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On Haar null sets

by

Sławomir S o l e c k i (Pasadena, Cal.)

Abstract. We prove that in Polish, abelian, non-locally-compact groups the family
of Haar null sets of Christensen does not fulfil the countable chain condition, that is,
there exists an uncountable family of pairwise disjoint universally measurable sets which
are not Haar null. (Dougherty, answering an old question of Christensen, showed earlier
that this was the case for some Polish, abelian, non-locally-compact groups.) Thus we
obtain the following characterization of locally compact, abelian groups: Let G be a Polish,
abelian group. Then the σ-ideal of Haar null sets satisfies the countable chain condition
iff G is locally compact. We also show that in Polish, abelian, non-locally-compact groups
analytic sets cannot be approximated up to Haar null sets by Borel, or even co-analytic,
sets; however, each analytic Haar null set is contained in a Borel Haar null set. Actually,
we prove all the above results for a class of groups which is much wider than the class of
all Polish, abelian groups, namely for Polish groups admitting a metric which is both left-
and right-invariant.

Let G be a Polish abelian group. Christensen [C] calls a universally mea-
surable set A ⊆ G Haar null if there exists a probability Borel measure µ
on G such that µ(g + A) = 0 for all g ∈ G. It was proved in [C] that in
case G is locally compact a universally measurable set is Haar null iff it is
of Haar measure zero. Also, the union of a countable family of Haar null
sets is Haar null, that is, Haar null sets constitute a σ-ideal. One of the first
questions asked by Christensen in [C] was whether any family of mutually
disjoint, universally measurable sets which are not Haar null is countable,
as is the case when the group is Polish locally compact. This was answered
in the negative by Dougherty [D] who constructed such uncountable fami-
lies, for example, in all infinite dimensional Banach spaces. (Haar null sets
are called “shy” in [D] following the terminology of [HSY].) This gives rise
to the question whether the existence of such uncountable families charac-
terizes non-locally-compact, Polish, abelian groups. We prove that this is
indeed the case, that is, a Polish, abelian group is not locally compact iff
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there exists an uncountable family of universally measurable or, equivalently,
closed, pairwise disjoint sets which are not Haar null. We also consider the
problem of approximating sets modulo Haar null sets. We show that in each
non-locally-compact, Polish, abelian group there exists an analytic set A
such that AMB is not Haar null for any co-analytic set B; but each analytic
Haar null set is contained in a Borel Haar null set. (This last statement
answers a question of Dougherty [D, p. 86].) Additionally, we prove that for
any α < ω1 there exists A ∈ Σ0

α such that AMB is not Haar null for any
B ∈Π0

α.
The definition of Haar null sets was extended by Topsøe and Hoffmann-

Jørgensen [TH-J] and Mycielski to all Polish groups. A universally measur-
able set A ⊆ G is said to be Haar null if there exists a Borel probability mea-
sure µ such that µ(gAh) = 0 for all g, h ∈ G. Haar null sets are still closed
under countable unions and coincide with Haar measure zero sets in locally
compact groups. We prove all our results for Polish groups which admit an
invariant metric. (A metric d on G is invariant if d(g1hg2, g1kg2) = d(h, k)
for any g1, g2, h, k ∈ G.) This class of groups contains properly all Polish,
abelian groups, since each metric group G admits a left-invariant metric
which, obviously, is invariant when G is abelian. Any invariant metric on a
Polish group is automatically complete.

By cl(A) we denote the closure of A. N stands for the set of all natural
numbers (and 0 ∈ N) and 2N for the countable infinite product of {0, 1} with
the product topology. By 2n, for n ∈ N, we denote the set of all sequences
of 0’s and 1’s of length n indexed by {0, . . . , n − 1}. For x ∈ 2N, by x|n,
for some n ∈ N, we denote the sequence (x(0), . . . , x(n− 1)); in particular,
x|0 = ∅.

First, we prove the following purely topological theorem.

Theorem. Assume G is a Polish, non-locally-compact group admitting
an invariant metric. Then there exists a closed set F ⊆ G and a continuous
function φ : F → 2N such that for any x ∈ 2N and any compact set K ⊆ G
there is g ∈ G with gK ⊆ φ−1(x).

P r o o f (1). Let d be an invariant metric on G. Recall that d is complete.
By B(r), r > 0, we denote the ball with radius r centered at e, the iden-
tity element of G. For A,B ⊆ G, we write d(A,B) = inf{d(a, b) : a ∈ A,
b ∈ B}.

Let (Qk), k ∈ N, be a sequence of finite subsets of G such that
⋃
kQk is

dense in G and Qk ⊆ Qk+1.

(1) I would like to thank the referee for suggesting simplifications in this proof.
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Claim. Given ε > 0 there are gk ∈ G, k ∈ N, and δ > 0 such that

(i) gk ∈ B(ε);
(ii) d(gkQk,

⋃
i<k giQi) ≥ δ.

P r o o f o f t h e c l a i m. Since G is not locally compact, we can find
δ > 0 and an infinite set D ⊆ B(ε) whose points are at distance at least 2δ
from each other. Let g0 = e. Assume gi have already been chosen for i < k.
If for every g ∈ D we could find a ∈ Qk and b ∈ ⋃i<k giQi with d(ga, b) < δ,
then there would exist distinct g, g′ ∈ D with the same pair a ∈ Qk,
b ∈ ⋃i<k giQi. But then d(g, g′) = d(ga, g′a) ≤ d(ga, b) + d(b, g′a) < 2δ,
contradicting d(g, g′) ≥ 2δ. Thus there is g ∈ D with d(gQk,

⋃
i<k giQi) ≥ δ.

Let gk = g.
Using repeatedly the claim, we can recursively choose εn, δn, and gnk ∈ G,

k, n ∈ N, so that

(iii) gnk ∈ B(εn);
(iv) d(gnkQk,

⋃
i<k g

n
i Qi) ≥ 3δn;

(v)
∑
m>n εm < δn/2.

Now let

F =
⋂
n

⋃

k

gnkQk cl(B(δn))

and, for x ∈ 2N,

Fx =
⋂
n

⋃

k≡x(n) (mod 2)

gnkQk cl(B(δn)).

By (iv), for fixed n, the sets gnkQkB(δn) are disjoint and at distance at least
δn from each other, so

cl
(⋃

k

gnkQkB(δn)
)

=
⋃

k

gnkQk cl(B(δn)).

Thus, we see that F is closed. Also, F is the disjoint union of the sets Fx.
Now define φ : F → 2N by letting φ(g) be equal to the unique x with
g ∈ Fx. To prove that φ is continuous, it is enough to see that the preim-
ages of basic clopen subsets of 2N are closed. But for τ ∈ 2m, m ∈ N, we
have

φ−1({x ∈ 2N : x|m = τ}) = F ∩
⋂
n<m

⋃

k≡τ(n) (mod 2)

gnkQk cl(B(δn)).

This set is closed since
⋃
k≡τ(n)( mod 2) g

n
kQk cl(B(δn)) is by an argument as

above for F .
Let K ⊆ G be compact. Given x ∈ 2N, we construct hn ∈ B(εn) such

that hK ⊆ Fx for h = . . . h2h1h0. Suppose we have already found hm for
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m < n. Note that
⋃
kQkB(δn/2) = G because

⋃
kQk is dense. Since the

union is increasing, for k large enough, we have

hn−1hn−2 . . . h0K ⊆ QkB(δn/2).

Choose such a k with k ≡ x(n) (mod 2), and let hn = gnk . By (iii), hn ∈
B(εn).

For each n ∈ N, we have hn−1hn−2 . . . h0K ⊆ QkB(δn/2), with k as in
the definition of hn, so

(∗) hnhn−1hn−2 . . . h0K ⊆ gnkQkB(δn/2).

Since hm ∈ B(εm) for m > n, it is easy to check, using the invariance of d,
that the sequence (hmhm−1 . . . hn+1)m>n is Cauchy. So, since d is complete,
it converges, and by (v),

(∗∗) d(. . . hn+2hn+1, e) <
∑
m>n

εm < δn/2.

Now, a quick calculation using (∗) and (∗∗) and the invariance of d gives

hK ⊆ B(δn/2)gnkQkB(δn/2) = gnkQkB(δn/2)B(δn/2) ⊆ gnkQk cl(B(δn)).

Since this works for all n, hK ⊆ Fx. This finishes the proof of the theo-
rem.

Corollary. Let G be a Polish group admitting an invariant metric.
Then each family of universally measurable or , equivalently , closed , pairwise
disjoint sets which are not Haar null is countable iff G is locally compact.

P r o o f. (⇐) If G is locally compact, Haar null sets coincide with sets of
Haar measure zero (see [C] and [TH-J]). Since G is Polish, Haar measure is
σ-finite.

(⇒) Assume G is not locally compact. Since for any Borel probability
measure on G there is a compact set of positive measure, it follows that the
sets φ−1(x), x ∈ 2N, from the Theorem are not Haar null.

Proposition. Let G be a Polish group.

(i) If A ⊆ G is analytic and Haar null , then there exists a Borel set
B ⊆ G which is Haar null and A ⊆ B.

(ii) Assume that G is not locally compact and admits an invariant metric.
Then there exists an analytic set A such that AMB is Haar null for no co-
analytic set B. For any α < ω1 there exists A ∈ Σ0

α such that AMB is Haar
null for no B ∈Π0

α.

P r o o f. If Z ⊆ X × Y , then, as usual, Zx = {y ∈ Y : (x, y) ∈ Z} for
x ∈ X.
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(i) Let A be analytic and Haar null. Let µ be a probability Borel measure
witnessing it. Then the family of sets

Φ = {X ⊆ G : X ∈ Σ1
1 and µ(g1Xg2) = 0 ∀g1, g2 ∈ G}

is Π1
1 on Σ1

1 , that is, for any Σ1
1 set P ⊆ Y × G, with Y a Polish space,

the set {y ∈ Y : Py ∈ Φ} is Π1
1 . To check this, let P ⊆ Y ×G be Σ1

1 , with
Y Polish. Define P̃ ⊆ G×G× Y ×G by

(g1, g2, y, g) ∈ P̃ iff g ∈ g1Pyg2.

Then we have P̃ ∈ Σ1
1 . It follows from [K, Theorem 29.26] that {(g1, g2, y) :

µ(P̃(g1,g2,y)) = 0} is Π1
1 , whence so is

{y ∈ Y : µ(P̃(g1,g2,y)) = 0 ∀g1, g2 ∈ G} = {y ∈ Y : Py ∈ Φ}.
Now, since A ∈ Φ, by (the dual form of) the First Reflection Theorem (see
[K, Theorem 35.10 and the remarks following it]), there exists a Borel set
B with B ⊃ A and B ∈ Φ, so B is as required.

(ii) Let F and φ : F → 2N be as in the Theorem. The argument below is
essentially the same as Balcerzak’s argument in the proof of Lemma 2.1 from
[B]. Let Λ = co-analytic sets or Λ = Π0

α for some α < ω1. Let U ⊆ 2N ×G
be universal for Λ|G, that is, U ∈ Λ and {B ⊆ G : B ∈ Λ} = {Ux : x ∈ 2N}.
Put

A = (G \ F ) ∪
⋃

x∈2N

(φ−1(x) \ Ux).

Note that A = (G\F )∪{g ∈ F : (φ(g), g) 6∈ U} whence, since φ is continuous
and F is closed, G \A ∈ Λ. Also, for any x ∈ 2N, we have AMUx ⊃ φ−1(x).
Thus, AMB is not Haar null for any B ∈ Λ.

R e m a r k. Proposition (i) can also be deduced from a theorem of Del-
lacherie. If µ witnesses that an analytic set A is Haar null, put µ̃(X) =
sup{µ∗(gXh) : g, h ∈ G}, where X ⊆ G and µ∗ is the outer measure in-
duced by µ. Then it is easy to check that µ̃ is what is called in [De] a caliber.
Thus, since µ̃(A) = 0, by [De, Theorem 2.4], there exists a Borel set B ⊃ A
with µ̃(B) = 0, that is, µ(gBh) = 0 for any g, h ∈ G.

References

[B] M. Balcerzak, Can ideals without ccc be interesting? Topology Appl. 55 (1994),
251–260.

[C] J. P. R. Chr i s tensen, On sets of Haar measure zero in abelian Polish groups,
Israel J. Math. 13 (1972), 255–260.

[De] C. Del lacher ie, Capacities and analytic sets, in: Cabal Seminar 77–79, Lecture
Notes in Math. 839, Springer, 1981, 1–31.

[D] R. Dougherty, Examples of non-shy sets, Fund. Math. 144 (1994), 73–88.



210 S. Solecki

[HSY] B. R. Hunt, T. Sauer and J. A. Yorke, Prevalence: a translation-invariant
“almost every” on infinite-dimensional spaces, Bull. Amer. Math. Soc. 27 (1992),
217–238.

[K] A. S. Kechr i s, Classical Descriptive Set Theory, Springer, 1995.
[TH-J] F. Topsøe and J. Hof fmann-Jørgensen, Analytic spaces and their applica-

tions, in: Analytic Sets, Academic Press, 1980, 317–401.

Department of Mathematics 253-37 Current address:
Caltech Department of Mathematics
Pasadena, California 91125 University of California–Los Angeles
U.S.A. Los Angeles, California 90095
E-mail: solecki@cco.caltech.edu U.S.A.

E-mail: solecki@math.ucla.edu

Received 29 August 1994;
in revised form 20 July 1995


