possess differentials throughout the circle C, the
same is true of U and ¥, (Theorem 5, Cor.); therefore we may
transform to polar coordinates by the usual formulae:

U,= U,cos § 4+ U, sin 6;
Uyfr= - U,sin § 4 U, cos§, (r==0);
whence, using the Cauchy-Riemann equations,

Ug/r: E/; (r=0)

where U, and Up/r are continuous with respect to (r, §) except at
the origin, and, as »->0, they remain bounded. Thus U, and Up/r
are summable functions, and we may write

r ]
Ulz, y)= / Udr, Ulx,y)— Ur0) = f U,df

and therefore expand in a Fourier series, and write

Uz, y) = ay/2 — 2 (a, cos nf -}~ b, sinn ).

nwl

Also, Uy/r being summable, its repeated integrals are equal, and
therefore
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f {U(x,y) / _fd, fde Uo/r—-fdﬂfdr i
— .-.fd()fdr.V,: v-fde-V(x,y)

since what was pointed out for U is true mufates mutandis for V.

The first of these equal integrals retains its value when r is
kept constant and @ is increased by 2m; therefore the same is true
of the last of the integrals. Therefore the expansion of V(x,y) as
a Fourier series, corresponding to that explicitly given for Uf(z,y),
must contain no first term. This must also be true for U(z,y),
since we may always reverse the rdles of U and 7, if we pay
attention to the difference of signs caused by the Cauchy-Riemann
equations. Thus

Ay = 0)

and

Viz,y) = 2 (a;, cos nf - b, sin n6).

n=1

Integrating with respect to , we get

Jd"{U(‘"y y) — U(r, O)}jr = ~»-2 (a; sin n@ 4 by, cos nf)/n.

ne=l

Therefore, using the usual formulae for the coefficients in a Fou-
rier series,

bin=1 f 6. cos nf f ar (U@, y)—Ur, O
—T 0

Here we may change the order of integration, since the ‘intégmné
is a bounded function, as we see using the Theorem of the Mean,
by which

au . U
Uz, y)/r— U(r,0)/r= —a—: (o cos B, ¢ sin §) — T (£, 0),

for some values ¢, {, where 0 <o <<r, 0L <Cr


Yakuza


88 G. Chisholm Young:
Hence
bw=£fwfwmmmmwpdmmwmjbﬁ%
0‘ —% ' 0

Similarly

—a,/n =fdr bar; —bun =fdr.a,’,/r; a,/n =fdr.b,’,/r.
[} 0 0

From these equations we see that g, is a continuo us funetio
of », and therefore remains so when divided by r, except at the
origin, remaining, however, bounded up to the origin, since, as we
saw, a,/r is the result of a single integration with respect to 6 of

2 bounded function cos n8 (U (x, y) — U(r, 0))/r.
Thus a,/r is the differential coefficient of its integral

%=r%@M,O#%

Similarly
, r
b” =1 57“ (a,,/n), ('I':"—‘- O)
Hence
d ) o .
m? a, = T (rm_ a,,) == d?a,/dt?,
where
t=logr.

This gives

a,= Ko+ K r™= Kr*,

since a,/r has to be bounded.
Hence also, by the above,

b, =a,.
Similarly
by=— a, = L.
Thus
Ulz, y) =2 (a,cos nf - b, sin nf) =2r"(K,, cos n8 - L, sin n6)
ne=l =l )

V(z,y) =2(a;, cos nf -+ by, sin % ) =2‘r”(- L,cosnf - K, sin nd),

Hmsl o)
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These series are power series in » and allied Fourier series in 6.

Expanding cos 78 and sin #6, and replacing » cos § by z, and
r 8in 6 by y, we thus have U(x,y) and V(, y) expressed as power
series in z and y, convergent throughout the circle C, including the
origin, since, by hypothesis U(x,y) and V(x,y) are zero there, and
the right-hand sides of the two formulae vanish with r.

This proves the theorem.

Corollary. Under the conditions of the theorem, U(x,y) and
V(x,y) possess all their partial differential coefficients of higher
order; and each pair of these, formed from U and V by the same
process of differenttution, satisfy the same conditions as U and V,
that is they satisfy the Cauchy-Riemann equations, and their partial
differential coefficients possess differentials.

This follows from the fact that a power series may be differ-
entiated term by term, and that, in consequence, the Cauchy-Rie-
mann equations may be differentiated, while the mixed differential
coefficients that occur may, in virtue of the Corollary to Theorem 5
have the order of differentiation re-arranged.

Thus, in the case of the pair ‘%U, g, or, say u(z,y), v(x,y),
we have from the Cauchy-Riemann equations,
b= U= V= Ve
u=U,=U,=—V,=—nr,.

Also u, and u, possess differentials, since u., u,, u, exist and
are continuous functions of (z,y). Thus u(zx,y), v(z,y), satisfy the
same conditions as U(z,y), V(z,y).

Similarly 3% %; satisfy the same conditions, and hence, by
grinl grin ¥

induection, the same is true in general of any pair 5 3y 3 By

18. Combining Theorem 7 with the resalts of the preceding
article, we get the following. ’

Theorem 8. If at every point of a rectangle (a, b; ¢, d) each

of the pair of functions u(x,y), v(x,y), possesses a first differential
and the pair satisfy the Cauchy-Riemann equations,
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then u(z,y) and v(x,y) can be expressed in the neighbourhood of any
point (i, yo) inside the rectangle by power series in (x—x,) and
(y—yo), comvergent within the largest circle with (x, yo) as centre,
and lying entirely in, or on the boundary of the rectangle.

Moreover these series (Taylor series), when ewpressed in terms of
polar coordinates with (%,, y,) as origin, and y =y, Sor initial line,
become series of positive powers of r, and allied Fourier series of 0,

u (@, y) = (%o, Yo) -{-—2 r*{K,cos §§ 4 L,sinnd}

n=l

o(x. y) = v (2, Yo) —}—2 " {— L,cosn f 4 K,sinn 6}.

nwl
We only need, of course to prove the theorem for the case
2, =0, ¥, ==0, since this only implies working with the function
u(x,y) in place of u(x,y) where @ =—x—x, y=y—1y, and

u(@ ) = u(@y).
We can then use the Auxiliary Theorem and its Corollary, the
functions U(x, y) and V(z,y) being taken to be

Uz, y) = f (e y) d — f v(a 9) dy,

a

X . v
Viz, y)= w@wM+J%@wm
b

which, by Theorem 7, satisfy the conditions of the Auxiliary Theo-
rem. Hence, by the Corollary to the Auxiliary Theorem, u(x, y)=

P ) - .
z"gg and v (2, y) = ?9: satisfy the conditions of the Auxiliary The-

orem and therefore have the required properties. This proves the
theorem.,
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Corollary. If u(x,y) and v(z,y) possess differentials, and sat-

isfy the Cauchy-Riemann equations, then the same is true of the pair
. 9m+nu am+n

of functions equal to 5 5y and e 9;"’ these partial differential

coefficients necessarily existing.

PART IIL

On the Incorporation of the Theory of Funetions of a Complex
Variable in the Theory of the Functions of Two Real Variables.

19. We are now able to incorporate the Theory of Functions
of a Complex Variable in the Theory of Functions of Two
Real Variables. This could not hitherto be said to have been
satisfactorily done, since one of the two fundamental theorems of
the former theory, namely that known as Goursat’s Theorem had
not vet been proved in its complete generality by the methods of
the Real Variable.

Passing over the familiar definitions and conventions, and writing,
ag usual,

2=z iy,
w=u-+iv=ulz, y)+ oz, )
we merely remark that, from the point of view of the real variable,
i is a short-hand symbol (and not a quantity), enabling us to treat
the functions % (z, y) and v (2, ) simultaneously; the rules governing
the algebraic manipulation of this symbol, discussed in works on
algebra, being such that we treat it like an ordinary constant during

such processes, putting,
=1,

"so that the equations we obtain are all of the form

A +4iB=C+iD,

and express the ,real® results that 4 and C are equal, and B and
D also, that is, as we usaally say, that the ,real parts“ (viz. 4 and
C) may be equated, and also the ,imaginary parts® (viz. iB and iD).

20. The first of the two fundamental theorems in the Theory
of Functions of a Complex Variable is that which deals with the
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y . . . dw
conditions of existence of the differential coefficient = the proof

given below is based on our conditions for the existence of a diffe-
rential.

Denoting an increment of z by 4z, — or h -}~ ik, when we in-
troduce explicitly the real guantities tacitly understood, — the cor-
responding increment of w is denoted by Aw, or Au--iAv, where
Au is the increment of u, and Av that of .

The definition of the differential coefficient is then as follows:

Definition. If the ratio Aw/Az tends to an unique and finite
limit A +iB, as 2—>0, then A 4B is called the differential coef-
ficient of w for that value of z, and denoted by %ZJ, or, more fully,

by c—z'—:(z). Under the same conditions we say that the differenttal coef-
Jicient exists for the value of z considered.

The First Fundamental Theorem is neither more nor less than
the exact formulation in the language of the real variable of the
conditions here given, (in shorthand), in a form exactly the same as
that of the definition of the differential coefficient of a function of
a single real variable.

Theorem 9. (The First Fundamental Theorem in the Theory of
Functions of a Complex Variable).

If, and only if, u(x,y) and v(z, y) possess first differentials, and
obey the Cauchy-Riemann equations

u_d u__ o
dx~ dy’ dy Iz’
has Aw/Az an unique and finite limit, and this limit is then

8u+i3v @
== —=
Qx 2x d

u
it

0)] Q>
=

We introduce the followiug symbols:
Au=ulx-+t+h y)—u(xy, Az=h
hu=uls g+ —uls y), A=k

& ()= Auj/dz  Ayu/A, 2;
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g u=Au/dz — 4,u/A,z.

Aw == w@—A-h, y k) — (@ 4h, y) — u(x, y + k) + u(z, y).

The corresponding symbols 4,v etc. are obtained by changing u
into v; and the symbols 4, ete by adding to the u-symbol i times
the corresponding v-symbol, e. g.

Ayw=A4,u-}idv

If Aw/Az has the unique and finite limit 4 4 i B, A,w/4,2 and
Aw/A;z must bave the same unique limit, since we have then
approach of Aw/Az to its limit along % =0 and s = 0 respectively..
"Therefore, by the definition of a partial differential coefficient,
du du v M
5% 9y’ 9w’ By

du , .
ErA P

Hence, equating real and imaginary parts, the Cauchy-Riemann
equations appear. Also we see that the limit has the value given
in the enunciation.

Also, if hk =0,

Aw = Auv -+ iAv‘= Aw— Aw—Aw
= (h + ik) Aw/Az — hA,w/d,z — ik Ayw/Asz
= h & (w) + ik & (w),
where & () and & (w) tend to zero as z—>0, that is as (k, k)—>(0, 0).
Hence, if h/k does not tend to zero, dw/h—>0, that is

Aufh -0, Av/h—>0;
and, if h/k does tend to zero, dw/k—>0, that is
Aujk—0, Avfk—0.

But this expresses the fact that u(z,y) and v(z,y) satisfy the
Secondary Conditions for possessing a first differential, and there-
fore possess differentials, since the Primary Condition has already
been shown to hold.

This proves one half of the Theorem. )

Conversely, if the conditions of our theorem hold, the Pr}mary
and Secondary Conditions of Theorem 1 hold. By the Primary

all exist, and

1/3u , .dv .
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fu fu 9v
ax! ayﬂ 9x7
a partial differential coefficient,

Condition and g—; all exist, so that, by the definition of

2 Qv
% ..|._ i .Z\_; = Lt . Aw/lz,

1/9u dv
—f— ) —| = Lit. ;
; (ay -+ ?'Qx) Lit. Ayu/Aqz,
which, using the Oauchy-Riemann equations, gives the equality of
the unique. limits of A,w/4,2 and A,w/As2, and the value of this
limit given in the enunciation.

Again, as hbefore, if Ak == 0,
Aw = he (w) + ik & (w),

which shews, since the Secondary Condition is satisfied by « and », —

so that, if h/k does not tend to zero, Aw/h—>0, and, if A/k— 0,

Aw/k—0, — that, in either case, ¢ (w) and & (w) both — 0; there-

fore Aw/Az has the same unique limit as 4,w/A;2 and dyw/d,z.
This proves the remaining half of the theorem.
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Une remarque sur les types de dimensions.
Par
S. Ruziewicz (Lwéw).
D'aprés M. Sierpifiski?) le type de dimensions (au sens de

M. Fréchet) dH est dit le suivant pour le type dE (et dE le
précédent pour d H), #'il n'existe ancun ensemble Q, tel que

dE<<dQ < dH.
Pour abréger, nous écrirons dans ce cas
dEpdH.

Le but de cette Note est de donner un exemple de cing ensembles
linaires Py, Py, Py, Q, et Q,, tels que

dP,pdP,pdP,

AP, pdQ,pdQ,pdb,.

Cela prouvera que si le type de dimensions dP, est le suivant
pour &P, et le précédent pour dP;, dP, west pas nécessairement le
type unique intermédiaire entre dP, et dP,, et méme qu'il peut
exister deux types intermédiaires entre dP, et dP;.

Les ensembles P,, P, P, @, et Q, sont définis comme il suit.

et

P, est I'ensemble formé des nombres 0, 1% et 2 —}—nl (n=1,2,8,.).
1 1
F, est formé des nombres O et —2-;+§;¢;(m=1,2,...;n==1,2,...)

P, est I'ensemble qu'on obtient en adjoignant & P, le point §1

1) Fund. Math, t. XIV, p. 122,
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