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On strongly Hausdorff flows

by

Hiromichi N a k a y a m a (Hiroshima)

Abstract. A flow of an open manifold is very complicated even if its orbit space
is Hausdorff. In this paper, we define the strongly Hausdorff flows and consider their
dynamical properties in terms of the orbit spaces. By making use of this characterization,
we finally classify all the strongly Hausdorff C1-flows.

1. Introduction. Let M be a connected manifold (maybe open), and
ϕt a non-singular flow of M . The flow ϕt is called strongly Hausdorff if,
for any point sequences {pn} and {qn} (n = 1, 2, . . .) converging to p and
q respectively and satisfying ϕtn(pn) = qn for some positive numbers tn,
there is a number t (t ≥ 0) such that ϕt(p) = q. The product flow of
a product manifold N ×R, defined by ϕt(z, s) = (z, s+ t) (z ∈ N , s, t ∈ R),
is an example of a strongly Hausdorff flow. Furthermore, a flow tangent
to a generalized Seifert fibration (see §3) is also an example of a strongly
Hausdorff flow whose orbits are all periodic. The following main theorem
shows that any strongly Hausdorff flow turns out to be one of the above
examples up to conjugation, where two flows ϕt and ψt are conjugate if
there exists a diffeomorphism f such that fϕtf−1 = ψt for any t ∈ R.

Theorem. Every strongly Hausdorff C1-flow is either conjugate to a
product flow or tangent to a generalized Seifert fibration.

We prove this theorem in §3. In §2, we study the dynamical properties
of strongly Hausdorff flows: the relation between strongly Hausdorff flows
and Hausdorff flows, and the coincidence of the non-wandering set and the
set of periodic points for strongly Hausdorff flows.

The author wishes to thank A. Marin for his helpful comments.

2. Strongly Hausdorff flows. Let M be a connected m-dimensional
manifold, and ϕt a non-singular flow of M . Denote by π the quotient map
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which maps each orbit to a point, and by M/ϕt the quotient space, which is
called the orbit space. A flow ϕt is Hausdorff if the orbit spaceM/ϕt is Haus-
dorff with respect to the quotient topology. The notion of strongly Hausdorff
flows is stronger than that of Hausdorff flows by the following lemma:

Lemma 1. Every strongly Hausdorff flow is Hausdorff.

P r o o f. Suppose that M/ϕt is not Hausdorff. Then there exist points p
and q of M contained in distinct orbits such that, for any neighborhoods
U and V of p and q respectively, the saturation of U (=

⋃
t∈R ϕt(U)) in-

tersects V . Thus there are point sequences {pn} and {qn} converging to p
and q respectively satisfying ϕtn(pn) = qn for some numbers tn. By taking
a subsequence of {tn}, we can assume that the tn are either all positive or
all negative. If they are all negative, then we exchange the roles of p and
q. Thus we can further assume that the tn are all positive. If ϕt is strongly
Hausdorff, then there is a number t satisfying ϕt(p) = q. However, this con-
tradicts the fact that p and q are not contained in the same orbit. Thus
every strongly Hausdorff flow is Hausdorff.

For any Hausdorff flow, every orbit is a closed set because it is the in-
verse image of one point with respect to the quotient map π. In case of
a compact manifold, every orbit is periodic and hence the flow is strongly
Hausdorff because the notion of strongly Hausdorff flows coincides with that
of Hausdorff flows if the orbits are all periodic. However, a Hausdorff flow
is not always strongly Hausdorff in case of a non-compact manifold:

Example 1. Let F be a foliation of S3 tangent to the Hopf fibration.
For any point p of S3, the restriction of F to S3 − p induces a (complete)
flow of R3 which is not strongly Hausdorff but Hausdorff (see Corollary of
Lemma 2).

Lemma 2. For any strongly Hausdorff flow , the non-wandering set Ω(ϕt)
coincides with the set of periodic points.

P r o o f. Let p be a point of the non-wandering set of a strongly Haus-
dorff flow ϕt, i.e. for any neighborhood U of p and any positive number T ,⋃
t≥T ϕt(U) intersects U . Let F : Dm−1 × I → M (I = [−ε, ε], ε > 0) be

a flow box of ϕt around p (p = F (0, 0)) defined by F (x, t) = ϕt(F (x, 0)),
where F (Dm−1 × {0}) is transverse to ϕt. Since p is non-wandering, there
exist point sequences {pn} and {qn} (n = 1, 2, . . .) both converging to p and
a sequence {tn} such that ϕtn(pn) = qn and tn > 4ε. For sufficiently large n,
both pn and qn are contained in F (Dm−1×I). Denote by (xn, tn) ∈ Dm−1×I
(resp. (x′n, t

′
n) ∈ Dm−1 × I) the inverse image of pn (resp. qn) with respect

to F . Since {pn} (resp. {qn}) converges to p, {F (xn, ε)} (resp. {F (x′n,−ε)})
converges to F (0, ε) (resp. F (0,−ε)). By the definition of a strongly Haus-
dorff flow, there exists a positive number t such that ϕt(F (0, ε)) = F (0,−ε).
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Since F (0,−ε) is connected with F (0, ε) by the orbit contained in the flow
box, p is a periodic point.

By definition, the periodic points are non-wandering. Thus Ω(ϕt) is the
set of periodic points.

Since the non-wandering set is closed by definition, the following corol-
lary holds:

Corollary. For any strongly Hausdorff flow , the set of periodic points
is closed.

3. Periodic flows. First we define the generalized Seifert fibration pre-
cisely (see [1]). Let K be a finite subgroup of the orthogonal group O(m−1),
and ψ : π1(S1)→ K a surjective homomorphism. By using the covering map
from S1 to S1 corresponding to the kernel of ψ, we obtain an action of K
on S1 by k · s = γ · s (k ∈ K, s ∈ S1) where ψ(γ) = k and (s 7→ γ · s) is the
covering transformation. Let N be the quotient space of Dm−1×S1 obtained
by identifying (z, k · s) with (k · z, s) for z ∈ Dm−1, k ∈ K, s ∈ S1. Denote
by q the quotient map. Then N is foliated by circles of the form q(z, S1)
(z ∈ Dm−1). A generalized Seifert fibration of an m-dimensional manifold
is a foliation by circles such that each circle has a saturated neighborhood
diffeomorphic to the above local model on N .

Next we prove the main theorem by using the following Lemma 3, which
can be shown in the same way as in the proof of Epstein’s theorem ([1],
Theorem 4.1).

Lemma 3. The set of periodic points of any Hausdorff flow is an open set.

P r o o f. Let K be a compact neighborhood of a periodic orbit O. De-
note by ∂K the boundary of K. We claim that K − π−1π(∂K) is an open
neighborhood of O consisting of periodic points.

Since ∂K is compact and M/ϕt is Hausdorff, π−1π(∂K) is closed. Hence
K − π−1π(∂K) = intK − π−1π(∂K) is an open set containing O.

Let p be an arbitrary point of K−π−1π(∂K). The orbit passing through
p does not intersect ∂K. Hence the orbit is entirely contained in K. As we
stated above, the orbit of any Hausdorff flow is a closed set. Since the orbit
passing through p is contained in the compact set K, it is also compact, and
hence periodic (see Corollary (2.36) of [2], [3]).

P r o o f o f T h e o r e m. By Lemmas 1–3, the orbits of any strongly
Hausdorff flow are all periodic if its non-wandering set is not empty. Then
the manifold admits a generalized Seifert fibration whose fibers consist of
the periodic orbits by Epstein’s Theorem 4.3 of [1].

Suppose that the non-wandering set is empty. Then, for any point p ∈M ,
there are a neighborhood U and a positive number T such that U does not
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intersect
⋃
t≥T ϕt(U). Since ϕt has no periodic points, we can construct an

embedding F : Dm−1 × [0, T ] → M satisfying F (z, t) = ϕt(F (z, 0)) and
F (Dm−1 × {0}) ⊂ U by joining flow boxes. We define the extension F̃ :
Dm−1×R→M by F̃ (z, t) = ϕt(F (z, 0)). Then F̃ is an embedding because,
if not, there are distinct z1, z2 ∈ Dm−1 and s ≥ 0 such that ϕs(F (z1, 0)) =
F (z2, 0), which contradicts the fact that either

⋃
t≥T ϕt(U) is disjoint from

U or F is an embedding. Therefore the orbit space M/ϕt is a (Hausdorff)
manifold and π is a fiber bundle. Since any orientable R-bundle is trivial,
the fiber bundle π is trivial. Thus the flow ϕt is conjugate to the product
flow of (M/ϕt)× R.

R e m a r k. As Vogt stated in his paper [4], no Euclidean space admits
a Seifert fibration. In particular, any strongly Hausdorff flow of R3 is con-
jugate to the product flow. However, a Hausdorff flow of R3 is not always
conjugate to the product flow even if it has no periodic orbits. For ex-
ample, Marin showed that the flow of R3 induced from the vector field
X(x, y, z) = (−2xy, x2 − y2, 4 − x2) is a Hausdorff flow without periodic
orbits whose non-wandering set is not empty. In fact, this flow is tangent to
the open cylinders {(x, y, z) : (x − r)2 + y2 = r2} containing the z-axis, on
which the flow is a so-called slope component. Hence this flow is Hausdorff.
On the other hand, the orbit passing near the origin and contained in a
larger open cylinder comes back more closely to the origin. Thus this flow
has a non-wandering point.
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