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Ramsey, Lebesgue, and Marczewski sets
and the Baire property

by

Patrick R e a r d o n (Durant, Okla.)

Abstract. We investigate the completely Ramsey, Lebesgue, and Marczewski
σ-algebras and their relations to the Baire property in the Ellentuck and density topolo-
gies. Two theorems concerning the Marczewski σ-algebra (s) are presented.

Theorem. In the density topology D, (s) coincides with the σ-algebra of Lebesgue
measurable sets.

Theorem. In the Ellentuck topology on [ω]ω , (s)0 is a proper subset of the hereditary
ideal associated with (s).

We construct an example in the Ellentuck topology of a set which is first category
and measure 0 but which is not Br-measurable. In addition, several theorems concerning
perfect sets in the Ellentuck topology are presented. In particular, it is shown that there
exist countable perfect sets in the Ellentuck topology.

0. Introduction. We are interested in the σ-algebras B of Borel sets, L
of Lebesgue measurable sets, (s) of Marczewski measurable sets, Bw of sets
with the Baire property in the wide sense, Br of sets with the Baire prop-
erty in the restricted sense, and CR of sets which are completely Ramsey.
B, Bw, Br, and (s) have a well-defined meaning in any topological space,
and we are particularly interested in the Euclidean, Ellentuck, and density
topologies.
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Now for some definitions. Let (X,T ) be a topological space. Then

(s) = {M ⊆ X : (∀perfect P )(∃perfect Q ⊆ P )(Q ⊆M or Q ⊆M c)},
Bw = {M ⊆ X : M = UMF, where U is open and F is first category},
Br = {M ⊆ X : (∀perfect P )(M is Bw-measurable (rel P ))}.

To define the σ-algebra CR, we first define what we mean by [F, u]. For each
F ∈ [ω]<ω and each u ∈ [ω]ω, [F, u] = {S ∈ [ω]ω : F ⊆ S ⊆ F ∪ u}. Many
authors also stipulate that max(F ) < min(u). However, this affects neither
the σ-algebra CR (defined below) nor the Ellentuck topology which is gen-
erated by the sets [F, u]. Therefore we choose to leave out this requirement
as it simplifies many of the proofs in this paper. Define

CR = {M ⊆ [ω]ω : (∀ [F, u])(∃v ∈ [u]ω)([F, v] ⊆M or [F, v] ⊆M c)}.
The Ramsey sets are defined by

R = {M ⊆ [ω]ω : (∃v ∈ [ω]ω)([∅, v]ω ⊆M or [∅, v]ω ⊆M c)}.
CR ⊆ R but the Ramsey sets do not form a σ-algebra (see [C]).

In arbitrary topological spaces it is known that B → Br → Bw [K,
p. 93]. Scheinberg [Sc] has shown that in the density topology, B = L.
Oxtoby extended this result by showing that Bw = L [O, p. 89]. In this
paper we show that in the density topology, (s) = L as well. We also show
that in the Ellentuck topology, Br 6= Bw, a result similar to that obtained
in the Euclidean topology. We note here that Marczewski has shown in [M]
that for complete separable metric spaces, Br → (s). This result also holds
in the density topology but it is not known if Br → (s) in the Ellentuck
topology.

Suppose T is a topology on X and P is a property which has meaning
in any topological space. We use the notation T -P to refer to the class of
subsets of (X,T ) which satisfy property P , and we denote the Euclidean,
Ellentuck, and density topologies by E, EL, and D, respectively. This yields
the following diagram:

EL-Bw = CR R

EL-Br

EL-B E-(s)

E-B E-Br

E-Bw

L = D-(s) = D-Bw = D-B
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With the exception of relationships involving EL-B and EL-Br, counterex-
amples exist which show that these are the only implications which hold (see
[Br], [BrCo], [C], or [W]). The only unknown directions are whether EL-B
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or EL-Br imply E-Br, E-(s), E-Bw, or L, and whether EL-Br implies EL-B.
In Section 2 we construct an example of a set M ∈ (CR0 ∩ L0) \ EL-Br. In
addition, an easy cardinality argument shows that EL-B \ E-B 6= ∅.

Many important σ-algebras have definitions similar to that for (s). It is
well known that M is CR-measurable iff for every set [F, u] there is a set
[G, v] ⊆ [F, u] such that [G, v] ⊆M or [G, v] ⊆M c. Burstin showed in [Bu]
that M is L-measurable iff for every perfect set P of positive measure there
is a perfect set Q ⊆ P of positive measure such that Q ⊆ M or Q ⊆ M c.
In Section 3 we generalize Burstin’s result to characterize measurability
under complete non-atomic Borel measures on complete separable metric
spaces. Finally, J. B. Brown in a private communication has shown that M is
Bw-measurable iff for every locally residual Gδ set P there is a locally resid-
ual Gδ set Q ⊆ P such that Q ⊆M or Q ⊆M c.

The Ellentuck topology (EL). There has been considerable interest over
the past thirty years or so in infinite versions of Ramsey’s theorem. This
has led to the definition of the Ramsey sets and the investigation of their
relationship to the σ-algebras mentioned above. Galvin and Prikry have
shown that E-Borel sets are Ramsey [GP]. They did this by defining the
σ-algebra CR of completely Ramsey sets which is a subclass of R and then
showing that E-open implies CR-measurable. Silver extended their result
from E-Borel sets to E-analytic sets [Si], and the proof was greatly simplified
by Ellentuck [E] and independently by Louveau [L], both of whom showed
that CR = EL-Bw.

The Euclidean topology on [ω]ω is just the relative product topology
from ωω, where [ω]ω is embedded in ωω as the set of all increasing sequences.
Another way of looking at this, which is quite useful, is to identify points
of [ω]ω with their characteristic functions. This embeds [ω]ω in 2ω as a
dense Gδ. In fact it is just 2ω minus the left endpoints and E is just the
order topology on this set. We will say that a set M ⊆ [ω]ω is Lebesgue-
measurable (or L-measurable) iff {χA ∈ 2ω : A ∈ M} is measurable in the
usual product measure on 2ω.

The Ellentuck topology on [ω]ω is that generated by sets of the form
[F, u]. This topology refines E and Plewik has shown it is not normal [P].
Moreover, it does not satisfy the countable (or even 2ω) chain condition,
and thus is not compact nor even Lindelöf.

In investigating the above-mentioned σ-algebras in the EL-topology, one
of the primary difficulties encountered was in constructing examples show-
ing that certain of these classes are not contained in the others. In the
E-topology, Bernstein-type sets are quite useful for this purpose. However,
the usual construction of a Bernstein set fails in the EL-topology because
there are too many EL-closed sets. In Section 1, we show that in fact there
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are no EL-Bernstein sets. This follows from the surprising fact that ev-
ery EL-dense set contains a countable EL-perfect set. We also show that
there is a set in the hereditary ideal associated with EL-(s) that is not
EL-(s)0-measurable. This is somewhat unusual when compared with similar
statements for either of the topologies E or D.

In Section 2, we give an example of a set which has measure zero and is
EL-first category (i.e. CR0) but is not EL-Br- measurable. The construction
is an adaptation of the construction of Vitali to the space [ω]ω with the
Ellentuck topology. After we got this example, we discovered that certain
E-Bernstein sets have this property as well. We have included the Vitali-
type example as well as a theorem on E-Bernstein sets as the techniques
employed are quite different.

The density topology (D). Goffman and Waterman defined the density
topology in 1961 [GW]. This topology is of major interest to real analysts
because the approximately continuous functions are precisely the D-E con-
tinuous functions, i.e. functions which are continuous when the domain is
given the density topology and the range is given the Euclidean topology
[GW]. This has applications in the theory of real functions, for example,
since every approximately continuous function is of Baire class 1 and every
bounded approximately continuous function is a derivative.

The fact that D is a topology was not shown until a second paper by
Goffman, Neugebauer and Nishiura [GNN]. In that paper, they show that
D is completely regular but not normal. In Tall’s excellent survey paper [T],
he states that D is neither separable nor first countable, but is hereditarily
Baire and satisfies the countable chain condition.

The density topology D on the real line is defined as follows. Let λ denote
Lebesgue measure. A measurable set M has density 1 at p iff

lim
h→0

λ(M ∩ [p− h, p+ h])/(2h) = 1.

A set M ⊆ R is said to be D-open if it is L-measurable and has density
1 at each of its points. The Lebesgue Density Theorem implies that every
measurable set is the union of a D-open set and a set of measure zero.

In Section 3 we show that the σ-algebra D-(s) coincides precisely with L.
This parallels J. C. Oxtoby’s result [O, Sec. 22] that the σ-algebra D-Bw is
equal to L.

1. EL-perfect sets. This section contains several theorems concerning
perfect sets in the Ellentuck topology. In particular, we show that for ev-
ery infinite κ ≤ 2ω there exists an EL-perfect set of cardinality κ which is
EL-first category relative to itself, that every EL-dense set contains a count-
able EL-perfect set, that there are no EL-Bernstein sets, and that EL-dense
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subsets of sets which are EL-perfect and EL-first category relative to them-
selves contain countable EL-perfect sets.

1.1. Theorem. Every EL-open set contains a countable EL-perfect set.

P r o o f. Every EL-open set contains a basic EL-open set, say [F, u]. Let
P = {F ∪ v : v ⊆ u and v contains a final segment of u}. P is a countable
subset of [F, u] and contains no EL-isolated points. If x is an EL-limit point
of P , then for every finite initial segment G of x, [G, x] intersects P . But
this implies that x ∈ P . Therefore P is EL-closed.

1.2. Corollary. EL-(s)0 is not a σ-ideal.

It is known that every set of cardinality < 2ω is both E-(s)0- and CR0-
measurable. Although Theorem 1.1 implies that not every set of cardinality
< 2ω is EL-(s)0-measurable, we leave open the question of whether every
set of cardinality < 2ω is EL-(s)-measurable.

1.3. Theorem. For every infinite cardinal κ ≤ 2ω, there exists an EL-
perfect set of cardinality κ which is EL-first category relative to itself.

P r o o f. Construct an almost disjoint collection of subsets of ω as follows.
First construct a binary tree T by setting n <T 2n and n <T 2n + 1 for
every n ∈ N. Every chain in T corresponds to a subset of ω and by a branch
in T we mean an infinite subset of ω corresponding to a maximal chain in T .
Let A = {uα : α < κ}, where for each α, uα is a branch in T and α 6= β
implies uα 6= uβ . Then A is an almost disjoint collection of subsets of ω
and {[uα] : α < κ} is a pairwise disjoint collection of EL-open subsets of
[ω]ω. For each α, let Pα = {w : w ⊆ uα and w contains a final segment
of uα}. Each Pα is a countable EL-perfect set and if α 6= β, then Pα and Pβ
are disjoint. Let P =

⋃
α<κ Pα. Then P has cardinality κ and contains no

EL-isolated points. Suppose x is an EL-limit point of P and for every uβ ,
x 6⊆ uβ . Choose Pα such that [x]∩ Pα is non-empty. Let j denote a positive
integer in x \ uα and let k denote a positive integer in x ∩ uα such that
j < k. Let F = {z ∈ x : z ≤ k}. Since j and k must necessarily occur
on different branches, no subset of any branch can contain F as an initial
segment. Therefore, [F, x] ∩ P is empty, a contradiction. It follows that for
some β, x ⊆ uβ . Thus [x] intersects Pβ and we have x ∈ Pβ . Hence P is
EL-closed.

Now for each α < κ, enumerate Pα = {pα,n : n < ω}. For each k < ω,
let Nk = {pα,k : α < κ}. Each Nk is EL-nowhere dense (rel P ) and

⋃
Nk

= P .

Particularly in the study of the Marczewski measure algebra, we are often
faced with the question of whether or not a given subset of an arbitrary
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perfect set contains a perfect subset. Partial results in this direction are
given by Theorems 1.5 and 1.9 below.

We adopt the following notations. Suppose I is a finite binary sequence.
Then I− is the initial segment of I of length |I| − 1. If I and J are finite
binary sequences, then by I∧J we mean the unique binary sequence of length
|I|+ |J | that has I as an initial segment and J as a final segment. (We often
abuse this notation and write I∧0 for I∧〈0〉 and I∧1 for I∧〈1〉.)

1.4. Lemma. Suppose {[FI , xI ] : I ∈ Σ ⊆ 2<ω} is a collection of basic
EL-open sets such that for every I ∈ Σ, FI is a finite initial segment of xI
and there exist distinct H,K ∈ Σ such that H and K extend I, xK = xI , and
[FH , xH ] and [FK , xK ] are disjoint subsets of [FI , xI ]. Then {xI : I ∈ Σ} is
EL-dense-in-itself.

P r o o f. Let [F, u] be an arbitrary basic EL-open set and suppose xI ∈
[F, u], where I ∈ Σ. Without loss of generality, we may assume that F ⊆ FI .
Choose extensions H and K of I as above. Then xH is a point of [FI , xI ] ⊆
[F, u] distinct from xI .

1.5. Theorem. If M is EL-dense, then M contains a countable
EL-perfect set.

P r o o f. We suppose M is EL-dense and recursively define a countable
EL-perfect set D = {xI : I ∈ 2<ω}. For n = 0, we consider sequences I ∈ 20.
Thus I = ∅ and we choose x∅ ∈ M and set F∅ = ∅. For n = 1, define xI
and FI for I ∈ 21 = {〈0〉, 〈1〉} as follows. Write x∅ \ F∅ = {u∅,t : t < ω}.
Set x〈0〉 = x∅ and F〈0〉 = F∅ ∪ {u∅,0}. Choose u∅,m(1) > u∅,n(1) > u∅,0.
Set F〈1〉 = F∅ ∪ {u∅,n(1), u∅,m(1)} and by EL-density of M , choose x〈1〉 ∈
[F〈1〉, x∅ \ (max(F〈1〉) + 1)] ∩M .

Now suppose k < ω is arbitrary and for every I ∈ 2k, FI and xI have been
defined such that xI ∈M , FI is a finite initial segment of xI , and if I and J
both end in a 1 and I 6= J , then xI 6⊆ xJ and xJ 6⊆ xI . We define xI∧0, FI∧0,
xI∧1, and FI∧1 as follows. Enumerate the set of all k-term binary sequences
{S(i) : i < 2k}. For each S(i), write xS(i) \ FS(i) = {uS(i),t : t < ω}. Set
xS(i)∧0 = xS(i) and FS(i)∧0 = FS(i) ∪ {uS(i),0}. For 0 ≤ i ≤ 2k − 1 = H,
choose uS(i),n(i), uS(i),m(i) ∈ xS(i) \ FS(i) so that the following inequality is
satisfied:

max{uS(i),0 : i < 2k} < uS(0),n(0) < . . . < uS(i),n(i) < . . . < uS(H),n(H) < . . .

< uS(0),m(0) < . . . < uS(i),m(i) < . . . < uS(H),m(H).

Set FS(i)∧1 = FS(i)∪{uS(i),n(i), uS(i),m(i)}. Now let xS(i)∧1 ∈ [FS(i)∧1, xS(i)\
(max(FS(i)∧1) + 1)] ∩M .

Clearly, xS(i)∧1 ∈M and has FS(i)∧1 as an initial segment. Thus the first
two conditions of the induction hypothesis are satisfied for all I ∈ 2k+1. If
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I, J ∈ 2k+1 both end in a 1 and I 6= J , then for some i and j, I = S(i)∧1
and J = S(j)∧1. We may assume without loss of generality that i < j. Thus
FI = FS(i) ∪ {uS(i),n(i), uS(i),m(i)} and FJ = FS(j) ∪ {uS(j),n(j), uS(j),m(j)},
where max(FS(i) ∪ FS(j)) < uS(i),n(i) < uS(j),n(j) < uS(i),m(i) < uS(j),m(j).
It follows that xI 6⊆ xJ and xJ 6⊆ xI and so the third condition of the
induction hypothesis is satisfied. To complete the construction we set D =
{xI : I ∈ 2<ω}.

It remains to show that D is EL-perfect. First we note that D is EL-
dense-in-itself since {[FI , xI ] : I ∈ 2<ω} satisfies the hypotheses of Lemma
1.4. To show that D is EL-closed, set B =

⋂
n<ω

⋃{[FI , xI ] : I ∈ 2n}.
B is EL-closed and contains D. Let y be an element of B \D. Then there
exists a collection {C(k) : k < ω} of finite binary sequences such that
y ∈ ⋂k<ω[FC(k), xC(k)] and for every k, C(k) ends in a 1. We will show that
[y] ∩D = ∅.

It is easy to see that y ⊆ ⋂k<ω xC(k). Suppose xJ is an arbitrary element
of D. We consider two cases. Suppose for some h < ω, C(h) is an extension
of J . By construction of D we have xC(h) ⊆ xJ . Since

⋂
k<ω xC(k) is a

decreasing intersection, y must be a proper subset of xC(h) and it follows
that xJ 6∈ [y]. On the other hand, suppose for every k < ω, C(k) is not an
extension of J . Let h be some integer such that |C(h)| > |J | and let J ′ be an
extension of J of length |C(h)| that ends in a 1. Then xJ′ is a proper subset
of xJ and by construction of D, we have xJ ′ 6⊆ xC(h). Since y ⊆ xC(h), it
follows that xJ 6∈ [y]. Thus [y] ∩D = ∅, which implies that D is EL-closed.
Hence D is the desired countable EL-perfect set.

1.6. Corollary. Every E-Bernstein subset of [ω]ω contains a countable
EL-perfect set.

P r o o f. Each basic EL-open set contains an E-perfect set (in fact is
E-homeomorphic to the irrationals), so E-Bernstein sets are EL-dense.

1.7. Corollary. There are no EL-Bernstein sets.

P r o o f. A set that meets every EL-perfect set must be EL-dense.

1.8. Corollary. If U is EL-open and M is EL-dense in U , then M
contains a countable EL-perfect set.

P r o o f. Since U is EL-open there is some [G, v] ⊆ U and an EL-home-
omorphism h : [G, v] → [ω]ω. Now just use the fact that homeomorphisms
preserve density, cardinality, and perfect sets.

Thus we see that if a set is EL-dense in an EL-open set, i.e. a “big”
set with respect to category, then it contains a countable EL-perfect set. It
is an open question whether EL-dense subsets of arbitrary EL-perfect sets
contain EL-perfect subsets. In Theorem 1.9 below, however, we are able to
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show that if the EL-perfect set in question is also EL-first category relative
to itself, i.e. a “small” set with respect to category, then every EL-dense
subset does contain a countable EL-perfect set.

We use this result to show that the hereditary ideal corresponding to
the σ-algebra of EL-(s)-measurable sets properly contains the collection of
EL-(s)0 sets. This result is remarkable because in E or D, the hereditary
ideal is always equal to the collection of singular sets for all of the more
widely studied σ-algebras with which the author is familiar, including (s).

We also use this result to show that any EL-perfect set which is EL-first
category relative to itself can have no EL-Bernstein subdivision.

1.9. Theorem. If P is EL-perfect and EL-first category (rel to itself )
and M is EL-dense in P , then M contains a countable EL-perfect set.

P r o o f. Write P =
⋃
k≥0Nk, where each Nk is EL-nowhere dense (rel P )

and suppose M is EL-dense in P . We may assume without loss of generality
that for all k, Nk is EL-closed and Nk ⊆ Nk+1. We construct a countable
EL-perfect set D = {xI : I ∈ 2<ω} in M ∩ P by recursion on the length of
I ∈ 2<ω. For |I| = 0, choose x∅ ∈M ∩ (P \N0) and let F∅ = ∅. For |I| = 1,
set x0 = x∅ and choose x1 ∈M ∩ (([F∅, x∅]∩P )\N1) distinct from x0. Next
choose finite initial segments F0 and F1 of x0 and x1, respectively, which
extend F∅, separate x0 and x1, and such that [F1, x1] ∩N1 = ∅.

Now suppose k < ω is arbitrary and for every I ∈ 2k, FI and xI have
been defined such that xI ∈ M ∩ P , FI is a finite initial segment of xI , FI
and FJ separate xI and xJ whenever I 6= J , and [FI , xI ]∩Nk = ∅ if I ends in
a 1. For each I, set xI∧0 = xI and choose xI∧1 ∈M ∩ (([FI , xI ]∩P )\Nk+1)
distinct from xI∧0. Next choose finite initial segments FI∧0 and FI∧1 of xI∧0

and xI∧1, respectively, which extend FI , separate xI∧0 and xI∧1, and such
that [FI∧1, xI∧1] ∩Nk+1 = ∅. Now let D = {xI : I ∈ 2<ω}.

It is easy to see that D is EL-dense-in-itself. To show that D is EL-closed,
we first establish that for all j ≥ 0,

Aj =
⋃

I∈2j

{[FI∧Z(n), xI∧Z(n)] : n ≥ 0} ∪ {xI : I ∈ 2j}

is EL-closed, where Z(n) denotes a 1 preceded by n many zeros. (For ex-
ample, Z(0) = 1, Z(1) = 01, Z(2) = 001, etc.) Suppose y ∈ ⋃{[FI , xI ] :
I ∈ 2j} \ Aj and choose the unique I such that y ∈ [FI , xI ]. Let FI∧J be
a finite initial segment of xI such that y 6∈ [FI∧J , xI ]. Thus all but finitely
many “intervals” of Aj ∩ [FI , xI ] lie within [FI∧J , xI ]. It follows that y is not
a limit point of Aj and hence that Aj is EL-closed. Thus every limit point
of D must belong to Aj .

Recalling that the Nk’s are nested, it is easy to see that our construction
guarantees Aj ∩ (Nj \D) = ∅ for each j < ω. Therefore Nj \D contains no
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EL-limit points of D. But
⋃
j≥0(Nj \D) = (

⋃
j≥0Nj) \ D = P \D and it

follows that D is EL-closed.

1.10. Corollary. EL-(s)0 is a proper subset of H(EL-(s)).

P r o o f. It is obvious that every EL-(s)0-measurable set belongs to
H(EL-(s)). To show that the converse does not hold, suppose P is count-
able and EL-perfect. It suffices to prove that P ∈ H(EL-(s)). Let S be a
subset of P and suppose Q is an arbitrary EL-perfect set. If Q ∩ S con-
tains a subset M which is EL-dense-in-itself, then M is an EL-dense subset
of ClEL(M), which in turn is countable and EL-perfect. Thus M contains
a countable EL-perfect set. On the other hand, if Q ∩ S is EL-scattered,
then it is EL-nowhere dense (rel Q). Let [F, u] ∩ Q be a relative EL-open
subset of Q which misses Q ∩ S. But [F, u] ∩ Q is EL-perfect. Thus s is
EL-(s)-measurable and it follows that P ∈ H(EL-(s)).

1.11. Corollary. If P is EL-perfect and EL-first category relative to
itself , then there is no EL-Bernstein subdivision of P .

P r o o f. A set that meets every EL-perfect (rel P ) set must be EL-dense
in P .

2. Non-measurable sets. Since there are 2c many EL-open sets it is
easy to see that EL-B properly includes E-B. We now prove two theorems
which guarantee the existence of sets which are EL-first category and have
measure zero, but which are not EL-Br-measurable. The construction of
a non-EL-Br-measurable set in Example 2.3 is modeled after the classical
construction of Vitali [K, p. 91]. In Theorem 2.4, we show that certain
E-Bernstein sets fail to be EL-Br-measurable. We include both results as
the techniques used are quite different.

Set Ev = {2n : n < ω} and Od = {2n+ 1 : n < ω}. Let M = {x ∈ [ω]ω :
Ev ⊆ x}. M is E-perfect but is not quite EL-perfect, since every element
p ∈M that contains only finitely many odd integers, say the set G ∈ [Od]<ω,
can be EL-isolated by the EL-open set [G ∪ {2, 4, . . . ,max(G) + 1}, p]. The
set P = {x ∈ M : Od ∩ x is infinite} is just M minus these EL-isolated
points. P is EL-perfect, EL-first category, has measure zero, and is both EL-
and E-homeomorphic to [ω]ω.

In Vitali’s construction on the real line, two numbers are said to be
equivalent if their difference is rational. This produces 2ω many equivalence
classes, each of which is countable. Another important fact used in that
construction is that A and A + x = {a + x : a ∈ A} are of the same
category for any set A and any real number x. The connection between
addition, the closure of R under +, the translation invariance of category,
and the cardinality of the rationals is then cleverly exploited to produce a
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non-Bw-measurable set. We adapt this argument to the space P with the
relative EL-topology by defining an equivalence relation on P , a notion of
addition (or translation) under which P is closed, and a countable set of
addends for the space [ω]ω that are similarly related.

For all s, t ∈ P(ω), define s ≡ t if and only if χs and χt are eventually
equal. It is easy to verify that ≡ is an equivalence relation. For all s, F ∈
P(ω), define s⊕ F = χ−1[χs + χF ], where + is the usual pointwise mod 2
addition in 2ω. We also define A ⊕ F = {s ⊕ F : s ∈ A} for all A ⊆ P(ω).
Finally, we take [Od]<ω as the countable set of addends.

2.1. Lemma. If F is a finite set of odds and A ⊆ P , then A and A⊕ F
have the same EL-category (rel P ).

P r o o f. It suffices to show that for each F ∈ [Od]<ω, (·) ⊕ F preserves
EL-open (rel P ) sets. Let F ⊆ Od be finite and suppose [G, v]∩P 6= ∅. Then
[G, v] ⊕ F = [G ⊕ F, v ⊕ F ], where G ⊕ F and v ⊕ F differ from G and v,
respectively, by some finite set of odds. Moreover, it is clear that Ev is a
subset of [G ⊕ F, v ⊕ F ]. Thus ([G, v] ⊕ F ) ∩ P is non-empty and EL-open
relative to P .

2.2. Lemma. If F is a finite set of odds, then P ⊕ F = P .

P r o o f. Suppose F ⊆ Od is finite. For every q ∈ P, Ev ⊆ q ⊕ F and
|Od ∩ (q ⊕ F )| = ω. Thus for all q ∈ P, q ⊕ F ∈ P and it follows that
P ⊕ F ⊆ P . It is also easy to see that for every q ∈ P, (q ⊕ F ) ⊕ F = q.
Hence (P ⊕ F )⊕ F = P and it follows that P ⊆ P ⊕ F .

2.3. Example. There exists a subset of [ω]ω which is EL-first category
(i.e. CR0) and L0 but which is not EL-Br-measurable.

C o n s t r u c t i o n. It is easy to see that the restriction of ≡ to P ×P is
an equivalence relation on P . We denote the restriction by ≡P . By the axiom
of choice, there is a set V0 ⊆ P which contains exactly one representative
of each ≡P -equivalence class. Since P is EL-first category and has measure
zero, the same is true of V0. List [Od]<ω = 〈F1, F2, F3, . . .〉 and define Vn =
V0⊕Fn. Observe that s ≡ t iff (∃F ∈ [Od]<ω)(t = s⊕F ). Thus P ⊆ ⋃n<ω Vn
and Lemma 2.2 implies

⋃
n<ω Vn ⊆ P . Therefore P =

⋃
n<ω Vn.

Since P is not EL-first category relative to itself, there exists a positive
integer K such that VK is EL-second category (rel P ). By Lemma 2.1 it
follows that V0 is also EL-second category (rel P ). If V0 is EL-Br-measurable,
then there exists some [G, u] such that V0 is EL-residual (rel P ) in [G, u]∩P .
Let g ∈ u be an odd integer which is greater than max(G) and choose N
such that FN = {g}.

By Lemmas 2.1 and 2.2, VN is EL-residual (rel P ) in ([G, u]∩P )⊕FN =
([G, u]⊕FN )∩(P ⊕FN ) = ([G, u]⊕FN )∩P , which, in turn, is an EL-second



Ramsey, Lebesgue, and Marczewski sets 201

category subset of [G, u] ∩ P . But this is a contradiction since V0 and VN
are disjoint. Therefore we conclude that V0 is not EL-Br-measurable.

2.4. Theorem. Every E-Bernstein subset of P is EL-first category and
has measure zero but is not EL-Br-measurable.

P r o o f. Let h : [ω]ω → P be an EL-homeomorphism and let B ⊆ [ω]ω

be a Bernstein set. We show that h(B) is not EL-Br-measurable. Ellentuck
[E] has shown that a set Q ⊆ [ω]ω is EL-first category if and only if it is EL-
nowhere dense. Both B and Bc meet every E-perfect set in [ω]ω and hence
are EL-categorically dense in [ω]ω. Thus h(B) and h(Bc) are likewise EL-
categorically dense (rel P ). It follows that h(B) is not EL-Br-measurable.

3. Marczewski measurable sets in the density topology. We now
turn our attention to the Marczewski measurable sets in the density topol-
ogy and their relation to the Lebesgue measurable subsets of the real line.
Oxtoby in [O, Sec. 22] has shown the σ-algebras L and D-Bw coincide. In
this section, we show that the σ-algebra D-(s) is equal to L as well. We
will need two lemmas, one of which is a characterization of non-Lebesgue
measurable sets which was first proved by Burstin [Bu] in 1914.

3.1. Lemma [Bu]. If M is a set of reals, then M is non-Lebesgue mea-
surable iff there exists an E-perfect set P of positive measure such that for
every E-perfect A ⊆ P of positive measure, A intersects both M and M c.

3.2. Lemma. If M has positive Lebesgue measure, then for every ε > 0,
there exists a D-perfect set Q ⊆M such that λ(Q) > λ(M)− ε.

P r o o f. Suppose that M has positive Lebesgue measure and let ε > 0
be arbitrary. Let P denote an E-perfect subset of M with positive Lebesgue
measure such that λ(P ) > λ(M) − ε. Let Q denote the set of points of P
where P has Lebesgue density 1. Q is D-open and has the same measure
as P . Now set R = Dcl(Q) and note that R is D-perfect, has the same
measure as P , and since P is E-closed, R ⊆ P ⊆M .

3.3. Theorem. The σ-algebra D-(s) is equal to L.

P r o o f. We first suppose that M is in D-(s) \L. By Lemma 3.1 there is
an E-perfect set P of positive measure such that for every perfect A ⊆ P
of positive measure, A intersects both M and M c. By Lemma 3.2, P must
contain a D-perfect set, say Q. But by D-(s)-measurability of M , we may
obtain a D-perfect subset of Q, say R, where R ⊆M or R ⊆M c. But this is
impossible since R has positive measure (measure zero sets are D-discrete).
Therefore D-(s) ⊆ L.

For the other direction, suppose M is Lebesgue measurable and P is
D-perfect. In case P ∩M has positive measure, we may apply Lemma 3.2
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to get a D-perfect subset of P ∩M . If, on the other hand, λ(P ∩M) = 0,
then P ∩M c has positive measure and we may obtain a D-perfect subset of
P ∩M c in similar fashion. Hence M is D-(s)-measurable.

3.4. Corollary. H(D-(s)) = D-(s)0.

P r o o f. It is obvious that every D-(s)0-measurable set belongs to
H(D-(s)). Conversely, suppose M ∈ H(D-(s)) = H(L). Thus λ(M) = 0
and so for every D-perfect set P , P \M contains a D-perfect set. It follows
that M is D-(s)0-measurable.

3.5. Corollary. If A ∈ {B,Br, L, (s), Bw} and A0 is the corresponding
collection of A-singular sets, then H(D-A) = D-A0.

P r o o f. Oxtoby [O] has shown that D-Bw = D-L and Scheinberg [Sc]
has shown that D-L = D-B. Thus all the σ-algebras listed above collapse
to a single class which can be represented by D-(s). The result now follows
trivially from Corollary 3.4.

We note here that Lemmas 3.1 and 3.2 generalize to any complete non-
atomic Borel measure µ on a complete separable metric space X and the
corresponding µ-density topology T . Thus M is µ-measurable iff M is T -(s)
measurable. The proof of a generalized version of Lemma 3.1 is given below
as Lemma 3.6. The proof of a generalized Lemma 3.2 follows the same lines
as the proof of Lemma 3.2 but with Lebesgue measure, Lebesgue density,
and D (the density topology) replaced by µ-measure, µ-density, and T (the
µ-density topology). See [O, p. 88] for definitions and background theorems.

3.6. Lemma. Suppose µ is a complete non-atomic Borel measure on a
complete separable metric space X and let T denote the (metric) topology
on this space. If M ⊆ X, then M is non-µ-measurable iff there exists a
T -perfect set P of positive µ-measure such that for every T -perfect A ⊆ P
of positive µ-measure, A intersects both M and M c.

P r o o f. Suppose that M is not µ-measurable and let G1 and G2 be
T -Gδ sets containing M and M c, respectively. Further suppose that µ∗(G1)
= µ∗(M) and µ∗(G2) = µ∗(M c), where µ∗ denotes the outer measure in-
duced by µ. Clearly G1∩G2 has positive µ-measure, for otherwise M would
be µ-measurable. Let P be a T -perfect subset of G1∩G2 of positive measure.
Now suppose Q ⊆ P is T -perfect and has positive µ-measure. If Q ⊆ M ,
then M c ⊆ G2 \Q and we have µ∗(M c) ≤ µ(G2 \Q) < µ(G2) = µ∗(M c), a
contradiction. A similar contradiction arises if we assume Q ⊆ M c. There-
fore Q intersects both M and M c.

For the other direction, suppose M is µ-measurable, let P be a T -perfect
set of positive µ-measure, and assume µ(M∩P ) > 0. Let F be a T -Fσ subset
of M ∩ P which has the same µ-measure as M ∩ P . Let C ⊆ F be T -closed
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with µ(C) > 0. Thus C is uncountable and can be written as the union of
a T -perfect set Q and a countable set N . Of course Q ⊆M . The argument
goes through just as well if µ(M ∩ P ) = 0, for then µ((M ∩ P )c) > 0.
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