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Each nowhere dense nonvoid closed set
in Rn is a σ-limit set

by

Andrei G. S i v a k (Kiev)

Abstract. We discuss main properties of the dynamics on minimal attraction centers
(σ-limit sets) of single trajectories for continuous maps of a compact metric space into
itself. We prove that each nowhere dense nonvoid closed set in Rn, n ≥ 1, is a σ-limit set
for some continuous map.

1. Introduction. We study dynamical systems which are defined by
iterations of continuous maps of a compact metric space X into itself: for a
given map f : X → X, each point x ∈ X has a trajectory {fn(x)}∞n=0 under
iterations of f . The ω-limit set of a trajectory is the set of its limit points;
it is usually denoted by ωf (x), and for the maps under consideration, it is
nonvoid, closed, and strictly invariant (i.e., f(ωf (x)) = ωf (x); see e.g. [6]).
It was established by Sharkovskĭı [7] that the dynamics on ω-limit sets is
incompressible in the following sense:

(ω) If U is a proper relatively open subset of an ω-limit set, then the
closure of f(U) is not contained in U .

This property indicates a dependence between the topological structure
of ω-limit sets and the dynamics on them. As an example we cite the fol-
lowing statement from [7]:

(ω′) No isolated point of an infinite ω-limit set is periodic; if an ω-limit
set is finite, then it is a cycle.

The present paper has to do with sets that can be σ-limit sets (i.e.,
minimal attraction centers of single trajectories) for a map f : X → X. We
use the notation σf (x) to denote such a set. For x ∈ X, define σf (x) to be
the smallest closed set F in X such that for every open set U containing F ,
limn→∞(1/n)

∑n−1
i=0 1U (f i(x)) = 1, where 1U is the indicator function of U .
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(For the original definition we refer to Hilmy [4], Krylov and Bogolyubov [5]
and recall that the σ-limit set of any trajectory is a nonvoid closed invariant
subset of its ω-limit set [6].) A point which belongs to its σ-limit set will be
referred to as a σ-recurrent point and the set of all σ-recurrent points of a
map f will be denoted by Recσ(f). We use also the notation Fix(f) for the
set of fixed points of f .

From the standpoint of dynamical systems and related ergodic theory,
finite invariant measures play an important role. In topological dynamics
the existence of finite invariant measures for continuous flows and cascades
on a metric compact X was established by Bogolyubov and Krylov [5]. The
supports of finite invariant measures are connected in a certain way with
the behavior of trajectories in X: all these measures are supported by the
minimal attraction center [6]. This is also true in particular for Bowen–
Sinai–Ruelle measures, which arise in a natural way when we are interested
in statistical predictions. The support of such a measure is an attractor for
a significant (with respect to the Lebesgue measure on X) set of trajectories
and it could be useful to have a priori information about the admissible
topological structure of this attractor.

In the present paper we formulate general properties of the dynamics of
continuous maps on σ-limit sets and discuss restrictions on the topological
structure of such sets. In particular, unlike the ω-limit sets, isolated points
of which cannot return, each isolated point of any σ-limit set must return
and be periodic. It has been proved before (see [8]) that a nonvoid closed
subset of R1 is a σ-limit set for a continuous map of R1 into itself if and
only if it is either a union of finitely many disjoint nondegenerate closed
intervals or a nowhere dense set. This result is closely related to the results
of [1, 2]. In fact, the ω-limit sets and the minimal attraction centers have
the same characterization in R1. In higher dimensions, however, this is not
the case: for instance, property (ω′) above implies easily that the union of a
line segment and an isolated point fails to be an ω-limit set for continuous
maps in R2. On the other hand, Theorem 2 below asserts that any nonvoid
nowhere dense compact set in Rn, n > 1, is a σ-limit set for a continuous
map of Rn.

To obtain a complete characterization of σ-limit sets in Rn, it remains to
describe the admissible compact sets with nonvoid interior. We will address
this case in a subsequent paper because such σ-limit sets must coincide with
the corresponding ω-limit sets (Proposition 1) and hence the problem is
closely related to a similar problem for ω-limit sets in Rn.

2. Dynamics on σ-limit sets. In this section we prove the following
property of the dynamics on minimal attraction centers and then formulate
some consequences of this property.
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(σ) The σ-recurrent points are dense in the minimal attraction center of
any trajectory.

P r o o f. This can be proved by the method used in [5] for the minimal
attraction center of all trajectories of the system. On the other hand, (σ)
can be derived from general known results: for example from the facts that
every ergodic measure is supported by its generic points (i.e., points such
that the average of point masses along the orbit converges in the weak∗

topology to that measure, see e.g. Furstenberg’s book [3]), and next, that
every invariant measure is an integral average of ergodic measures (since
these are the extreme points among invariant measures).

From property (σ) we see that minimal attraction centers of trajectories
of continuous maps may split into a family of smaller invariant subsets, which
are σ-limit sets of other σ-recurrent points and which can be considered as
independent blocks linked by an outer trajectory. We use this observation
in order to prove in the next section that any nowhere dense compact set in
Rn is a σ-limit set for a continuous map.

To end this section let us formulate some simple consequences of prop-
erties (σ) and (ω) characterizing the interconnection between the dynamics
and topological structure of σ-limit sets of continuous maps.

Proposition 1. For continuous maps of a compact metric space into
itself , the following statements hold :

(A) if a σ-limit set has an isolated point , then this point is periodic;
(B) if the ω-limit set of a trajectory is infinite, then its σ-limit set is

contained in the set of limit points of the ω-limit set ;
(C) if the σ-limit set of a trajectory does not coincide with its ω-limit

set , then this σ-limit set is nowhere dense;
(D) if the σ-limit set of a trajectory contains an open set , then the tra-

jectory eventually hits this open set and hence the σ-limit set coincides with
the ω-limit set of this trajectory ;

(E) if the σ-limit set of a trajectory coincides with its ω-limit set and the
latter is infinite, then both are perfect , i.e., they have no isolated points; in
particular , the σ-limit set of any σ-recurrent point is perfect.

P r o o f. By (σ) an isolated point in a σ-limit set must be σ-recurrent. It
can return only to itself and hence it must be periodic. This proves state-
ment (A).

Now observe that every isolated point of a set is also isolated in any
subset containing this point. By (ω′) no isolated point of an infinite ω-limit
set is periodic. Hence according to (A), such a point cannot belong to a
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σ-limit set which is contained in this ω-limit set. This proves (B), which, in
turn, immediately implies (E).

Statement (D) is an easy consequence of the definition and basic proper-
ties of ω-limit sets and σ-limit sets. Since any σ-limit set is closed, statement
(C) follows from (D).

3. Admissible structure of σ-limit sets and the realization prob-
lem. By a continuum we mean a compact connected set containing at least
two points. A space is locally connected if every neighborhood of every point
in it contains a connected neighborhood of the point.

The following proposition provides some trivial restrictions on the ad-
missible topological structure of σ-limit sets for continuous maps in locally
connected spaces, for example, in the Euclidean spaces Rn, n ≥ 1.

Proposition 2. For continuous maps of a locally connected compact
metric space into itself , any σ-limit set is either a nowhere dense set or
a union of finitely many disjoint continua, at least one of which has a
nonempty interior.

P r o o f. Suppose that σf (x) is not nowhere dense. Since σf (x) is closed,
it contains an open set U . In this case by Proposition 1(D), σf (x) = ωf (x)
and without loss of generality we can assume that x ∈ U ⊂ σf (x). Since the
space under consideration is supposed to be locally connected, metric and
compact, we can also assume that U is connected. Let C0 be the connected
component of σf (x) containing x. Then x ∈ U ⊂ C0 ⊂ σf (x).

Since x must return to U and connected subsets of σf (x) are mapped
into connected subsets, there exists n ≥ 1 such that fn(C0) ⊂ C0 and
f i(C0)∩C0 = ∅ for 0 < i < n. Let Ci be the connected component of σf (x)
which contains f i(C0). The components Ci, 0 ≤ i < n, are disjoint and
σf (x) =

⋃
0≤i<n Ci because the trajectory of x is dense in σf (x). Finally,

note that each Ci, 0 ≤ i < n, must contain at least two points because
otherwise the trajectory of x would be eventually periodic and hence its
σ-limit set would be finite.

Now suppose that a closed subset S of a compact metric space X satisfies
the restrictions stated in Proposition 2. Is it a σ-limit set for a continuous
map of X into itself? For the real line R1 we can answer this question
positively as follows. (Notice that in what follows we consider noncompact
spaces Rn, n ≥ 1, just for the sake of convenience. In fact, since so far the
whole theory only applies to compact spaces, we have to define the required
continuous map on a compact subset X ⊃ S in Rn first, and then extend it
continuously onto the whole Rn in a suitable way. For the continuous map
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f in the proof of Theorem 2 below, the extension can evidently be defined
to be the identity outside the below described compact set X = P (0).)

Theorem 1 ([8]). Let S be a nonvoid closed subset of the real line R1.
Then S is a σ-limit set for a continuous map of R1 into itself if and only if
it is either a nowhere dense set or a union of finitely many nondegenerate
closed intervals.

In higher dimensions the answer is negative in general. For instance,
consider the union of two disjoint continua with nonvoid interiors, each with
a different finite number of arcwise connected components. By property
(ω) these continua must be mapped onto each other, and lack of arcwise
connected subsets in a continuum will lead to a contradiction. However, for
nowhere dense sets, the following statement holds.

Theorem 2. Any nowhere dense nonvoid closed set in Rn, n ≥ 1, is a
σ-limit set for some continuous map of Rn into itself.

P r o o f. The idea of the proof is quite similar to that in [8] for R1 but,
as usual, it is much harder to describe any method in higher dimensions. In
order to simplify the exposition we consider mainly the case n = 2. So let
S be a nowhere dense nonvoid compact set in R2. We divide the proof into
several steps.

S t e p 1. We are going to imbed S in a perfect nowhere dense set S∗. Let
P (0) be a closed rectangular set in R2 (a hyperparallelepiped in Rn) which
contains S and whose sides are parallel to the coordinate axes (hyperplanes).
Since S is nowhere dense in P (0), we can choose a sufficiently small open
square (hypercube) C(0) near the center of P (0) such that S ∩C(0) = ∅ and
such that the sides of C(0) are also parallel to coordinate axes. Extending
the sides of the square C(0) up to sides of the rectangle P (0), we decompose
P (0) − C(0) into 8 rectangular sets (or 3n − 1 hyperparallelepipeds in Rn)
which we denote by P (1)

k , where 1 ≤ k ≤ K1. Now repeating the reasoning
for each P

(1)
k , we can define the next generation of open squares C(1)

k and
of rectangular sets P (2)

k′ , where 1 ≤ k′ ≤ K2. Continuing this process, we
see that the size of P (m)

k tends to zero as m → ∞ and hence the open
squares C(m)

k are dense in P (0). The required perfect nowhere dense set S∗

is defined to be the complement of the open set
⋃
C

(m)
k in P (0). We notice

the following property of S∗:

Claim 1. If U is an open set and U ∩ S∗ 6= ∅, then there exist m and a
set P (m)

k such that P (m)
k ⊂ U .

S t e p 2. Let us construct a continuous expanding map f for which
S∗ ⊂ Fix(f). The map f will be defined in such a way that f(x) = x for
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x ∈ S∗, f(C(0)) = P (0) and, for m > 0, f(C(m)
k ) = P

(m−1)
k′ , where P (m−1)

k′

is the rectangular set of the (m − 1)th generation which contains the open
square C(m)

k . On C
(m)
k , f is defined as follows. Let I(m)

k be a smaller closed
square contained in C

(m)
k with sides parallel to those of C(m)

k . View the
interior of C(m)

k as an elastic film which is attached to the borders of C(m)
k

and I
(m)
k . The border of C(m)

k is a fixed frame but the border of I(m)
k is

an elastic frame. Now let us stretch the border of I(m)
k onto the border of

P
(m−1)
k′ without rotation in such a way that vertices are mapped to vertices.

Then the square I(m)
k will be mapped onto P

(m−1)
k′ and the annular area

C
(m)
k − I

(m)
k will be mapped onto the annular area P

(m−1)
k′ − C

(m)
k . The

definition of f on C(m)
k can be formalized; the map so defined is continuous

and has the following two properties.

Claim 2. For m > 0, one has f(P (m)
k ) = f(C(m)

k ) = f(I(m)
k ) = P

(m−1)
k′ ,

where P (m−1)
k′ is the rectangular set of the (m− 1)-th generation which con-

tains P (m)
k . For m = 0, one has f(P (0)) = f(C(0)) = f(I(0)) = P (0).

Claim 3. Each closed square I(m)
k is mapped linearly onto its image in

a one-to-one way.

S t e p 3. Now we can indicate a point x for which σf (x) = S. Let
δi = 1/(i+ 1) for i = 1, 2, . . . Since S is compact, we can find a sequence of
finite δi-nets Si = {s(i)

1 , . . . , s
(i)
Ni
} ⊂ S such that Si ⊂ Si+1 for all i ≥ 1. We

arrange all points of
⋃∞
i=1 Si in a sequence {sj}∞j=1 (with repetitions) by jux-

taposition of the elements of the consecutive sets Si. Formally, every positive
integer j can be uniquely represented in the form j = n(j) +

∑
k<i(j)Nk,

where 1 ≤ n(j) ≤ Ni(j). Then sj = s
(i(j))
n(j) . Set εj = δi(j). The sj form a

dense subset of S, and for any j ≥ 1 there are infinitely many k > j with
sk = sj and εk < εj .

For i > 0, let Ui be the εi-neighborhood of si. For each i, by Claim 1
we can find a rectangular set P (m′i) ⊂ Ui (in order to simplify the notation

we have dropped the subscript k in P (m′i)
k ). By Claim 2 we have fm

′
i(P (m′i))

= P (0). Observe that for any P (mi) ⊂ P (m′i) with mi > m′i, we also have
fmi−m

′
i(P (mi)) = P (m′i) and f j(P (mi)) ⊂ P (m′i) for all 0 ≤ j ≤ mi−m′i. By

Claim 3 there exists a closed rectangular subset J (mi) of the square I(mi)

in P (mi) such that J (mi) is linearly mapped onto P (0) by fmi . We have
f j(J (mi)) ⊂ Ui for all 0 ≤ j ≤ mi −m′i. Observe that m′i only depends on
the neighborhood Ui, and mi can be arbitrarily large.

Now let F1 = J (m1) and, for i > 1, let Fi be a closed rectangular subset
of Fi−1 such that fm1+...+mi−1(Fi) = J (mi). The set Fi is well defined by
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Claim 3. We obtain a sequence {Fi} of nested closed sets whose intersection
must contain a point x. Let us prove that by choosing appropriate mi, we
can obtain the required equality σf (x) = S.

Let ε > 0 and let U(ε) be the ε-neighborhood of S. Evidently, there is
i0 ≥ 1 such that Ui ⊂ U(ε) for all i > i0. Then

lim inf
n→∞

1
n

n−1∑

i=0

1U(ε)(f
i(x)) ≥ lim inf

n→∞
1
n′

n∑

i=i0

(mi −m′i),

where n′ =
∑n
i=1mi. If we choose {mi}∞i=1 such that m′i/mi → 0 and

mi/
∑i
j=1mj → 1 as i→∞, then

lim
n→∞

1
n

n−1∑

i=0

1U(ε)(f
i(x)) = 1

for any ε > 0. This means σf (x) ⊆ S.
On the other hand, recall that for any i ≥ 1, there are infinitely many

k > i for which sk = si, and εk → 0 as k → ∞. Hence, with the above
choice of mi, for any fixed i we obtain

lim sup
n→∞

1
n

n−1∑

j=0

1Ui(f
j(x)) > 0

because it is bounded from below by the asymptotic upper bound of
(mk − m′k)/

∑k
j=1mj taken over all k with sk = si. This proves that all

si belong to σf (x) and hence S ⊆ σf (x). Thus σf (x) = S and the proof is
complete.

R e m a r k. In fact, we have proved that for any nowhere dense nonvoid
closed set S in Rn, there is a continuous map f which realizes all nonvoid
closed subsets of S as σ-limit sets. Note also that by our construction all
these σ-limit sets are realized by everywhere dense (in P (0)) trajectories. On
the other hand, each of these σ-limit sets is “totally disconnected” from the
dynamical viewpoint because it disintegrates into fixed points.
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