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The relative coincidence Nielsen number

by

Jerzy J e z i e r s k i (Warszawa)

Abstract. We define a relative coincidence Nielsen number Nrel(f, g) for pairs of
maps between manifolds, prove a Wecken type theorem for this invariant and give some
formulae expressing Nrel(f, g) by the ordinary Nielsen numbers.

Introduction. In [S2] pairs of spaces A ⊂ X and maps f : X → X such
that f(A) ⊂ A were considered. A relative Nielsen number of such maps was
defined, i.e. a lower bound of the cardinality of fixed points which is invariant
with the respect to homotopies preserving A. In this paper we generalize
this construction to coincidences. We consider pairs of maps f, g : M → N
between n-manifolds sending a fixed k-submanifold M0 ⊂ M into a fixed
k-submanifold N0 ⊂ N . We define a relative coincidence Nielsen number
Nrel(f, g) for such pairs of maps, i.e. a homotopy invariant which is a lower
bound for the number of coincidence points. We prove that in dimension
≥ 3 it is the best such lower bound (a Wecken type theorem). Finally, we
express Nrel(f, g) by similar invariants of lifts f̃ , g̃ and we present some
computations.

1. Preliminaries. We will base on the definitions of Nielsen and Reide-
meister classes given in [Je1] (compare [Y]). In this section we recall them
and show how the same definitions may be obtained by means of covering
spaces. In fact, the identification of the sets ∇(f, g) and lift′(f, g) given be-
low is the equivalence of the two approaches to coincidence theory: the first,
“traditional”, using the fundamental group (see [B] or [Y] for fixed points),
and the approach via covering spaces [Ji].

Let X and Y be path connected spaces and f, g : X → Y a pair of
maps. The Nielsen relation (x ' y if there is a path ω from x to y such
that fω and gω are fixed end point homotopic in Y ) splits the coincidence
set Φ(f, g) = {x ∈ X : fx = gx} into Nielsen classes, and the quotient
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2 J. Jezierski

set is denoted by Φ′(f, g). Fix a point x0 ∈ X and a path r joining fx0

to gx0. We will call such an (x0, r) a reference pair . For fixed (x0, r) we
define a left action of the fundamental group π1(X,x0) on π1(Y, fx0) by
β ◦ α = f#β + α + r − g#β − r (we denote compositions of paths and
homotopy classes additively); we call the orbits of this action Reidemeister
classes and denote their set by ∇(f, g : x0, r). The sets {∇(f, g : x0, r)}(x0,r)
can be canonically identified giving an abstract set ∇(f, g) [Je1, 1.3].

Fix a reference pair (x0, r) and a coincidence point x. If u is a path
from x0 to x then fu − gu − r is a loop based at fx0, hence it defines an
element in ∇(f, g : x0, r). This yields a map Φ(f, g)→ ∇(f, g : x0, r) which
determines an injection Φ′(f, g)→ ∇(f, g), and hence any Nielsen class may
be considered as a Reidemeister class.

The above Reidemeister classes can also be defined by the use of universal
coverings as was done for fixed points in [Ji]. We will need this approach in
the next section, hence we now give the necessary definitions and we show
how to identify the classes from these two approaches.

Assume that X and Y are connected and admit universal coverings (i.e.
they are locally connected and semi-locally simply connected). Fix universal
coverings pX : X̃ → X and pY : Ỹ → Y. Denote by πX = π1X and
πY = π1Y the groups of natural transformations of X̃ and Ỹ respectively.
Let lift(f, g) denote the set of all pairs (f̃ , g̃) of lifts for which the following
diagram commutes:

X̃ Ỹ

X Y

pX

²²

f̃ ,g̃ //

pY

²²
f,g

//

Then πX × πY acts on lift(f, g) from the left by

(α, β) ◦ (f̃ , g̃) = β(f̃ , g̃)α−1.

We denote by lift′(f, g) the orbit space; we will show that there is a natural
bijection between lift′(f, g) and ∇(f, g).

We fix a reference pair (x0, r0) and we define a map R : lift(f, g) →
∇(f, g : x0, r0) as follows. Let (f̃ , g̃) ∈ lift(f, g). Fix x̃0 ∈ p−1

X (x0) and a
path ω̃ joining f̃ x̃0 to g̃x̃0 in Ỹ . Then we put

R(f̃ , g̃) = [pY#ω̃ − r0].

It is easy to check

(1.1) Lemma. R is a correctly defined map inducing

R : lift′(f, g)→ ∇(f, g : x0, r0).
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Moreover , for any other reference pair (x1, r1) the diagram

∇(f, g : x0, r0)

lift′(f, g)

∇(f, g : x1, r1)

ν

²²

R

oooooooooo77

R

OOOOOOOOOO''

commutes (ν denotes the canonical identification of Reidemeister sets
[Je1, 1.3]). Thus R induces a map R : lift′(f, g)→ ∇(f, g).

Now we define the inverse map S : ∇(f, g) → lift′(f, g). Fix again a
reference pair (x0, r0), a point x̃0 ∈ p−1

X (x0) and a ∈ π1(Y, fx0). Let ω̃ be a
lift of the path a+ r0. Let f̃ and g̃ be the lifts satisfying f̃(x̃0) = ω̃(0) and
g̃(x̃0) = ω̃(1). We define S : π1(Y, fx0) → lift′(f, g) putting S(a) = [f̃ , g̃].
Then it is easy to check

(1.2) Lemma. S is a well defined map inducing S : ∇(f, g : x0, r0) →
lift′(f, g) which is inverse to R : lift′(f, g)→ ∇(f, g : x0, r0).

Thus we may identify the sets lift′(f, g) and ∇(f, g) by means of R
and S. In Section 3 we will need the following relative version of (1.2). Let
now pX : X̃ → X and pY : Ỹ → Y be coverings corresponding to normal
subgroups H ⊂ π1X and H ′ ⊂ π1Y such that f#H ⊂ H ′ and g#H ⊂
H ′. Then the corresponding set of lifts is nonempty and formulae similar
to those above define mutually inverse maps R : lift′H′(f, g) → ∇H′(f, g)
and S : ∇H′(f, g) → lift′H′(f, g), where lift′H′(f, g) is obtained in a similar
manner to lift′(f, g) above and ∇H′(f, g) is defined in [Je1]. In fact, these
two quotient sets do not depend on the subgroup H and hence the above
symbols do not contain this letter.

2. The relative Nielsen number. A pair of maps f, g : M → N will
be called Φ-compact if the coincidence set Φ(f, g) = {x ∈ M : fx = gx} is
compact.

Now we recall the definition of the semi-index of a pair of maps f, g :
M → N ([DJ], [Je4]). We assume that M and N are topological n-manifolds
without boundary and that the coincidence set Φ(f, g) is compact. Replace
f, g by a transverse pair and consider a subset A ⊂ Φ(f, g). Fix two points
x0, x1 ∈ A and a path ω establishing the Nielsen relation between them.
Fix a local orientation α0 of M at x0 and denote by αt its translation
along ω. By transversality (f, g)#α0 determines an orientation β0 of the
normal bundle to the diagonal ∆N ⊂ N×N at the point (fx0, gx0). We say
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that ω establishes the R-relation between x0 and x1 if the translation of β0

along the path (fω, fω) is opposite to the orientation of the normal bundle at
the point (fx1, gx1) determined by (f, g)#α1. Then we say that x0, x1 are R-
related and we write x0Rx1. Consider a presentation A = {a1, b1, . . . , ak, bk :
c1, . . . , cs}, where aiRbi but never ciRcj (i 6= j). Finally, we define the semi-
index

|ind|(f, g : A) = s

(number of free elements). For details see [DJ] in the smooth case, and
[Je4] in the topological case. In the oriented case the above semi-index of a
Nielsen class equals the absolute value of the ordinary coincidence index of
this class.

Now we suppose that bdM and bdN are nonempty. A pair of maps
f, g : M → N satisfying g(bdM) ⊂ bdN will be called a B-pair [BS]. A
homotopy ft, gt : M → N will be called a B-homotopy iff ft, gt is a B-pair
for any t. Now we can follow [BS] to extend the above coincidence semi-index
to Φ-compact B-pairs. Denote by 2M a double of M , i.e. a manifold without
boundary obtained from two copies of M by identifying corresponding points
on the boundaries: 2M = (M ∪ (−M))/'. Let r : 2M →M be a retraction
such that r(−x) = x and let i : N → 2N be the inclusion. We define maps
f̂ , 2g : 2M → 2N by f̂(x) = ifr(x) and 2g(x) = g(x), 2g(−x) = −g(x).
Then the coincidence sets and Nielsen relations of the pairs f, g and f̂ , 2g
coincide. For a Nielsen class A ⊂ Φ(f, g) we define

|ind|(f, g : A) = |ind|(f̂ , 2g : A)

(the |ind| on the right side is already defined since 2M and 2N have no
boundary). Now we define the Nielsen number N(f, g) as the number of
essential classes, i.e. classes with nonzero semi-index. It is easy to check
that |ind|(f, g) and N(f, g) are Φ-compact B-homotopy invariants (compare
[BS]).

Notice that the above semi-index is not symmetric (|ind|(f, g) and
|ind|(g, f) may be different if bdM 6= ∅). In fact, even in the compact
oriented but nonclosed case this index and the Lefschetz number from [BS]
are not symmetric (if f, g : (Dn, Sn−1) → (Dn, Sn−1), f = identity, g =
constant, then ind(f, g) = 0 while ind(g, f) = 1). Here we are not going
to discuss this question: the above semi-index will be used to introduce a
relative Nielsen number which despite the lack of symmetry in its defini-
tion is, under some assumptions, the best lower bound for the number of
coincidence points (Thm. (2.4)). In [Je5] we show that the above Lefschetz
numbers differ by the Lefschetz number of restrictions to the boundaries.
We prove there that this also holds for the coincidence Lefschetz numbers
generalized to the nonorientable case.
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Since the boundary of a connected manifold may be disconnected we
have to generalize the definition of Reidemeister classes to the disconnected
case. Consider a pair of maps f, g : M → N and let M =

⋃
i∈IMi and

N =
⋃
j∈J Nj be the decompositions into connected components. Let I0 =

{i ∈ I : f(Mi) and g(Mi) are contained in the same component of N}.
For a fixed i ∈ I0 let j(i) ∈ J satisfy f(Mi) ∪ g(Mi) ⊂ Nj(i) and let
fi, gi : Mi → Nj(i) denote the restrictions of f and g respectively. We define
∇(f, g) to be the disjoint sum

⋃
i∈I0 ∇(fi, gi).

Let Φ′e(f, g),∇e(f, g) denote the sets of essential Nielsen and Reidemester
classes respectively. Notice that the natural inclusion Φ′(f, g) → ∇(f, g)
identifies Φ′e(f, g) with ∇e(f, g).

Consider the following setting:

(2.0) M and N are connected topological n-manifolds (possibly with
boundary), and M0 ⊂ M and N0 ⊂ N are fixed connected lo-
cally flat k-submanifolds (without boundary) such that either M0 ⊂
intM and N0 ⊂ intN , or M0 ⊂ bdM and N0 ⊂ bdN . Let f, g :
M → N be a Φ-compact B-pair satisfying f(M0) ∪ g(M0) ⊂ N0.

It is also convenient to present the above setting as a commutative dia-
gram

M0 N0

M N

f0,g0
//

²² ²²f,g //

where the vertical arrows denote inclusions.

(2.1) Definition ([S2]). An essential Nielsen class A ⊂ Φ(f, g) will be
called common essential if it contains an essential class from Φ(f0, g0).

Denote by N∂(f, g) the number of common essential classes of the setting
(2.0). Notice that

N∂(f, g) = # im{Φ′e(f0, g0)→ Φ′e(f, g)}(2.2)

= #{∇e(f, g) ∩ im(∇e(f0, g0)→ ∇(f, g))},
where the arrows denote the maps induced by the natural inclusions.

Now we define the relative Nielsen number Nrel(f, g) of the setting (2.0)
to be

Nrel(f, g) = N(f, g) +N(f0, g0)−N∂(f, g)

(we omit f0, g0 not to complicate the symbol Nrel(f, g)). By (2.2) it is clear
that N∂(f, g) and hence also Nrel(f, g) are homotopy invariants with respect
to Φ-compact B-homotopies, i.e. F,G : M × I → N such that F (M0 × I)∪
G(M0 × I) ⊂ N0, G(bdM × I) ⊂ bdN and Φ(F,G) is compact. We will
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call such homotopies rel-admissible. Now a standard modification of [S2, 3.1]
gives

(2.3) Theorem. Any pair f ′, g′ rel-admissibly homotopic to f, g has at
least Nrel(f, g) coincidence points.

To get a converse, i.e. to find some conditions for Nrel(f, g) to be also the
best lower bound for #Φ(f, g), we again recall a definition from [S2, 5.1].
We say that a subspace X0 ⊂ X can be by-passed iff X −X0 is connected
and π1(X −X0)→ π1X is onto.

If we assume that X is a connected manifold and X0 a locally flat sub-
manifold of X, then any of conditions

(a) X0 ⊂ bdX,
(b) dimX − dimX0 ≥ 2

implies X0 can be by-passed in X.

(2.4) Theorem. Let f, g : M → N satisfy (2.0), where

dimM0 = dimN0 ≥ 3

and M0 (resp. N0) can be by-passed in M (resp. N). Then there is a pair
rel-admissibly homotopic to f, g with exactly Nrel(f, g) coincidence points.

P r o o f. By applying the Whitney trick [Je4] to f0, g0 (dimM0 ≥ 3) and
to f, g we may assume that Φ(f0, g0) contains exactly N(f0, g0) coincidence
points, Φ(f, g) is finite, no two points in Φ(f, g) −M0 are Nielsen related
and the semi-index of any x ∈ Φ(f, g) is nonzero. If M0 ⊂ intM these
homotopies may be chosen constant on the boundary and if M0 ⊂ bdM
we may require that during these homotopies f(bdM −M0) ⊂ intN and
g(bdM) ⊂ bdN . In both cases we get a B-homotopy.

It remains to show that if two points y ∈ Φ(f, g)−M0 and x0 ∈ Φ(f0, g0)
are Nielsen related then there is a rel-admissible homotopy F,G constant
on M0 and in a neighbourhood of Φ(f, g) − {x0, y} from f, g to a pair f, g
satisfying Φ(f, g) = Φ(f, g)− {y}.

First, consider the case M0 ⊂ bdM . The path establishing the Nielsen
relation between x0 and y may be chosen a locally flat (hence flat) arc
satisfying ω(0, 1] ⊂ intM and ω(t) 6∈ Φ(f, g) for 0 < t < 1. Fix an open
subset U ⊂M homeomorphic to Rn−1 × [0,∞) such that under this home-
omorphism ω(t) = (0, t) ∈ Rn−1 × [0, 1], U ∩ bdM ⊂ Rn−1 × 0 and
U ∩ Φ(f, g) = {x0, y}. On the other hand, we find a flat arc τ joining
fx0 = gx0 to fy = gy in N and homotopic to fω ' gω. We fix a euclidean
neighbourhood V ' Rn−1 × [0,∞) of τ ⊂ N.

We will show that there is a pair of B-homotopies F,G starting from f, g,
constant outside U and satisfying F1(ω)∪G1(ω) ⊂ V . Since fω and gω are
fixed end point homotopic to τ , there exist homotopies f|t, g|t : ω[0, 1]→ N
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from the restrictions of f and g to a pair of maps into V , constant on
ω[0, ε] ∪ ω[1 − ε, 1] for an ε > 0. Moreover, by the assumption dimN ≥ 3
we may assume that this pair of homotopies satisfies Φ(f|t, g|t) = {x0, y}
for each t. Fix two closed balls K0 = D × [0, ε], K1 = D × [1 − ε, 1 + ε] in
Rn+1 × [0,∞) = U ⊂ M (Figure 1). Define F ′ : M × 0 ∪ (K0 ∪ ω[0, 1] ∪
K1)× I → N by

F ′(x, t) =
{
f|t(x) if x ∈ ω[ε, 1− ε],
f(x) otherwise.

Similarly we define G′.

Fig. 1

Fix a retraction r : M × [0, 1] → (M × 0) ∪ (K0 ∪ ω[0, 1] ∪K1) × [0, 1]
such that r(x, t) = (x, 0) for x lying outside U , r(bdM × [0, 1]) ⊂ bdM and
r−1({x0, y} × [0, 1]) = {x0, y} × [0, 1]. We put F = F ′r, G = G′r and we
notice that Φ(F1, G1) = Φ(f, g).

Now F1 and G1 send ω[0, 1] into V , hence F1(U1)∪G1(U1) ⊂ V for some
neighbourhood U1 of ω[0, 1] in U . We fix another euclidean neighbourhood
U2 ⊂ U1 so that ω(0, 1] ⊂ U2 ⊂ U1 −M0 and any point x ∈ clU2 − x0 is
uniquely written as x = tx0 + (1− t)x1, where x1 ∈ (bdU2)− x0.

Fig. 2

Finally, we put

f(x) =
{
tF1(x0) + (1− t)F1(x1) for x = tx0 + (1− t)x1 ∈ clU2,
F1(x) otherwise,
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and

g(x) =
{
tG1(x0) + (1− t)G1(x1) for x = tx0 + (1− t)x1 ∈ clU2,
G1(x) otherwise.

Now f, g is homotopic to F1, G1 (by segments) rel (M − U2), hence
Φ(f, g) = Φ(F1, G1)− {y}.

Now assume that x0 ∈ intM . Then we proceed as above taking as U ⊂M
a subset homeomorphic to Rn (x0, y correspond to (0, 0), (0, 1) ∈ Rn × R)
and K0 = D × [−ε, ε].

3. The relative Nielsen number and coverings. Let f, g : M → N
be a pair satisfying (2.0). Let pM : M̃ → M and pN : Ñ → N be coverings
corresponding to normal subgroups H ⊂ π1M and H ′ ⊂ π1N . We assume
that f# and g# send H into H ′. Then f and g admit lifts

(3.1)
M̃ Ñ

M N

f̃ ,g̃ //

pM

²²
pN

²²f,g //

Let

p−1
M (M0) p−1(N0)

M0 N0

f̃0,g̃0
//

pM

²²
pN

²²f0,g0
//

denote the restriction of the above diagram over M0 and N0. Let iM : M0 →
M , ĩM : p−1

M (M0) → M̃ , iN : N0 → N and ĩN : p−1
N (N0) → Ñ denote the

inclusions, and ∇i = ∇(iM , iN ) : ∇(f0, g0)→ ∇(f, g) and ∇ĩ = ∇(̃iM , ĩN ) :
∇(f̃0, g̃0)→ ∇(f̃ , g̃) the induced maps of Reidemeister classes.

(3.2) Lemma. Under the above notations:

(i) Φ(f, g) =
⋃
pMΦ(f̃ , g̃), where the summation runs over (f̃ , g̃) ∈

liftH′(f, g).
(ii) If for two pairs (f̃ , g̃), (f̃ ′, g̃′) ∈ lift(f, g) we have pMΦ(f̃ , g̃) ∩

pMΦ(f̃ ′, g̃′) 6= ∅ then (f̃ ′, g̃′) = β(f̃ , g̃)α for some α ∈ πM and β ∈ πN ,
and hence the considered pairs belong to the same orbit in lift′(f, g). Then
pMΦ(f̃ , g̃) = pMΦ(f̃ ′, g̃′), hence Φ(f, g) =

⋃
pMΦ(f̃ , g̃) is a disjoint sum

if in the summation we take one representative (f̃ , g̃) from each orbit in
lift′H′(f, g).

(iii) Let Ã ⊂ Φ(f̃ , g̃) and A ⊂ Φ(f, g) be Nielsen classes such that neither
A ⊂ Φ(f, g) nor A ∩M0 ⊂ Φ(f0, g0) is defective and pM Ã = A. Then A
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is a common essential Nielsen class for f, g iff Ã is common essential for
f̃ , g̃. (For the definition of defective classes see [Je2].)

P r o o f. (i) and (ii) are easy to check. We prove (iii). First, we notice
that

(1) if Ã is a Nielsen class of f̃ , g̃ then pM Ã is a Nielsen class of f, g,

(2) if Ã is essential then pM Ã is also essential,

(3) if A is a nondefective class of f, g then either p−1
M A∩Φ(f̃ , g̃) is empty

or it is a sum of mA Nielsen classes of f̃ , g̃ of semi-index rA|ind|(f, g : A)
each, where mA and rA are the natural numbers defined in [Je3, 2.2, 2.3].
In particular, A nondefective essential implies Ã essential.

Suppose Ã ⊂ Φ(f̃ , g̃) is common essential. Then Ã contains an essential
class Ã0 ⊂ Φ(f̃0, g̃0) and (2) implies pM Ã0 ⊂ pM Ã = A is essential, hence
A is common essential.

Now let A ⊂ Φ(f, g) be common essential. Let A0 ⊂ Φ(f0, g0) be an es-
sential class contained in A. Now p−1A0∩Ã 6= ∅; denote by M̃ ′ a component
of p−1

M M0 such that M̃ ′ ∩ p−1A0 ∩ Ã 6= ∅ and let Ñ ′ be the component of
p−1
N N0 containing f̃M̃ ′ ∪ g̃M̃ ′. Consider the diagram

M̃ ′ Ñ ′

M0 N0

f̃ ′,g̃′ //

pM

²²
pN

²²f0,g0
//

Since the covering spaces in this diagram are connected, (3) implies p−1
M A0∩

M̃ ′ is a disjoint sum of essential classes of f̃0, g̃0. But, as we have noticed,
M̃ ′ ∩ p−1

M A0 ∩ Ã 6= ∅, hence some of these classes are contained in Ã. Thus
Ã is common essential.

By [Je3] any essential class A ⊂ Φ(f, g) is covered by mA essential classes
from Φ(f̃ , g̃) for some lifts f̃ , g̃ and by the above proof if A is common essen-
tial then all the above classes from Φ(f̃ , g̃) are common essential, provided
no class involved is defective. Thus we obtain

(3.3) Corollary. If no Nielsen class of f, g or of f0, g0 is defective
then

∑

f̃ ,g̃

N(f̃ , g̃) =
∑

A

mA,

where in the summation on the left we take one pair from each Reidemeister
class in lift′H′(f, g) and on the right A runs over all the essential classes



10 J. Jezierski

from Φ(f, g); moreover ,
∑

f̃ ,g̃

N∂(f̃ , g̃) =
∑

A

mA,

where the summation on the left is as above, while on the right A runs over
all the common essential classes in Φ(f, g).

If mA = m does not depend on the class A ∈ Φ(f, g) then
∑

f̃ ,g̃

N(f̃ , g̃) = mN(f, g),
∑

f̃ ,g̃

N∂(f̃ , g̃) = mN∂(f, g),

and hence

N(f, g) = (1/m)
∑

f̃ ,g̃

N(f̃ , g̃), N∂(f, g) = (1/m)
∑

f̃ ,g̃

N∂(f̃ , g̃)

(in all the above sums we take one representative from each class in
lift′(f, g)).

If , moreover , N(f0, g0) = (1/m)
∑
f̃ ,g̃ N(f̃0, g̃0) then we get a similar

formula for the relative Nielsen numbers:

Nrel(f, g) = (1/m)
∑

f̃ ,g̃

Nrel(f̃ , g̃).

The last assumption is satisfied if for example the natural homomor-
phisms π1M

0 → (π1M)/H and π1N
0 → (π1N)/H ′ are epi and f#h = g#h

for any h ∈ H.

4. Computations. Suppose we are given two-fold coverings pM : M̃ →
M and pN : Ñ → N . Then their cones CM and CN are manifolds with
boundaries M̃ and Ñ respectively. In this section we will give formulae for
the relative Nielsen number of f, g : CM → CN preserving boundaries;
more exactly, we will express Nrel(f, g) by the ordinary Nielsen numbers
of suitable maps M̃ → Ñ . In a special case pN : Ñ = Sn → RPn = N ,
CN = RPn+1− disk we may combine this result with Section 3 of [Je3],
where a method of computing the (ordinary) Nielsen number of any pair
of maps into RPn and Sn is given, to get an algorithm for the relative
Nielsen number of a pair of maps CM → RPn+1 −Dn+1 sending boundary
into boundary. By analogy with [Je3] one may regard maps into the pair
(RPn+1 −Dn+1, Sn) as the simplest nontrivial case in the relative Nielsen
theory since π1(RPn+1 −Dn+1) = Z2 and π1S

n = 0 (n ≥ 2).
Let pM : M̃ → M be a two-fold covering of a connected n-manifold

(without boundary) and let %M be the corresponding involution of M̃ . Then
the cone of the above covering CM = (M̃ × [0, 1])/' ((x̃, 0) ' (%M (x̃), 0)) is
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an (n+1)-manifold with the boundary C0
M = M̃×1. Let C̃M = M̃× [−1, 1].

Then the map pM : C̃M → CM given by

pM (x̃, t) =
{

[x̃, t] for t ≥ 0,
[%M (x̃),−t] for t ≤ 0,

is also a two-fold covering and %M (x̃, t) = (%M x̃,−t) is the corresponding
involution.

Let pN : Ñ → N be another two-fold covering. We will consider a pair
of maps f, g : CM → CN sending boundary into boundary, i.e. f(C0

M ) ∪
g(C0

M ) ⊂ C0
N , and we will try to find the relative Nielsen number of such a

pair (Thm. (4.5)). We start by classifying such maps.

(4.1) Lemma. For any map f : (CM , C0
M ) → (CN , C0

N ) there exists a
map φ̃ : M̃ → Ñ such that φ̃%M = %N φ̃ and f is homotopic rel. boundary
either to f ′[x̃, t] = [φ̃(x̃), t] or to f ′′[x̃, t] = [φ̃(x̃), 1].

P r o o f. First we show that f admits a lift f̃ :

C̃M C̃N

CM CN

f̃ //_ _ _

pM

²²
pN

²²f //

Such a lift exists iff (fpM )#(π1C̃M ) ⊂ pN#(π1C̃N ). But we notice that

pM#(π1C̃M ) = iM#(π1C
0
M ), where iM : C0

M → CM denotes the inclusion of

the boundary, and similarly pN#(π1C̃N ) = iN#(π1C
0
N ). Now

(fpM )#(π1C̃M ) = (fiM )#(π1C
0
M )

= (iNf)#(π1C
0
M ) ⊂ iN#(π1C

0
N ) = pN#(π1C̃N ).

Since the covering pN is two-fold, any lift f̃ satisfies either f̃%M = %N f̃

or f̃%M = f̃ . In the first case we call f̃ odd and in the second even. We
notice that the following three conditions are equivalent:

(a) f̃ is odd.
(b) The map π1CM/im pM# → π1C/im pN# induced by f is nonzero.
(c) f̃ sends the components of the boundary C̃0

M = (M̃×1)∪(M̃×(−1))
into distinct components of C̃0

N = (Ñ × 1) ∪ (Ñ × (−1)).

Similarly

(a′) f̃ is even.
(b′) The induced homotopy map is zero.
(c′) f̃ carries both components of C̃0

M into the same component of C̃0
N .
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Without loss of generality we may assume that f̃ : C̃M = M̃ × [−1, 1]→
C̃N = Ñ × [−1, 1], f̃(x̃, t) = (f̃1(x̃, t), f̃2(x̃, t)), sends M̃ × 1 into Ñ × 1.
Assume, moreover, that f̃ is odd. Define a homotopy H̃s : C̃M → C̃N by

H̃s(x̃, t) = (f̃1(x̃, t(1− s)), (1− s)f̃2(x̃, t) + ts).

Since H̃s%̃M = %̃N H̃s, H̃s defines a (boundary preserving) homotopy Hs :
CM → CN from H0 = f to the map H1[x̃, t] = [φ̃(x̃), t], where φ̃(x̃) =
f̃1(x̃, 0).

Now assume that f̃ is even. Define

H̃s(x̃, t) = (f̃1(x̃, t(1− s)), (1− s)f̃2(x̃, t) + s).

Then H̃s%̃M = H̃s and hence H̃s defines a (boundary preserving) homotopy
from f to the map H1[x̃, t] = [φ̃(x̃), 1], where φ̃(x̃) = f̃1(x̃, 0).

Notice that if φ̃, ψ̃ : M̃ → Ñ are maps from the above lemma corre-
sponding to f, g : CM → CN , then identifying C0

M , C
0
N with M̃, Ñ we get

N(f0, g0) = N(φ̃, ψ̃).

(4.2) Lemma. There is a natural bijection of Reidemeister classes
∇(f0, g0) → ∇(f1, g1) preserving semi-index and defective classes provided
one of the following assumptions is satisfied :

(a) The diagram

M0 N0

M1 N1

f0,g0 //

²² ²²f1,g1 //

is commutative and the vertical lines are homeomorphisms.
(b) The pairs (f0, g0), (f1, g1) : M → N are B-homotopic.
(c) The above diagram is commutative, the vertical lines are inclusions,

dimMi = dimNi (i = 0, 1) and f(M1) ⊂ N0. Moreover , M0 ⊂ M1 and
N0 ⊂ N1 admit normal bundles ν and ν′ such that the restriction g : ν → ν′

is homeomorphic on fibres and any path establishing the Nielsen relation
between two coincidence points of f1, g1 can be deformed into M0.

P r o o f. (a), (b) are evident. To prove (c) we notice that the last assump-
tion implies that the map induced on the Nielsen classes is a bijection while
the normal bundles give the equality of semi-indices.

Consider again a pair of maps f, g : CM → CN sending boundary into
boundary and let f̃ , g̃ : C̃M → C̃N be their lifts sending M̃ × 1 into Ñ × 1.
We consider several cases.
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(a) g̃ is even. By (4.1) we may assume that the image of g is contained
in Ñ × 1. Composing f with a homotopy shifting Ñ × 1 inside CN we get
Φ(f, g) = ∅, hence N(f, g) = 0. Thus N∂(f, g) = 0, hence Nrel(f, g) =
N(f0, g0) = N(φ̃, ψ̃).

(b) f̃ is even, g̃ is odd. By (4.1) we may assume that f [x̃, t] = [φ̃(x̃), 1]
and g[x̃, t] = [ψ(x̃), t]. We notice that the pairs (f0, g0) and (f, g) satisfy the
assumptions of (4.2)(c). In fact, one needs only prove the last assumption.
Fix a path ω in CM joining two coincidence points of f1, g1 and such that fω
is homotopic to gω in CN . We prove that ω is homotopic to a path in C0

M .
Suppose the contrary. Then for a lift ω̃ satisfying ω̃(0) ∈ M̃ × 1, we have

ω̃(1) ∈ M̃ × {−1}. Let f̃ , g̃ be lifts of f, g sending M̃ × 1 into Ñ × 1. Then
f̃ ω̃(0), g̃ω̃(0) and f̃ ω̃(1) belong to Ñ×1 (f̃ is even) while g̃ω̃(1) ∈ Ñ×{−1}
(g is odd). Thus fω is not homotopic to gω (in CN ), which contradicts the
assumption.

Now (4.2)(c) gives N(f, g) = N(f0, g0), hence Nrel(f, g) = N(f0, g0) =
N(φ̃, ψ̃).

(c) f̃ and g̃ are odd . We show that N∂(f, g) is the number of essential
classes of Φ(φ, ψ) which are images of essential classes of Φ(φ̃, ψ̃) in the
diagram

(4.3)
M̃ Ñ

M N

φ̃,ψ̃ //

pM

²²
pN

²²φ,ψ //

where φ̃ and ψ̃ satisfy f̃ [x̃, t] = [φ̃x̃, t] and g̃[x̃, t] = [ψ̃x̃, t]. Consider a ho-
motopy commutative diagram

M̃ Ñ

C0
M C0

N

CM CN

M N

φ̃,ψ̃ //

pM

²²

j
M̃

AAAAAAÃÃ j
Ñ~~~~~~~~

pN

²²

f0,g0
//

iM

²²
iN

²²f,g //

jM

{{{{{{==

φ,ψ //

jN

aaBBBBBB

where the vertical arrows are natural coverings, jM : M ' M × 0 →
M̃ × 0/' ⊂ CM and j

M̃
: M̃ ' M̃ × 1 → C0

M are inclusions, and jN and
j
Ñ

are defined similarly. By [Je1, 2.1] it induces a commutative diagram of
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Reidemeister sets

∇(φ̃, ψ̃) ∇(f0, g0)

∇(φ, ψ) ∇(f, g)

κ //

η

²²
η

²²
κ //

Now we notice that the upper horizontal arrow is induced by a pair of
homeomorphisms j

M̃
, j

Ñ
while the lower arrow is induced by a pair of

homotopy equivalences. Thus they are bijections of the Reidemeister sets
[Je1]. It remains to show that they preserve semi-index. The upper arrow
is evident by (4.2)(a). For the lower one we use the homotopy {fs, g} with
fs[x̃, t] = f [x̃, st] and apply (4.2)(c).

Thus we may consider the diagram (4.3).

(4.4) Lemma. The map ∇(φ̃, ψ̃) → ∇(φ, ψ) induced by (4.3) sends es-
sential classes to essential classes.

P r o o f. Let Ã ⊂ ∇(φ̃, ψ̃) be a Nielsen class. Then A = pM Ã ⊆ ∇(φ, ψ)
is also a Nielsen class. Assume that A is not essential. Then A = {a1, b1, . . . ,

ak, bk} with aiRbi, and Ã ∩ p−1
M {ai, bi} also splits into pairs of R-related

points. Now Ã also splits into such pairs, hence Ã is not essential.

It remains to find out how many Nielsen classes from ∇(φ̃, ψ̃) are sent
to a given A ∈ ∇(φ, ψ). We fix a class A ∈ ∇(φ, ψ) which is the image of
an essential class from ∇(φ̃, ψ̃). Since φ̃ and ψ̃ are odd, p−1

M a ⊂ Φ(φ, ψ) for
any a ∈ A. Write p−1

M a = {ã0, ã1}. Notice that ã0, ã1 ∈ ∇(φ̃, ψ̃) are Nielsen
related iff Ca(φ#, ψ#) = {ω ∈ π1(M,a) : φ#ω = ψ#ω} is not contained
in im pM#. Since im pM# ⊂ π1M is a subgroup of rank two, the above
condition does not depend on the choice of a ∈ Φ(φ, ψ). Thus if Ca(φ#, ψ#)
is contained in im pM# for a point a ∈ A then A is covered by two essential
classes and otherwise by a single class.

The above and the equality N(f0, g0) = N(φ̃, ψ̃) imply

N∂(f, g) =
{

(1/2)N(φ̃, ψ̃) if Ca(φ#, ψ#) ⊂ im[π1M̃ → π1M ],
N(φ̃, ψ̃) otherwise.

We sum up the results of this section:

(4.5) Theorem. Let f, g : (CM , C0
M ) → (CN , C0

N ) be a Φ-compact pair
of maps. Then

Nrel(f, g) =





N(φ̃, ψ̃) if at least one of f̃ , g̃ is even,
N(φ, ψ) + (1/2)N(φ̃, ψ̃) if f̃ , g̃ are odd and

Ca(φ#, ψ#) ⊂ im[π1M̃ → π1M ],
N(φ, ψ) if f̃ , g̃ are odd and the above

inclusion does not hold.
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5. The relative Nielsen numbers of self-maps of projective
spaces. In the last section we will compute Nrel(f, g) for a pair of self-maps
f, g : RPn → RPn sending RP l into itself (l < n), in other words, for a
commutative diagram

(5.0)
RP l RP l

RPn RPn
i

²²

f0,g0
//

i

²²f,g //

(2 ≤ l < n). We will express Nrel(f, g) by the (ordinary) Nielsen numbers
of the pair f, g and its restriction to RP l. To get explicit formulae one can
combine these results with (5.1) and (6.1) of [Je3]. Notice that one of our
results shows that the homotopy types of f, g and of their restrictions do
not determine Nrel(f, g) (Remark (5.10)).

Let us start with some general remarks.

(5.1) Lemma. Consider a diagram

M0 N0

M N

f0,g0
//

iM

²²
iN

²²f,g //

satisfying (2.0). Suppose that iM# : π1M
0 → π1M and iN# : π1N

0 →
π1N are isomorphisms. Then the induced map of Reidemeister sets ∇i :
∇(f0, g0)→ ∇(f, g) is a bijection.

The assumptions of (5.1) are fulfilled for the diagram (5.0).

(5.2) Lemma. If under the assumption of (5.1), ∇(f, g) (or resp.
∇(f0, g0)) contains only essential classes then N∂(f, g) = N(f0, g0) (resp.
N∂(f, g) = N(f, g)).

(5.3) Lemma. If in the diagram (5.0) one of the dimensions l or n is
odd then

(a) N(f0, g0) = 0 or N(f, g) = 0 implies N∂(f, g) = 0, whereas if both
N(f0, g0) and N(f, g) are nonzero then

(b) l odd implies N∂(f, g) = N(f, g),
(c) n odd implies N∂(f, g) = N(f0, g0).

P r o o f. (a) is evident. To prove (b) notice that an odd-dimensional pro-
jective space is Jiang [Je3, Section 6], hence all the classes in ∇(f0, g0) are
essential and (b) follows from (5.2). A similar argument proves (c).

It remains to consider the case when both l and n are even. For reference
we recall
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(5.4) Lemma ([Je3, 5.1]). For any pair of maps f, g : RPn → RPn
(n even),

N(f, g) =





0 if f# = g# = 0 and f ' g,
1 if f# 6= g# or (f# = g# = id and f ' g),
2 if f# = g# and f, g are not homotopic.

Assume first that f# 6= g#. Then ∇(f0, g0) and ∇(f, g) consist of one
element, hence (5.4) implies N(f, g) = 1 and N(f0, g0) = 1. This yields

(5.5) Corollary. If both l, n are even and f# 6= g# then N∂(f, g) =
Nrel(f, g) = 1.

Now suppose f# = g#.

(5.6) Lemma. Let l, n be even and f# = g#. Then

• f, g not homotopic implies N∂(f, g) = N(f0, g0),
• f0, g0 not homotopic implies N∂(f, g) = N(f, g).

P r o o f. If f, g are not homotopic then by (5.4) all (i.e. two) classes in
∇(f, g) are essential and we may apply (5.2). Similarly if f0, g0 are not
homotopic.

It remains to consider the case where f, g are homotopic and so are the
restrictions f0, g0. First, we assume, moreover, that f# = g# = 0. Then
(5.4) implies

(5.7) Lemma. If l, n are even, f, g are homotopic, so are the restrictions
f0, g0 and f# = g# = 0 then Nrel(f, g) = N∂(f, g) = 0.

Now we assume that f# = g# = id.

(5.8) Lemma. Fix a map f : RPn → RPn such that f(RP l) ⊂ RP l,
f# = id, n > l both even. Then the homotopy set [(RPn,RP l), (RPn,RP l)]
contains exactly two classes with a representative g satisfying f ' g and
f0 ' g0. These two classes are represented by f and Kf , where K is the
involution of RPn given by the formula

K〈x0, . . . , xn〉 = 〈x0, . . . , xn−1,−xn〉.
P r o o f. Define two forgetful functors

j1 : [(RPn,RP l), (RPn,RP l)]→ [RPn,RPn],

j2 : [(RPn,RP l), (RPn,RP l)]→ [RP l,RP l]

by j1[g] = [g] and j2[g] = [g0]. Now the lemma may be reformulated as
asserting that

j−1
1 [f ] ∩ j−1

2 [f0] = {[f ], [Kf ]}
and that [f ] and [Kf ] are distinct elements of [(RPn,RP l), (RPn,RP l)].
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We start by describing the set j−1
2 [f0]. Let [g] ∈ j−1

2 [f0]. By the homo-
topy extension property we may assume that g0 = f0. Since πlRPn = 0 for
1 < l < n, there is no obstruction to a homotopy from f to g on RPm−1 and
therefore we assume that f and g are equal outside the unique n-cell of RPn.
Thus g is homotopic to the connected sum f#s, where s : Sn → RPn and
j−1
2 [f0] = {[h] : h = f#s, s : Sn → RPn}. Notice that any s : Sn → RPn is

a composition Sn
s′→ Sn

p→ RPn. Let k = deg s′. We then put sk = ps′ and
hk = f#sk. Now j−1

1 [f ]∩j−1
2 [f0] consists of those [hk] which are freely homo-

topic to f ' h0. But the degrees of the lifts h̃k : Sn → Sn are ±(deg f̃+2k).
If now hk is freely homotopic to f ' h0 then deg f̃ = ∓(deg f̃ + 2k), hence
either k = 0 or k = −deg f̃ . Thus j−1

1 [f ] ∩ j−1
2 [f0] contains at most two

elements.
It remains to show that f and Kf are not homotopic as self-maps of

the pair (RPn,RP l). Suppose otherwise: let Ht be a homotopy from f to
Kf satisfying Ht(RP l) ⊂ RP l and let H̃t : Sn → Sn be a lift of this
homotopy. Consider the restriction H̃0

t : Sl → Sl starting from H̃0
0 = f̃0.

Since deg(−f̃0) = −deg f̃0 (n is even) and deg f̃0 is odd (f# = id), we
have H̃0

1 = f̃0. This implies that the lift H̃t of the homotopy Ht starting
from H̃0 = f̃ (the extension of f̃0) satisfies H̃1 = K̃f̃ . But then deg H̃1 =
deg(K̃f̃) = − deg f̃ , contrary to deg H̃1 = deg H̃0 = deg f̃ 6= 0.

Thus we may consider two cases: g = f and g = Kf . In the first case
Φ(f0, g0) = RP l and Φ(f, g) = RPn are the unique (nonempty) Nielsen
classes, and one of them is contained in the other. By (5.4) these two classes
are essential, hence N(f0, g0) = N(f, g) = 1 and N∂(f, g) = Nrel(f, g) = 1.

Now consider the pair f, g = Kf . The restriction of this pair to RP l
gives f0 = g0 and now Φ(f0, g0) = RP l is the unique essential Nielsen class
of f0, g0. We will show that the inclusion RP l ⊂ RPn sends this class to
an inessential Nielsen class in Φ(f,Kf). We fix a lift f̃ and consider the
commutative diagram

Sn Sn

RPn RPn

f̃,K̃f̃ //

²² ²²f,Kf //

Now the class p(Φ(f̃ , K̃f̃)) ⊂ Φ(f,Kf) contains RP l and hence it re-
mains to show that p(Φ(f̃ , K̃f̃)) is inessential. Consider the homotopy K̃s :
Sn → Sn, K̃s(z1, . . . , zk, t) = (eisz1, . . . , e

iszk,−t) (we put n = 2k and iden-
tify Rn+1 = Ck×R). It induces a homotopy Ks : RPn → RPn starting from
Kf and removing the class p(Φ(f,Kf)) which turns out to be inessential.
Thus N∂(f,Kf) = 0.
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(5.9) Corollary. Assume that l, n are even, f is homotopic to g, f0

is homotopic to g0, and f# = g# = id. If , moreover , f is homotopic to g
as self-maps of the pair (RPn,RP l) then N∂(f, g) = 1; otherwise N∂(f, g)
= 0.

(5.10) R e m a r k. In any case ((5.3), (5.5), (5.6), (5.7), (5.9)), N∂(f, g)
and Nrel(f, g) can be expressed by N(f, g) and N(f0, g0): we need only know
the parity of dimensions, the induced homotopy homomorphisms f#, g# and
whether the maps f, g are homotopic (as maps of pairs of spaces). On the
other hand, we may notice that the homotopy types of the maps f, g and
of their restrictions f0, g0 do not determine N∂(f, g). Let f : RPn → RPn
be a map inducing f# = id and mapping RP l ⊂ RPn into itself (l, n even).
Consider the pairs of maps f, f and f,Kf . These maps (as self-maps of RPn)
are homotopic and their restrictions to RP l are equal. Nevertheless, by the
above N∂(f, f) = 1 while N∂(f,Kf) = 0. This shows that the homotopy
types of f, g and f0, g0 do not determine N∂(f, g).
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