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Abstract. An artin algebra A over a commutative artin ring R is called quasitilted
if gl.dimA ≤ 2 and for each indecomposable finitely generated A-module M we have
pdM ≤ 1 or idM ≤ 1. In [11] several characterizations of quasitilted algebras were
proven. We investigate the structure and homological properties of connected components
in the Auslander–Reiten quiver ΓA of a quasitilted algebra A.

Let A be an artin algebra over a commutative artin ring R, that is, A is an
R-algebra which is finitely generated as an R-module. Denote by indA the
category of indecomposable finitely generated right A-modules, by ΓA the
Auslander–Reiten quiver of A, and by τA the Auslander–Reiten translation
in ΓA. Following [10], the algebra A is called tilted if there exists a hereditary
artin algebra H and a tilting H-module T such that A = EndH(T ). Recall
that a finitely generated H-module T is called tilting if Ext1

H(T, T ) = 0 and
there is an exact sequence 0 → HH → T0 → T1 → 0 with T0 and T1 in the
additive category addT , given by T .

The representation theory of tilted algebras is fairly well understood. In
particular, we know the shape of all connected components of the Auslander–
Reiten quivers of tilted algebras (see [8], [12], [13], [17]–[20], [27]). It is known
that a tilted algebra A is of global dimension at most 2 and no module in
indA has both projective and injective dimension equal to 2. However, these
properties do not characterize the tilted algebras. Happel, Reiten and Smalø
have shown in [11] that they characterize the class of quasitilted algebras
which are the artin algebras of the form A = End(T ), where T is a tilting
object in a hereditary abelian R-category H.

Besides the tilted algebras, important classes of quasitilted algebras are
provided by tubular algebras [19], canonical algebras [14], [19], [21], alge-
bras with separating tubular families of modules [15], [25], and semiregular
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branch enlargements of such algebras (see [7]). Moreover, it is known that
any representation-finite quasitilted algebra is tilted [11].

An important result proven in [11] is the following trisection of the cate-
gory indA of a quasitilted algebra A. Namely, let A be a quasitilted algebra,
R = RA be the full subcategory of indA formed by the modules all of whose
successors in indA have injective dimension at most one, and L = LA be the
full subcategory of indA formed by the modules all of whose predecessors
in indA have projective dimension at most one. Then we have a trisection

indA = (L \ R) ∨ (L ∩R) ∨ (R \ L)

such that

HomA(L ∩R,L \ R) = 0, HomA(R \ L,L ∩R) = 0,

and

HomA(R \ L,L \ R) = 0.

Moreover, L (respectively, R) contains all indecomposable projective (re-
spectively, injective) A-modules.

We investigate here the structure of connected components in the Auslan-
der–Reiten quiver of an arbitrary quasitilted algebra A. Good understanding
of the Auslander–Reiten components seems to be the main step in describing
the ring structure and representation theory of arbitrary quasitilted algebras
(see [15], [24]–[26]). We are mainly interested in quasitilted algebras which
are not tilted.

In order to state our main results, recall that a (connected) component
Γ of ΓA is called regular if Γ contains neither a projective module nor an
injective module. Moreover, Γ is called semiregular if Γ does not contain a
projective module and an injective module at the same time. We shall prove
the following facts.

Theorem (A). Let A be a quasitilted artin algebra, and Γ be a compo-
nent of ΓA containing an oriented cycle. Then Γ is a semiregular tube.

We note that a semiregular tube is either regular (that is, of the form
ZA∞/(τ s), for some s ≥ 1) or is obtained from a regular tube by a finite
sequence of ray (or coray) insertions.

Theorem (B). Let A be a quasitilted algebra, and Γ be a regular com-
ponent of ΓA.

(i) If Γ ∩R 6= ∅, then Γ is contained in R.
(ii) If Γ ∩ L 6= ∅, then Γ is contained in L.

Theorem (C). Let A be a quasitilted algebra and Γ be a component of
ΓA with infinitely many τA-orbits or containing an oriented cycle.



Auslander–Reiten components for quasitilted algebras 69

(i) If Γ contains a projective module, then Γ is contained in L \ R.
(ii) If Γ contains an injective module, then Γ is contained in R \ L.

Theorem (D). Let A be a quasitilted algebra which is not tilted , and Γ
be a component of ΓA.

(i) If Γ contains a projective module, then Γ is contained in L \ R.
(ii) If Γ contains an injective module, then Γ is contained in R \ L.

We also get the following immediate consequences of the above theorems.

Corollary (E). Let A be a quasitilted algebra which is not tilted. Then
every component of ΓA is semiregular.

Corollary (F). Let A be a quasitilted algebra which is not tilted. Then
every component Γ of ΓA having a module from R∩L is regular , and hence
consists entirely of modules from R∩ L.

Further consequences will be discussed in Section 6.
This paper is organized as follows. In Section 1 we prove preliminary

results on the paths between indecomposable modules over artin algebras,
playing a crucial role in our further investigations. In Section 2 we recall
some facts on tilted and quasitilted algebras applied in the paper. Sections
3, 4 and 5 are devoted to the structure of components with oriented cy-
cles, regular components, and nonregular components, respectively, in the
Auslander–Reiten quivers of quasitilted algebras. In Section 6 we present
some consequences of our main results.

1. Preliminary results

1.1. Let A be an artin algebra over a commutative artin ring R, that
is, A is an R-algebra which is finitely generated as an R-module. Unless
otherwise stated all algebras are assumed to be basic and connected. By
an A-module is meant a finitely generated right A-module. We shall denote
by modA the category of all (finitely generated) A-modules, and by indA
the full subcategory of modA with one representative of each isomorphism
class of indecomposable A-modules. Then rad(modA) denotes the Jacobson
radical of modA, that is, the ideal in modA generated by all noninvertible
morphisms between indecomposable modules in modA. The infinite radical
rad∞(modA) of modA is the intersection of all powers radi(modA), i ≥ 1,
of rad(modA).

1.2. We denote by ΓA the Auslander–Reiten quiver of A, and by τ =
DTr and τ− = TrD the Auslander–Reiten translations in ΓA. We iden-
tify the vertices of ΓA with the corresponding A-modules in indA. By a
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component of ΓA we mean a connected component. We observe that a mor-
phism between indecomposable modules lying in different components of ΓA
belongs to rad∞(modA).

We frequently use the fact that, for an A-module X, pdX ≤ 1 if
and only if HomA(D(A), τX) = 0 (respectively, idX ≤ 1 if and only if
HomA(τ−X,A) = 0) (see [19, p. 74]).

Let Γ be a component of ΓA. Then Γ is said to be regular if Γ contains
neither a projective module nor an injective module, and semiregular if Γ
does not contain a projective module and an injective module at the same
time. Also, Γ is said to be postprojective (respectively, preinjective) if Γ
contains no oriented cycles and each module in Γ belongs to the τ -orbit of a
projective (respectively, an injective) module. We denote by lΓ the left stable
part of Γ obtained from Γ by deleting the τ -orbits of projective modules,
by rΓ the right stable part of Γ obtained from Γ by deleting the τ -orbits
of injective modules, and by sΓ the stable part of Γ obtained from Γ by
deleting the τ -orbits of both the projective and the injective modules.

A module M ∈ indA is called τ -periodic if there exists an m ≥ 1 such
that τmM ' M . Given M ∈ indA, we denote by O(M) the τ -orbit of M ,
that is,

O(M) = {τmM : m ∈ Z}.

1.3. Let M,N ∈ indA. A path from M to N is given by a sequence of
nonzero morphisms

M = X0
f1→ X1 → . . .

ft→ Xt = N,

where, for each i, Xi is an indecomposable module and fi is in rad(modA).
We denote a path from M to N by M Ã N . If the morphisms fi are in
addition irreducible, then we call it a path of irreducible maps. An oriented
cycle is a path of irreducible maps from a module to itself. A path of irre-
ducible maps X0 → X1 → . . . → Xt is called sectional if Xi 6' τXi+2 for
each i = 0, . . . , t− 2.

Given a path M Ã N , M is said to be a predecessor of N and N a
successor of M . The meaning of the terms “predecessor (or successor) by
irreducible maps” should be clear. Finally, given M,N ∈ indA, we write
M N whenever there is either an irreducible map M → N or an irre-
ducible map N →M . For more details on the Auslander–Reiten theory we
refer the reader to [3] and [19].

1.4. We now prove two lemmas needed later on.

Lemma. Let A be an artin algebra,

(∗) X = X0 → X1 → . . .→ Xt = X
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be an oriented cycle through indecomposable modules, and r ≥ 1. If τ iXj

6= 0 for each 1 ≤ i ≤ r and each j = 0, . . . , t, then there exists a path of
irreducible maps from X to τ rX.

P r o o f. We know, by [4], that the oriented cycle (∗) is not sectional.
Therefore, there exists an l, 2 ≤ l ≤ t, such that τXl ' Xl−2. By hypothe-
sis, one can apply τ to (∗) to get

(∗∗) τX = τX0 → τX1 → . . .→ τXt = τX.

Observe that the module τXl ' Xl−2 appears in both (∗) and (∗∗), and
hence there exists a path from X to τX, namely

X = X0 → X1 → . . .→ Xl−2 ' τXl → τXl+1 → . . .→ τXt = τX.

By applying τ and composing the paths, we get the desired result.

1.5. The next result extends [22, Lemma 4].

Lemma. Let A be an artin algebra and denote by n the rank of the
Grothendieck group K0(A) of A. Let Γ be a connected component of ΓA
and Γ ′ be a connected component of sΓ . Assume that Γ ′ has infinitely
many τ -orbits and no oriented cycles. Let M be a module in Γ ′ such that
the length of any walk in Γ from a nonstable module to the τ -orbit of M is
at least 2n. Then, for each s ≥ 1, there exists a path

M = X0 → X1 → . . .→ Xl = τsM

in modA with all Xi in Γ .

P r o o f. It is enough to show that there exists a path in modA from M to
τM through modules in Γ , and then proceed inductively. By [22, Lemma 4],
there is a path

M = X ′0 → X ′1 → . . .→ X ′t = M

in modA with X ′1, . . . , X
′
t belonging to Γ . Since Γ has no oriented cycles,

one of the maps in the above path should be in rad∞(modA). We infer that
there exists a path

(∗) M = Y0
f0→ Y1

f1→ . . .→ Yr
fr→ . . .→ Yr+n

fr+n−→ Yr+n+1
fr+n+1−−−−→M,

where the morphisms fr, . . . , fr+n+1 are irreducible maps (this is done by
using the lifting properties of almost split sequences). Consider now the path
of irreducible maps

(∗∗) Yr
fr→ Yr+1 → . . .→ Yr+n

fr+n−→ Yr+n+1.

If (∗∗) is nonsectional, then there exists an i, r ≤ i ≤ r + n − 1, such
that Yi ' τYi+2, and thus there exists a path of irreducible maps

Yr → . . .→ Yi → τYi+3 → . . .→ τM
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(observe that the modules in (∗∗) are left stable, and hence one can apply
τ to them). Therefore, there exists a path from M to τM passing through
modules in Γ , namely

M = Y0 → Y1 → . . .→ Yr → . . .→ Yi → τYi+3 → . . .→ τM.

Suppose now (∗∗) is sectional. Then, by [22, Lemma 2], there exist j and
l, r ≤ j, l ≤ r+n+1, and a nonzero map g ∈ HomA(Yj , τYl) = rad∞(Yj , τYl).
Hence,

M = Y0 → Y1 → . . .→ Yj
g→ τYl → τYl+1 → . . .→ τM

gives the required path from M to τM passing through modules in Γ . Now,
since for each i ≥ 1, τ iM is in the conditions of the Lemma, we can iterate
the above procedure to get a path from M to each τ rM , r ≥ 1, as required.

1.6. Corollary. Let A be an artin algebra and Γ be a regular compo-
nent of ΓA with infinitely many τ -orbits. Then, for each M ∈ Γ , and each
r ≥ 1, there exists a path in modA from M to τ rM .

2. Quasitilted algebras

2.1. In this section we collect the results on quasitilted algebras needed
along the paper. We start by recalling some facts on tilted algebras. For
details on tilting theory we refer the reader to [10] and [19]. Let H be a
hereditary algebra and let T be a tilting H-module, that is, a module such
that Ext1

H(T, T ) = 0 and there exists a short exact sequence 0→ H → T0 →
T1 → 0, where T0 and T1 are in addT . The algebra B = EndH(T ) is called a
tilted algebra. An important fact about a tilted algebra B is that ΓB contains
a component, called connecting, which contains a so-called complete slice Σ
which reproduces in a sense the structure of the hereditary algebra H. It is
well known that all successors of such a Σ have injective dimension at most
one, and all predecessors of Σ have projective dimension at most one. Recall
that a subquiver Σ in a component Γ of ΓA is called a complete slice if: (a)
Σ is sincere; (b) Σ is path closed in modA, and (c) Σ meets each τ -orbit
of Γ exactly once.

Let B = EndH(T ), where T is a tilting module over a representation-
infinite hereditary algebra H. If T is a postprojective H-module (equiva-
lently, rad∞(−, T ) = 0), then the algebra B is called concealed. It is well
known that the Auslander–Reiten quiver of a tilted algebra B contains at
most two connecting components, and it has exactly two if and only if B
is concealed. Also, T is a regular H-module if and only if the connecting
component of ΓB is regular.

2.2. We now recall the definition of quasitilted algebras and some rele-
vant results. We refer the reader to [11] for the proof of these results.
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Definition. An algebra A is said to be quasitilted if gl.dimA ≤ 2 and
for each X ∈ indA, either pdX ≤ 1 or idX ≤ 1.

Tilted algebras are clearly examples of quasitilted algebras. However,
as mentioned in the introduction the class of quasitilted algebras is much
larger. It has been proven in [11, (II.3.6)] that representation-finite qua-
sitilted algebras are tilted.

2.3. We mention the next result for later reference.

Theorem ([11, (II.1.14)]). Let A be a quasitilted algebra. Then any path
in indA starting in an injective module and ending in a projective module
has a refinement formed by irreducible maps and every such path is sectional.

2.4. Let A be a quasitilted algebra. An important result is the existence
of the following trisection of the category indA. Let

R = RA = {X ∈ indA : for each Y with X Ã Y, idY ≤ 1},
L = LA = {X ∈ indA : for each Y with Y Ã X, pdY ≤ 1}.

This induces a trisection

indA = (L \ R) ∨ (L ∩R) ∨ (R \ L)

such that

HomA(L ∩R,L \ R) = 0, HomA(R \ L,L ∩R) = 0,

and
HomA(R \ L,L \ R) = 0.

Moreover, L contains all the indecomposable projective modules and it is
closed under predecessors, while R contains all the indecomposable injective
modules and it is closed under successors.

2.5. The next result gives a criterion for a quasitilted algebra to be tilted.

Theorem ([11, (II.3.4)]). Let A be a quasitilted algebra. If R contains
a projective module, then A is tilted.

2.6. Let A be a tilted algebra. Then, clearly, any complete slice in mod A
is contained in R ∩ L. In particular, for tilted algebras R ∩ L is nonempty.
For quasitilted algebras which are not tilted, it is still an open question
whether R∩L in nonempty. We shall show (Corollary (F)) that, if R∩L is
nonempty for a quasitilted algebra which is not tilted, then R∩L is formed
by modules lying in regular components.

3. Components with oriented cycles

3.1. Let A be a quasitilted algebra and Γ be a component of ΓA con-
taining oriented cycles. We shall show that Γ is in fact a semiregular tube,
generalizing a result known for tilted algebras (see [12], [13], [17]). The main
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point in the proof is to show that such a Γ is semiregular. Semiregular
components with oriented cycles have been described in [9], [16] and [28],
and they are either of the form ZA∞/(τm) for some m ≥ 1 (if regular), or
obtained from it by a finite sequence of ray (or coray) insertions.

Theorem (A). Let A be a quasitilted algebra, and Γ be a component of
ΓA containing an oriented cycle. Then Γ is a semiregular tube.

P r o o f. Let Γ be a component of ΓA containing an oriented cycle. We
first observe that Γ is infinite. Indeed, if Γ is finite, then A is representation-
finite, and hence by (2.2) it is tilted and Γ (= ΓA) is a connecting component.
It is well known that, in this case, Γ has no oriented cycles, a contradiction,
and hence Γ is infinite.

If Γ is regular, then by [9] and [28], Γ is a stable tube. If Γ is semiregular
but not regular, it follows from [16] that Γ is a semiregular tube.

Suppose then that Γ is not semiregular. We first claim that Γ has no
τ -periodic modules. Suppose Γ has a τ -periodic module. Since Γ is not reg-
ular, we infer, using [2, (6.2)], that there exists an irreducible map X → Y ,
where X is a τ -periodic module, and Y is neither left nor right stable, that
is, there are m and m′ such that τmY is a projective module P and τm

′
Y is

an injective module I. Therefore, there exists a nonsectional path from I to
P , which contradicts our hypothesis that A is quasitilted (see (2.3)). This
proves the claim.

Consider now the left and right stable parts lΓ and rΓ of Γ . Since Γ is
infinite, either lΓ or rΓ is nonempty. Suppose lΓ 6= ∅ and let Γ ′ be a con-
nected component of lΓ . Clearly, Γ ′ is infinite because otherwise it would
contain a τ -periodic module, contradicting the above claim.

We now show that Γ ′ contains no oriented cycles. Suppose it contains
oriented cycles. Then Γ ′ contains injective modules, because otherwise it
would be a stable tube by [9] and [28], in particular, it would contain τ -
periodic modules, a contradiction to the claim. Summing up, Γ ′ is an infi-
nite connected component of lΓ with oriented cycles and containing injective
modules. Then, by [16, (2.3)], there exists an infinite sectional path

. . . τ2tX1 → τ tXs → . . .→ τ tX2 → τ tX1 → Xs → . . .→ X1

with t > s such that {X1, . . . , Xs} is a complete set of representatives of
τ -orbits in Γ ′. Since Γ ′ is a component of lΓ and Γ is not left stable, there
exists an irreducible map X ′ → X ′′ with X ′′ in the τ -orbit of a projective
module and X ′ ∈ Γ ′. By applying τ as many times as necessary, there exists
an irreducible map X → P with X ∈ Γ ′ and P an indecomposable projec-
tive module. Since X ∈ Γ ′, we infer that τm

′
X ' τmtXj for some 1 ≤ j ≤ s,

and some m,m′ ≥ 0.
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It follows from the hypothesis on Γ ′ that there exists an oriented cycle
(∗) in Γ ′ containing an injective module I. By (1.4), there are paths from I
to each τ rI, r ≥ 1. Observe that I is in the τ -orbit of one of X1, . . . , Xs, say
Xi. Thus, we get a path from I to τ (m+1)tXi. Therefore, there exists a path

I
(∗)Ã I Ã τ (m+1)tXi Ã τmtXj Ã X → P

from an injective module to a projective module which is not sectional be-
cause (∗) is not sectional by [4]. This contradicts A being quasitilted. There-
fore, none of the components of lΓ contains an oriented cycle. Similarly, one
can also show that rΓ contains no oriented cycles.

However, by hypothesis, Γ contains an oriented cycle

Y0 → Y1 → . . .→ Yu = Y0.

By the above remarks, such an oriented cycle should contain a module which
is not left stable and a module which is not right stable. By applying τ−1

we can assume that Y0 is injective. Let Yv and l ≥ 0 be such that τ lYv is
projective, and assume that τ iYj 6= 0 for each j 6= v and i ≤ l. By (1.4),
there exists a path from Y0 to τ lY0 and then to τ lYv, which is projective,
and this path can be chosen to be nonsectional, contradicting the fact that
A is quasitilted, and the result is proven.

4. Regular components

4.1. The main aim in this section is to prove Theorem (B) of the intro-
duction, which concerns regular components of the Auslander–Reiten quiver
of quasitilted algebras. We need the following lemma.

Lemma. Let A be a quasitilted algebra and Γ be a component of ΓA.

(a) If Γ ∩R 6= ∅, then each τ -orbit of Γ contains a module from R.
(b) If Γ ∩ L 6= ∅, then each τ -orbit of Γ contains a module from L.

P r o o f. We only prove (a) because the proof of (b) is similar.
Let Γ be a component of ΓA containing a module from R. If the right

stable part rΓ is empty, or equivalently if each τ -orbit of Γ contains an
injective module, then there is nothing to prove because R contains all the
injective modules. Suppose rΓ 6= ∅ and let Γ ′ be a connected component
of rΓ . We first claim that Γ ′ has a module from R. If Γ has no injective
modules then Γ ′ = rΓ = Γ , and the claim is clear. Suppose that Γ contains
an injective module. Then there exists an irreducible map I → X ′, where
I is an injective module and X ′ ∈ Γ ′. The claim now follows from the fact
that X ′ ∈ R, because I ∈ R, and R is closed under successors.

Let X ∈ Γ ′ ∩R and let Y ∈ Γ ′. We now show that O(Y )∩R 6= ∅. Since
Γ ′ is connected, there exists a walk

X = X0 X1 . . . Xs = Y
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in Γ ′. Observe that the modules Xi, i = 1, . . . , s, are right stable and so
one can apply τ− as many times as necessary to get a path from X to some
τ−mY , m ≥ 0. Since R is closed under successors we get τ−mY ∈ R, and
hence each τ -orbit of rΓ has a module from R. The result now follows from
the fact that the τ -orbits which are not in rΓ contain an injective module,
and hence a module from R.

4.2. We can now prove Theorem (B) of the introduction.

Theorem (B). Let A be a quasitilted algebra and Γ be a regular com-
ponent of ΓA.

(a) If Γ ∩R 6= ∅, then Γ is contained in R.
(b) If Γ ∩ L 6= ∅, then Γ is contained in L.

P r o o f. Again, we only prove (a). Let Γ be a regular component con-
taining a module M from R. If Γ has oriented cycles, then by [9], it is a
stable tube and then clearly every module in Γ is a successor of M , and
therefore belongs to R (see (2.4)).

Suppose from now on that Γ has no oriented cycles and let N ∈ Γ . We
show that N ∈ R. Suppose Γ has infinitely many τ -orbits. By (4.1) there
exists an m ∈ Z such that τmN ∈ R. By (1.6), there exists a path from
τmN to N , and hence N is also in R. It remains to consider the case when
Γ has only finitely many τ -orbits. If N 6∈ R, then there exists a path

N = X0
f0→ X1 → . . .

ft−1−→ Xt = X,

where idX > 1. It is well known that then HomA(τ−X,A) 6= 0 (see (1.2)).
Therefore there exists a path

N = X0
f0→ X1 → . . .

ft−1−→ Xt = X
ft→ Xt+1

ft+1−→ τ−X
ft+2−→ P,

where P is an indecomposable projective module, and the morphisms ft and
ft+1 are irreducible.

Since Γ is regular, we deduce that P 6∈ Γ and then at least one of the
maps f0, f1, . . . , ft−1, ft+2 is in rad∞(modA). Observe now that if g : Y →
Y ′ is a map in rad∞(modA), then for each r ≥ 1, there exist a chain of
irreducible maps

Y = Y0
g1→ Y1 → . . .

gr→ Yr

and a morphism hr : Yr → Y ′ such that the composition hrgr . . . g1 is
nonzero.

Suppose now that one of f0, . . . , ft−1 is in rad∞(modA). By the above
and (4.1), we infer that there exists a path from some module in Γ which
belongs to R to X, and so idX = 1, a contradiction. If none of f0, . . . , ft−1

belongs to rad∞(modA), then ft+2 ∈ rad∞(modA). By similar arguments
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there exists a module Z ∈ Γ such that τZ is in R and HomA(Z,P ) 6= 0, or
equivalently, id τZ > 1, a contradiction.

5. Nonregular components

5.1. Let A be a quasitilted algebra. We now concentrate on the study of
nonregular components of ΓA. In this section we prove Theorems (C) and
(D) and establish some immediate consequences.

Theorem (C). Let A be a quasitilted algebra and Γ be a component of
ΓA with infinitely many τ -orbits or containing an oriented cycle.

(a) If Γ contains a projective module, then Γ is contained in L \ R.
(b) If Γ contains an injective module, then Γ is contained in R \ L.

P r o o f. We only prove (a). Let Γ be a component of ΓA containing a pro-
jective module. Suppose first that Γ has oriented cycles. Then, by (3.1), Γ is
a ray tube. Suppose furthermore that there exists a moduleM ∈ Γ∩R. Since
Γ is a ray tube, any module in Γ which belongs to a cycle is a successor of M ,
and hence belongs toR by (2.4). On the other hand, there exists a module X
which is a nonprojective summand of the radical of some projective module
which belongs to an oriented cycle. By (1.2), we infer that id τX > 1, a con-
tradiction to the fact that τX should be in R because it is a successor of M .
Therefore, Γ ∩R = ∅, and since indA = R∪L, we conclude that Γ ⊂ L\R.

Suppose now Γ has infinitely many τ -orbits but no oriented cycles, and
that Γ ∩ R 6= ∅. Then there exists a connected component Γ ′ of rΓ with
infinitely many τ -orbits. It now follows from (4.1) that there exists a module
M ∈ Γ ′ ∩ R such that the length of any walk from a nonstable module to
the τ -orbit of M is at least 2n, where n is the rank of K0(A). Let

M ′ = X0 X1 . . . Xt = P

be a walk in Γ ′ of minimal length from a module M ′ in the τ -orbit O(M)
of M to a projective module P . Because of the minimality, all the modules
X0, . . . , Xt−1 are left stable and then, by applying τ conveniently, there exist
an m ≥ 0 and a path of irreducible maps

τmM = Y0 → Y1 → . . .→ Yt = P.

Since the modules Y0, . . . , Yt−1 are left stable, we get a path of irreducible
maps from τm+1M to τYt−1. On the other hand, by (1.5), there exists a
path from M to τm+1M , and then τYt−1 is a successor of M , which implies
that τYt−1 ∈ R (by (2.4)). This, however, contradicts id τYt−1 > 1, because
HomA(Yt−1, A) 6= 0. Therefore Γ ∩ R = ∅ and because indA = R ∪ L, we
have Γ ⊂ L \ R as required.

5.2. For quasitilted algebras which are not tilted, the above result can
be sharpened as follows.
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Theorem (D). Let A be a quasitilted algebra which is not tilted , and Γ
be a component of ΓA.

(a) If Γ contains a projective module, then Γ is contained in L \ R.
(b) If Γ contains an injective module, then Γ is contained in R \ L.

P r o o f. We only prove (a). Let Γ be a component containing a projec-
tive module. If Γ has oriented cycles or infinitely many τ -orbits, then the
result follows from (5.1). Suppose then that Γ has no oriented cycles and
only finitely many τ -orbits. Then there exists an indecomposable projective
module P in Γ with no proper successors in Γ which are also projective mod-
ules. Since A is not tilted, P 6∈ R (by (2.5)). Therefore, there exists a path

P = X0
f0→ X1 → . . .

ft−1−→ Xt = X,

where idX > 1, or equivalently, HomA(τ−X,A) 6= 0 (by (1.2)). Hence, there
exists a path

P = X0
f0→ X1 → . . .

ft−1−→ Xt = X
ft→ Xt+1

ft+1−→ τ−1X
ft+2−→ P ′,

where P ′ is an indecomposable projective module, and ft and ft+1 are ir-
reducible maps. By our hypothesis on P , at least one of the maps f0, . . . ,
ft−1, ft+2 is in rad∞(modA). Suppose one of f0, . . . , ft−1 is in rad∞(modA).
Following the considerations in the proof of Theorem (B) we infer that there
exists a path from some module in Γ ∩ R to X, a contradiction because
idX > 1.

Thus, ft+2 ∈ rad∞(modA). Also, by similar considerations to those in
the proof of Theorem (B), there exists a module Z ∈ Γ such that τZ ∈ R
and HomA(Z,P ′) 6= 0, or equivalently, id τZ > 1, a contradiction, and this
finishes the proof.

5.3. We have the following direct consequences of (5.2).

Corollary.Let A be a quasitilted algebra, and Γ be a component of ΓA.
If Γ is not semiregular , then A is tilted and Γ is the (unique) connecting
component of ΓA.

Note that the above corollary generalizes [11, (II.3.6)] which says that
any representation-finite quasitilted algebra is tilted, because clearly the
Auslander–Reiten quiver of any representation-finite algebra is not semireg-
ular.

5.4. Corollary (E). Let A be a quasitilted algebra which is not tilted.
Then any component of ΓA is semiregular.

5.5. Corollary (F). Let A be a quasitilted algebra which is not tilted.
Then every component Γ of ΓA having a module from R∩L is regular , and
hence consists of modules from R∩ L.
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6. Some consequences

6.1. We say that a property holds for almost all modules if it holds for all
but finitely many of them. In [1], I. Assem and the first named author have
characterized the finite-dimensional algebras over algebraically closed fields
which have the property that almost all of their indecomposable modules
have injective (or projective) dimension at most one. These algebras are
called left (respectively, right) glueings of tilted algebras (see [1] for details).

For an artin algebra A such that idX ≤ 1 for almost all X ∈ indA, it
follows from [5], [6] and [23] that ΓA contains a component Γ containing
all the projective modules and such that: (i) almost all of its modules lie in
the τ -orbits of projective modules; and (ii) there are at most finitely many
modules in Γ belonging to oriented cycles.

6.2. We shall use the above fact to show the following result.

Proposition. Let A be a quasitilted algebra.

(a) The following are equivalent :

(i) idX ≤ 1 for almost all X ∈ indA.
(ii) A is tilted and ΓA has a postprojective component with a com-

plete slice.
(iii) R is cofinite in indA.

(b) The following are equivalent :

(i) pdX ≤ 1 for almost all X ∈ indA.
(ii) A is tilted and ΓA has a preinjective component with a complete

slice.
(iii) L is cofinite in indA.

P r o o f. We only prove (a) because the proof of (b) is similar.
(i)⇒(ii). Suppose idX ≤ 1 for almost all X ∈ indA. By the above re-

marks, ΓA has a component containing all the projective modules and such
that almost all of its modules belong to the τ -orbits of projective modules
and there are at most finitely many modules in Γ belonging to oriented
cycles. Suppose Γ contains an injective module. Then Γ is a nonsemiregular
component, and hence, by (5.3), A is tilted and Γ is a connecting component.
Clearly, Γ is then postprojective.

If Γ contains no injective modules, then Γ is in fact a postprojective
component (see [5, (6.7)] or [16, (2.1)]). Clearly, a postprojective compo-
nent containing all projective modules and no injective modules is indeed
connecting and (ii) follows.

(ii)⇒(iii). By (2.6), all modules which are successors of a complete slice
belong to R. Now, if ΓA has a postprojective component Γ with a complete
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slice, then almost all modules in indA are successors of a complete slice in
Γ . This proves (iii).

(iii)⇒(i). Clear.

6.3. Corollary. Let A be a quasitilted algebra which is not tilted. Then
there are infinitely many indecomposable modules X with pdX = 2 and
infinitely many indecomposable modules Y with pdY = 2.

6.4. It has been shown independently in [1] and [23] that a representa-
tion-infinite algebra is concealed if and only if pdX ≤ 1 and idX ≤ 1 for
almost all X ∈ indA. The next result is also a direct consequence of (6.2).

Corollary. The following are equivalent for a representation-infinite
artin algebra A:

(a) pdX ≤ 1 and idX ≤ 1 for almost all X ∈ indA.
(b) A is concealed.
(c) A is quasitilted and R∩ L is cofinite in indA.

6.5. The next two results are direct consequences of the previous sec-
tions.

Proposition. Let A be a quasitilted algebra, and Γ be a component
of ΓA.

(a) If Γ contains a projective module, then Γ ⊂ L \ R if and only if Γ
has no complete slice.

(b) If Γ contains an injective module, then Γ ⊂ R \ L if and only if Γ
has no complete slice.

P r o o f. We only prove (a). Let Γ be a component containing a projective
module. If Γ ⊂ L\R then, clearly, Γ contains no complete slice (see (2.6)).

Suppose now that Γ has no complete slice. If A is not tilted, then by
(5.2), Γ ⊂ L \ R. Moreover, if Γ contains oriented cycles or has infinitely
many τ -orbits, then by (5.1), Γ ⊂ L \ R. It remains to show the result
when A is tilted, and Γ is a component without oriented cycles and with
only finitely many τ -orbits. Since by hypothesis, Γ is not a connecting com-
ponent, we infer that Γ is postprojective and it does not contain injective
modules. Clearly, Γ ⊂ L.

Suppose now that Γ∩R has a moduleX. Observe that Γ does not contain
all the projective modules and in fact, since A is connected, there exist inde-
composable projective modules P ∈ Γ and P ′ 6∈ Γ with HomA(P, P ′) 6= 0.
Since HomA(P, P ′) = rad∞(P, P ′), we infer that for each t ≥ 1, there exist
a path of irreducible maps

P = Y0 → Y1 → . . .→ Yt
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and a nonzero map ft ∈ Hom(Yt, P ′). Note that all the successors of X are
in R and hence there are only finitely many modules in Γ which are not in
R. Therefore, there exists t such that τYt ∈ R and HomA(Yt, P ′) 6= 0, or
equivalently id τYt > 1 (by (1.2)), a contradiction. Therefore, Γ ∩R = ∅ as
required.

6.6. Proposition. The following are equivalent for a quasitilted alge-
bra A:

(a) Each nonregular component is contained either in L\R or in R\L.
(b) A is either not tilted , or a tilted algebra of the form A = EndH(T ),

where T is a regular tilting module over a hereditary algebra H.

P r o o f. (a)⇒(b). Suppose A is tilted. Then ΓA contains a connecting
component Γ . If Γ is nonregular, then by (a), it is contained either in L\R
or in R\L, a contradiction to the fact that Γ contains a complete slice lying
in R ∩ L (2.6). Then Γ is regular and, by (2.1), A = EndH(T ), where T is
a regular tilting module over a hereditary algebra H.

(b)⇒(a). Let Γ be a nonregular component of ΓA. If A is not tilted, then
by (5.2), Γ is contained either in L \ R or in R \ L. If now A = EndH(T ),
where T is a regular tilting module over a hereditary algebra H, then Γ is
not the connecting component of ΓA (by (2.1)), and hence it does not con-
tain a complete slice. By [20], Γ is semiregular and by (5.1), Γ is contained
in L\R in case it has projective modules, or in R\L in case it has injective
modules. This proves the result.
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E-mail: SKOWRON@MAT.UNI.TORUN.PL

Received 27 February 1995;
in revised form 30 August 1995


