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Algebraic properties of rings of continuous functions

by

M. A. M u l e r o (Badajoz)

Abstract. This paper is devoted to the study of algebraic properties of rings of
continuous functions. Our aim is to show that these rings, even if they are highly non-
noetherian, have properties quite similar to the elementary properties of noetherian rings:
we give going-up and going-down theorems, a characterization of z-ideals and of primary
ideals having as radical a maximal ideal and a flatness criterion which is entirely analogous
to the one for modules over principal ideal domains.

Introduction. Throughout this paper, C(X) will denote the ring of real-
valued continuous functions defined on a topological space X and C∗(X) will
be the subring of bounded functions.

The paper is divided into three sections. In the first one, we shall prove
a theorem showing close relationships between topological properties of a
continuous map X → S and algebraic properties of the induced morphism
of rings C(S)→ C(X). Explicitly, we shall prove the following

Theorem. If a continuous map X → S is open and closed (respectively ,
open and proper) then going-up and going-down theorems hold for the mor-
phism C∗(S)→ C∗(X) (respectively , for C(S)→ C(X)).

Using this theorem we shall prove that, under the same hypothesis, the
continuous map between the prime spectra Spec(C∗(X)) → Spec(C∗(X))
is open and closed. Since the Stone–Čech compactification βX is homeo-
morphic to the maximal spectrum of C∗(X), this result generalizes that
obtained by Isiwata [5] for the extension βX → βS.

We think that this going-up and down theorem may also be used to estab-
lish other results concerning relationships between algebraic and topological
properties. In fact, we have used it in [9] to characterize finite branched
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coverings between topological spaces by means of the algebraic properties
of the corresponding morphisms of rings.

The second section deals with z-ideals. If m is a maximal ideal in a
noetherian ring, it is well known that any m-primary ideal contains some
power mn. If m is a maximal ideal in C(X), then any power mn coincides
with m, and we prove that m is the unique m-primary ideal in C(X). In
fact, we shall prove that if the radical of an ideal I of C(X) is a z-ideal,
then I = rad(I).

In the third section, these results about z-ideals are applied to obtain
a pair of flatness criteria for C(X)-modules. We prove that the flatness
criterion given by Neville [11] for F-spaces remains valid for C(X)-modules of
finite presentation for any space X. Finally, we state the following criterion:

Theorem. If every closed set in X is a zero-set , then a C(X)-module
M of finite presentation is flat if and only if it is torsion-free.

Preliminaries. Concerning rings of continuous functions, we use the
same notation and terminology as in [4] and, as usual in this framework, X
and S will henceforth be completely regular spaces and every map X → S
will be assumed to be continuous. For algebraic concepts, the reader may
consult [1], [3] or [8]. Nevertheless, we review some notation that will be
used in the paper.

The set of prime ideals in a ring A, i.e., the prime spectrum, will be
denoted by Spec(A). We shall consider this space endowed with the Zariski
topology: For any subset C of A, let V(C) = {p ∈ Spec(A) : C ⊆ p}
and take as closed sets in Spec(A) all subsets of the form V(C). If f ∈ A,
we put D(f) = Spec(A) − V(f). The collection of those open sets forms a
basis of open sets of Spec(A). Each morphism of rings h : A → B induces
a continuous map h∗ : Spec(B) → Spec(A) which sends p ∈ Spec(B) to
h−1(p) ∈ Spec(A).

The definition and basic properties of rings and modules of fractions
may be found in [1] or in [8]. Let p be a prime ideal in a ring A. If M is an
A-module we denote by Mp the localization, or module of fractions, of M
with respect to the multiplicatively closed subset A−p of A. If h : A→ B is
a morphism of rings, we denote by Bp the ring of fractions of B with respect
to the multiplicatively closed subset h(A− p).

Lemma 0.1. Let h : A→ B be a morphism of rings and h∗ : Spec(B)→
Spec(A) the induced continuous map.

(i) If h is a surjective morphism, then h∗ is a homeomorphism between
Spec(B) and the closed subset V(ker(h)) of Spec(A).

(ii) If B is the ring of fractions of A with respect to a multiplicatively
closed subset S of A, i.e., B = {a/s : a ∈ A, s ∈ S} and h : A → B
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is the natural morphism which sends a ∈ A to a/1 ∈ B, then h∗ is a
homeomorphism between Spec(B) and the subset {p ∈ Spec(A) : p∩S = ∅}
of Spec(A). In particular , Spec(Ap) = {q ∈ Spec(A) : q ⊆ p}.

(iii) If h is an injective morphism, then every minimal prime ideal in A
belongs to the image of h∗. Hence, h∗ has dense image.

P r o o f. (i) and (ii) are well known.
(iii) Let p be a minimal prime ideal in A. If h is an injective morphism,

then so is the morphism Ap → Bp induced by h (see Proposition 3.9 of [1]).
Hence, Bp 6= 0 and therefore Spec(Bp) 6= ∅. If q ∈ Spec(Bp), then h∗(q) ∈
Spec(Ap). Since p is a minimal prime ideal in A, one has Spec(Ap) = {p}.
Hence h∗(q) = p.

We shall use the homeomorphisms given in (i) and (ii) of the above
lemma without further mention. Thus, if I is an ideal of a ring A, we shall
not distinguish Spec(A/I) from V(I). By a minimal prime over-ideal of I
we shall mean a minimal prime ideal in A/I.

The radical of an ideal I of A is the ideal rad(I) = {f ∈ A : fn ∈ I for
some n ∈ N}. This ideal is just the intersection of all prime ideals containing
I (see [8], (1.E)).

Recall that an A-module M is said to be flat if the tensor product ⊗AM
is an exact functor. The support of M is the set Supp(M) of prime ideals p
of A such that Mp 6= 0.

Between the ring C(X) and its subring of bounded functions C∗(X)
there exists an algebraic relation that we shall use here:

Lemma 0.2. C(X) is the localization, or ring of fractions, of C∗(X)
with respect to the multiplicatively closed subset

MX = {f ∈ C∗(X) : 0 6∈ f(X)}.
P r o o f. Every f ∈ C(X) can be written as the fraction

f =
f · (1 + f2)−1

(1 + f2)−1 .

An immediate consequence of the above lemma is that Spec(C(X)) is
the following subspace of Spec(C∗(X)):

Spec(C(X)) = {p ∈ Spec(C∗(X)) : p ∩MX = ∅}.
The maximal spectrum of C(X), i.e., the subspace of Spec(C(X)) con-

sisting of all maximal ideals in C(X), will be denoted by M(X), and the
maximal spectrum of C∗(X) will be denoted by M∗(X). The topology in-
duced on these subspaces by the Zariski topology is also known as the Stone
topology or hull-kernel topology. It is well known that X can be identified
with a dense subspace of M(X): each point x ∈ X defines the maximal ideal
mx = {f ∈ C(X) : f(x) = 0}; and the same holds for M∗(X): the point
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x defines the maximal ideal m∗x = {f ∈ C∗(X) : f(x) = 0}. It is also well
known that both M(X) and M∗(X) are compact Hausdorff spaces that can
be identified with βX, the Stone–Čech compactification of X.

Lemma 0.3. Every prime ideal in C(X) is contained in a unique maximal
ideal and the map rX : Spec(C(X)) → M(X) that sends each prime ideal
to the unique maximal ideal containing it , is a continuous retraction.

P r o o f. It is proved in [4], Theorem 2.11, that every prime ideal in C(X)
is contained in a unique maximal ideal, and in [2] that rX is continuous.

Every map π : X → S defines, by composition, two morphisms of
rings C(S) → C(X) and C∗(S) → C∗(X) that induce continuous maps
πs : Spec(C(X)) → Spec(C(S)) and π∗ : Spec(C∗(X)) → Spec(C∗(S))
which send p ∈ Spec(C(X)) (respectively p ∈ Spec(C∗(X))) to p ∩ C(S) =
{f ∈ C(S) : f ◦π ∈ p} (respectively, to p∩C∗(S)). The extension of π to the
Stone–Čech compactification, πβ : βX → βS, can be taken to be the follow-
ing composition:

βX = M(X) ↪→ Spec(C(X)) πs→ Spec(C(S)) rS→M(S) = βS.

1. Going-up and going-down theorems
for open and closed maps

Definition 1.1. Let h : A → B be a morphism of rings and h∗ :
Spec(B)→ Spec(A) the induced continuous map. We say that the going-up
theorem holds for h if for any p, p′ ∈ Spec(A) such that p ⊆ p′, and for any
q ∈ (h∗)−1(p), there exists q′ ∈ Spec(B) such that h∗(q′) = p′ and q ⊆ q′.
That is to say, h∗(V(q)) = V(p).

Similarly, the going-down theorem holds for h if for any p, p′ ∈ Spec(A)
such that p ⊆ p′, and for any q′ ∈ (h∗)−1(p′), there exists q ∈ Spec(B) such
that h∗(q) = p and q ⊆ q′. That is to say, h∗(Spec(Bq′)) = Spec(Ap′).

Lemma 1.2. Let h : A→ B be a morphism of rings and h∗ : Spec(B)→
Spec(A) the induced continuous map. The going-up theorem holds for h if
and only if h∗ is closed.

P r o o f. If h∗ is closed, then for any q ∈ Spec(B), h∗(V(q)) is a closed
set, hence it contains the closure V(h∗(q)) of h∗(q). Therefore, the going-up
theorem holds for h.

Conversely, suppose that the going-up theorem holds for h. Any closed
subset of Spec(B) is V(I) for some ideal I of B. It is easy to check that if
I is an ideal of B, then the going-up theorem also holds for the morphism
A/h−1(I) → B/I induced by h. Since this morphism is injective, Lemma
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0.1(iii) proves that any minimal prime over-ideal p of h−1(I) comes from a
prime ideal q in B/I and then, by the going-up theorem, we have

h∗(V(I)) = h∗(Spec(B/I)) = V(h−1(I)) = Spec(A/h−1(I)).

Note that if π : X → S is an open and closed map then S is the union
of the open and closed subsets π(X) and S − π(X). This implies that C(S)
is (isomorphic to) the direct product C(S) = C(π(X))× C(S − π(X)) and
consequently Spec(C(S)) is the union of the disjoint open and closed subsets
Spec(C(π(X))) and Spec(C(S − π(X))) (and the same for C∗(S)). Thus,
for our purposes there is no loss of generality in assuming from now on that
every open and closed map is surjective.

The morphism of rings C(S) → C(X) induced by an open and closed
map π : X → S is injective and its image is the subring of functions in
C(X) which are constant on every fibre of π. By abuse of notation, given a
function f ∈ C(S) we shall also write f for the function f ◦ π.

Definition 1.3. Let π : X → S be open and closed. If a function
g ∈ C(X) is bounded on every fibre of π, we define the functions g∗(s) =
sup{g(x) : x ∈ π−1(s)} and g∗(s) = inf{g(x) : x ∈ π−1(s)} on S. It is easy
to prove that both functions are continuous.

Lemma 1.4. Let π : X → S be open and closed. Let p be a prime ideal
in C∗(S) and g a non-negative function in C∗(X). If g becomes invertible
in C∗(X)p, then g∗ becomes invertible in C∗(S)p.

P r o o f. Suppose that g becomes invertible in C∗(X)p. Then, for some
g′ ∈ C∗(X) and s ∈ C∗(S) − p, one has (g/1) · (g′/s) = 1 in C∗(X)p, i.e.,
t ·g′ ·g = t ·s for some t ∈ C∗(S)−p. Thus, t ·g′ ·g ∈ C∗(S)−p. Since p is an
absolutely convex ideal (Theorem 5.5 of [4]), |t ·g′ ·g| = |t ·g′| ·g ∈ C∗(S)−p.
If h = |t · g′| · (supx∈X |t · g′|(x))−1 then h · g ∈ C∗(S) − p, 0 ≤ h ≤ 1 and
consequently 0 ≤ h · g ≤ g. Hence h · g ≤ g∗ because h · g, as a function on
X, is constant on every fibre of π. Since p is a convex ideal, one has g∗ 6∈ p,
i.e., g∗ becomes invertible in C∗(S)p.

Theorem 1.5. If π : X → S is open and closed , then the going-up and
going-down theorems hold for the morphism C∗(S)→ C∗(X).

P r o o f. Let q be a prime ideal in C∗(X) and p = π∗(q).

Going-up theorem: Let p′ be a prime ideal in C∗(S) such that p ⊆ p′.
The fibre of p′ by π∗ is just (see [1] Chapter 3, Exercise 21)

(π∗)−1(p′) = Spec(C∗(X)p′/p
′ ·C∗(X)p′) = V(p′ ·C∗(X))∩ Spec(C∗(X)p′).

Suppose that in this fibre there are no prime ideals containing q, i.e.,

V(q) ∩V(p′ · C∗(X)) ∩ Spec(C∗(X)p′) = ∅.
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Since V(q)∩V(p′ ·C∗(X)) = V(q+p′ ·C∗(X)), the ideal q+p′ ·C∗(X) is not
contained in any prime ideal in C∗(X)p′ and therefore, there is f+

∑
gi ·fi ∈

q+p′ ·C∗(X), where f ∈ q, gi ∈ p′ and fi ∈ C∗(X), which becomes invertible
in C∗(X)p′ , i.e., f +

∑
gi ·fi does not belong to any prime ideal in C∗(X)p′ .

Since prime ideals in rings of continuous functions are convex (Theorem 5.5
of [4]), this implies that if g =

∑
g2
i , then f2+g is invertible in C∗(X)p′ . But

g =
∑
g2
i ∈ p′ and since 0 ≤ (f2)∗ ≤ f2 and f ∈ q, by the convexity of q,

one has (f2)∗ ∈ q∩C∗(S) = p ⊆ p′ and therefore, (f2 +g)∗ = (f2)∗+g ∈ p′.
By 1.4, this is a contradiction. Hence, the going-up theorem holds.

Going-down theorem: We must prove that every prime ideal in C∗(S)
contained in p is the image by π∗ of some prime ideal in C∗(X) contained
in q, i.e., that the map Spec(C∗(X)q) → Spec(C∗(S)p) is surjective. Since
the prime ideals containing a given prime ideal in C∗(X) form a chain (see
14.8 of [4]) and the going-up theorem holds for C∗(S) → C∗(X), it is not
difficult to see that the going-up theorem also holds for C∗(S)p → C∗(X)q.
Hence, Spec(C∗(X)q) → Spec(C∗(S)p) is closed (Lemma 1.2). Thus, by
Lemma 0.1(iii), to prove that it is surjective, it is enough to check that
C∗(S)p → C∗(X)q is injective. For this, assume that f/s ∈ C∗(S)p becomes
zero in C∗(X)q. Then there exists g ∈ C∗(X)− q, that clearly can be taken
as g ≥ 0, such that f ·g = 0. Since g 6∈ q and 0 ≤ g ≤ g∗, by the convexity of
q we have g∗ 6∈ q and therefore g∗ 6∈ p = q∩C∗(S). It is clear that g∗ ·f = 0.
Hence, f/s = 0 in C∗(S)p.

Corollary 1.6. If π : X → S is open and closed , then so is π∗ :
Spec(C∗(X))→ Spec(C∗(S)).

P r o o f. Since the going-up theorem holds for C∗(S) → C∗(X), π∗ is
closed (Lemma 1.2).

To prove that it is open, we show that π∗(D(g)) = D(g∗) for every
non-negative g ∈ C∗(X). The inclusion π∗(D(g)) ⊆ D(g∗) is an immedi-
ate consequence of the convexity of prime ideals in C∗(X). To prove the
converse inclusion, consider p ∈ Spec(C∗(S)) such that p 6∈ π∗(D(g)), i.e.,
(π∗)−1(p) ⊆ V(g). Since the going-down theorem holds for C∗(S)→ C∗(X),
it is not difficult to see that V(p · C∗(X)) ⊆ V(g) and therefore g be-
longs to every prime ideal containing p · C∗(X). Hence, gn ∈ p · C∗(X)
for some n ∈ N, i.e. gn =

∑
fi · gi for some fi ∈ p and gi ∈ C∗(X). Let

(fi)+ = sup(fi, 0) and (fi)− = inf(fi, 0). It is clear that fi = (fi)+ + (fi)−

and (fi)+ · (fi)− = 0. Since fi ∈ p, both (fi)+ and (fi)− belong to p. It is
not difficult to check that (fi · gi)∗ = (fi)+ · (gi)∗ + (fi)− · (gi)∗, since fi is
constant on the fibres of π. Hence, (fi · gi)∗ ∈ p. Since p is a convex ideal,
and 0 ≤ (g∗)n = (gn)∗ ≤∑(fi · gi)∗, it follows that (g∗)n, and consequently
g∗, belongs to p, i.e., p 6∈ D(g∗).
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Corollary 1.7 (Isiwata [5]). If π : X → S is open and closed , then so
is its extension πβ : βX → βS to the Stone–Čech compactifications.

P r o o f. For any open subset U of βX, we have πβ(U) = π∗(r−1
X (U))∩βS,

where rX is the continuous retraction of Spec(C∗(X)) onto βX = M∗(X).

Lemma 1.8. If π : X → S is open and proper (closed and with all fibres
compact), then C(X) is the ring of fractions of C∗(X) with respect to the
multiplicatively closed subset MS = {f ∈ C∗(S) : 0 6∈ f(S)}.

P r o o f. Since the fibres of π are compact, every g ∈ C(X) is bounded on
the fibres. Then we have on S the continuous functions g∗ and g∗ (see 1.3).
It is clear that g · (1 + (g2)∗)−1 ∈ C∗(X) and (1 + (g2)∗)−1 ∈ MS . Thus, g
can be written as the fraction

g =
g · (1 + (g2)∗)−1

(1 + (g2)∗)−1 .

Theorem 1.9. If π : X → S is open and proper , then the going-up and
going-down theorems hold for the morphism C(S) → C(X) and the map
πs : Spec(C(X))→ Spec(C(S)) is open and proper.

P r o o f. This follows from 1.5 and 1.6, because by 1.8, the morphism
C(S)→ C(X) is a localization of C∗(S)→ C∗(X), i.e.,

C(S) = C∗(S)MS → C∗(X)MS = C(X),

and this implies that π∗ : Spec(C∗(X))→ Spec(C∗(S)) sends Spec(C∗(X))
− Spec(C(X)) to Spec(C∗(S))− Spec(C(S)).

Example 1.10. Theorems 1.5 and 1.9 may be applied to some important
classes of maps:

• It is a classical result that non-constant analytic maps between Rie-
mann surfaces are open, hence any non-constant analytic map between com-
pact Riemann surfaces is open and proper.
• It is well known and easy to prove that if a group G acts on a space X

(i.e., there is a morphism of groups from G to the group of automorphisms
of X) then the natural projection π : X → X/G is open. For G finite it is
also closed.
• If p : X → S is a covering space in the classical sense (see definition in

[7], p. 145), then it is open. It is easy to prove that if the cardinality of the
fibres p−1(s) is finite then p is also closed.

2. On z-ideals and primary ideals. The zero-set of a function f ∈
C(X) is the set

Z(f) = {x ∈ X : f(x) = 0}.



62 M. A. Mulero

Recall that an ideal I of C(X) is said to be a z-ideal if Z(f) = Z(g)
and f ∈ I imply g ∈ I. This condition is equivalent to the following one:
Z(f) ⊆ Z(g) and f ∈ I imply g ∈ I, because Z(f) ∩ Z(g) = Z(f2 + g2).

Lemma 2.1. For any f1, . . . , fn in C(X), there exists g ∈ C(X) such
that any natural power of g divides every fi and Z(g) = Z(f1)∩ . . .∩Z(fn).

P r o o f. Let

f(x) = sup{|fi(x)|(1 + fi(x)2)−1 : 1 ≤ i ≤ n}
so that 0 ≤ f(x) < 1 for any x ∈ X. Define g = (log f(x))−1 in X − Z(f)
and g = 0 in Z(f). Clearly, Z(g) = Z(f1) ∩ . . . ∩ Z(fn). For 1 ≤ i ≤ n and
k ∈ N, define hik = fi · (log f)k on X −Z(f) and hik = 0 on Z(f). It is clear
that hik is continuous, so we have fi = hik · gk for every k ∈ N.

Corollary 2.2. (i) Every finitely generated ideal in C(X) is contained
in a principal ideal.

(ii) Every z-ideal in C(X) is an inductive limit (direct limit) of principal
ideals.

(iii) Every z-ideal I is a flat C(X)-module.

P r o o f. (i) This is an immediate consequence of 2.1.
(ii) Every module over a ring is the inductive limit of its finitely generated

submodules (see [1], Chap. 2, Exercise 17). A finitely generated submodule
of a z-ideal I is a finitely generated ideal (f1, . . . , fn) ⊆ I. By Lemma 2.1,
there exists a principal ideal (g) such that (f1, . . . , fn) ⊆ (g) ⊆ I. Hence,
principal ideals contained in I form a cofinal system of finitely generated
submodules of I and therefore I is the inductive limit of these principal
ideals.

(iii) It suffices to prove that for any ideal J of C(X), the sequence 0→
I⊗C(X)J → I is exact (see [3] or [8]). For this, take any element

∑
fi⊗gi ∈

I ⊗C(X) J and set, as in 2.1, fi = hi2 · g2. We can thus write
∑
fi ⊗ gi =

g ⊗ (g ·∑hi2 · gi). Obviously, if
∑
gi · fi = 0 then g ·∑hi2 · gi = 0, and

therefore
∑
fi ⊗ gi = 0.

N o t e 2.3. A particular case of Corollary 2.2(iii), when the z-ideal I is
the ideal of all functions vanishing on a given closed set of a locally compact
metrizable space, was proved by Muñoz [10].

Proposition 2.4. Let I be a z-ideal and let J be an ideal of C(X). If
V(J) ⊆ V(I), i.e., if I ⊆ rad(J), then I ⊆ J .

P r o o f. By Lemma 2.1, given f ∈ I we can take g ∈ I such that f is a
multiple of every power of g. Since I ⊆ rad(J), some power of g belongs to
J , and then f ∈ J.
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Corollary 2.5. (i) If the radical of an ideal I of C(X) is a z-ideal then
I = rad(I).

(ii) An ideal I of C(X) is a z-ideal if and only if every minimal over-
ideal of I is a z-ideal.

P r o o f. (i) This follows immediately from Proposition 2.4.
(ii) The necessity of the condition was proved in [6] (see also [4], Theorem

14.7). The converse follows from (i), because if every minimal over-ideal of
I is a z-ideal, then the intersection of these ideals, which is just rad(I), is
also a z-ideal.

Recall that an ideal q of a ring A is called primary if the only zero-divisors
of the quotient ring A/q are nilpotent elements. Every ideal whose radical
is a maximal ideal is a primary ideal. Since every maximal ideal in C(X) is
a z-ideal (see 2.7 of [4]), Corollary 2.5(ii) allows us to determine all primary
ideals of C(X) with maximal radical.

Corollary 2.6. The only primary ideals in C(X) having as radical a
maximal ideal are the maximal ideals.

We finish this section with another application of Proposition 2.4.

Proposition 2.7. Let I be a z-ideal in C(X). A C(X)-module M is
annihilated by I, i.e., I ·M = 0, if and only if Supp(M) ⊆ V(I).

P r o o f. The necessity is a well known general result. To prove the suf-
ficiency it is enough to show that I · N = 0 for every finitely generated
submodule N of M . For any of these submodules we have

V(Ann(N)) = Supp(N) ⊆ Supp(M) ⊆ V(I),

where Ann(N) = {f ∈ C(X) : f ·m = 0,∀m ∈ N}. From Proposition 2.4,
it follows that I ⊆ Ann(N).

3. Flat C(X)-modules. It is well known that a module over a principal
ideal domain is flat if and only if it is torsion-free. Rings of continuous
functions are not domains, so that to obtain similar flatness criteria for
these rings, it is necessary to redefine the concept of torsion-free module.

Definition 3.1 (Neville [11]). A C(X)-module M is quasi-torsion-free
if, for every exact sequence of C(X)-modules 0→ K → F →M → 0, where
F is a flat module, and for every f ∈ C(X), the equality (f) ·F ∩K = (f) ·K
is satisfied.

Since the C(X)-module F is assumed to be flat, it is an easy exercise
to prove that this condition holds if and only if Tor1(M,C(X)/I) = 0 for
every principal ideal I.
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Theorem 3.2 (Neville [11]). If X is an F-space, then a C(X)-module
M is flat if and only if it is quasi-torsion-free.

P r o o f. If X is an F-space, then every finitely generated ideal in C(X)
is principal (see 14.25 of [4]). From a well known flatness criterion (see, for
instance, Theorem 1 of Chapter 2 of [8]), it follows immediately that M is
flat if and only if it is quasi-torsion-free.

Theorem 3.3. A C(X)-module M of finite presentation is a flat (or
equivalently , a projective) C(X)-module if and only if it is quasi-torsion-
free.

P r o o f. Since M is finitely presented, it is flat if and only if
Tor1(M,C(X)/m) = 0 for every maximal ideal m in C(X) ([3], Corollary 2,
Ch. II, 3). As every maximal ideal in C(X) is a z-ideal, it is an inductive
limit of principal ideals (Corollary 2.2(ii)), so that, if Tor1(M,C(X)/I) = 0
for every principal ideal I, then Tor1(M,C(X)/m) = 0 for every maximal
ideal m and therefore, M is flat.

Definition 3.4. We shall say that a module M over a ring A is torsion-
free if no element of M , different from zero, is annihilated by a non-zero-
divisor of A, in other words, if Tor1(M,A/(a)) = 0 whenever a does not
divide zero.

Theorem 3.5. Assume that every closed set in X is a zero-set. Then a
C(X)-module M of finite presentation is flat (or equivalently , projective) if
and only if it is torsion-free.

P r o o f. The module M is flat if and only if Tor1(M,C(X)/m) = 0 for
every maximal ideal m in C(X) ([3], Corollary 2, Ch. II, 3). If a given
maximal m in C(X) contains a non-zero-divisor function f then, by Lemma
2.1, every finite family f1, . . . , fn of elements of m is contained in a principal
ideal generated by a function g such that Z(g) = Z(f1)∩ . . .∩ Z(fn)∩ Z(f).
This g is not a zero divisor and thus m is an inductive limit of principal
ideals generated by non-zero-divisor functions. Thus, if M is torsion-free
then Tor1(M,C(X)/m) = 0.

For any other maximal ideal in C(X) there is no problem, because if
every element of a maximal ideal m is a zero divisor, then every element of
m becomes zero in the local ring C(X)m and we conclude that this local ring
is a field. Explicitly, since every closed set in X is a zero-set, given f ∈ m,
f 6= 0, we may take a non-zero function g in C(X) such that Z(g) is the
closure of X − Z(f). This function g satisfies g · f = 0 and g 6∈ m, the latter
because f2 + g2 is not a zero divisor and so it does not belong to m. This
implies that f = 0 in C(X)m, and hence that C(X)m is a field.
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Example 3.6. The following example shows that the condition of being
torsion-free given in Definition 3.4 is weaker than the one given in Defi-
nition 3.1, and that the flatness criterion proved in Theorem 3.5 does not
hold without the hypothesis of M being a C(X)-module of finite presenta-
tion.

Let p be a minimal prime ideal of C(X) contained in the maximal ideal m
of all functions vanishing at a given point x. Assume that the ideal ηx of all
functions vanishing on some neighbourhood of x is not prime (for instance,
take X = R), so that ηx is strictly contained in p. The residue class ring
C(X)/p is torsion-free because every element of p is a zero divisor. The
condition Tor1(C(X)/p, C(X)/(f)) = 0 is equivalent to the exactness of the
sequence

0→ C(X)/p⊗C(X) (f) = (f)/(f) · p→ C(X)/p,

i.e., to the equality p∩(f) = (f)·p. If f ∈ p this equality becomes (f) = (f)·p,
which implies the existence of a function g in p such that (g − 1) · f = 0,
and we conclude that f vanishes on a neighbourhood of x.

Therefore, Tor1(C(X)/p, C(X)/(f)) 6= 0 whenever f belongs to p − ηx.
Hence, C(X)/p is not quasi-torsion-free and, a fortiori, it is not flat.
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González and J. B. Sancho de Salas for the valuable advice and encourage-
ment given during the preparation of this paper.

References

[1] M. At iyah and I. G. MacDonald, Introduction to Commutative Algebra, Addison-
Wesley, 1969.

[2] R. Bkouche, Couples spectraux et faisceaux associés. Applications aux anneaux de
fonctions, Bull. Soc. Math. France 98 (1970), 253–295.
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