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On a perfect set theorem of A. H. Stone
and N. N. Lusin’s constituents

by

J. C h a b e r (Warszawa), G. G r u e n h a g e (Auburn, Ala.)
and R. P o l (Warszawa)

Abstract. N. N. Lusin asked in 1935 if there exists a Borel sieve each constituent of
which is a singleton. A negative answer based on metamathematical methods was given
in 1981 by V. G. Kanovĕı. We present a simple topological solution of Lusin’s problem,
and we also establish some new results on this topic. Our approach is based on a link
between Lusin’s constituents and certain results in the theory of non-separable Souslin
sets developed by A. H. Stone.

1. Introduction. The aim of this note is to show a link between certain
results in the theory of non-separable Souslin sets, developed by A. H. Stone
[St1]–[St3], and some classical topics concerning N. N. Lusin’s constituents
of coanalytic sets.

Lusin asked in 1935 ([Lu1], Problème I in Sec. 8) if there exists a Borel
sieve each constituent of which is a singleton (cf. Sec. 6.1). A negative answer
was given in 1981 by V. G. Kanovĕı [Ka1], [Ka2], by means of some advanced
metamathematical methods. As was pointed out by V. A. Uspenskĭı [Us],
p. 111 (p. 128 of the English translation), the problem was almost unique,
among other important questions set forth by Lusin, that could be solved
without introducing new axioms for set theory, but was left open in the
“classical period” of descriptive set theory (cf. [Kel], Sec. 1). It seems that
no solution of Lusin’s problem based only on standard topological arguments
has been published (cf. Uspenskĭı’s comments ending [Us]).

We shall show in Section 3 that a simple version of a non-separable
perfect set theorem of A. H. Stone (Theorem 4.1) easily provides such a
solution.
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Refining Stone’s theorem one can also get more information about
Lusin’s constituents. We illustrate this point formulating below twin state-
ments, Theorem 1.2 and Corollary 1.3, connected by a resolution of well-
orders described in Section 2. But first, let us clarify our terminology and
notation.

1.1. Terminology and notation. Our terminology follows Kuratowski
[Kur]. We denote by N the natural numbers. Let Q be the set of ratio-
nal numbers and let 2Q be the Cantor space of all subsets of Q, with the
topology of pointwise convergence (cf. [Kech], 27.13). The order type of
A ⊂ Q is denoted by type(A). Let

WO = {A ∈ 2Q : A is well-ordered},(1)

WOξ = {A ∈WO : type(A) = ξ}, ξ < ω1.(2)

Then WO is the complement of the analytic set sifted by the universal Lusin
sieve and WOξ is the ξth constituent corresponding to the sieve (cf. [Kur],
§3, XV, [Kech], 31.3).

The Baire space B(ω1) of weight ℵ1 is the countable product of the dis-
crete space of cardinality ℵ1. For our purpose, it is convenient to consider
B(ω1) as the space of functions x : Q→ ω1 from the rationals to the count-
able ordinals, with a “first difference” metric (i.e., for a fixed enumeration
e : N → Q, for x 6= y, d(x, y) = 1/min{n : x(e(n)) 6= y(e(n))} (cf. [St1],
Sec. 2).

We denote by [α, β) the ordinal interval α ≤ ξ < β, and for x ∈ B(ω1),
we set

(3) κ(x) = min{α : x(Q) ⊂ [0, α)}.
We shall call

(4) Bξ = {x : κ(x) = ξ}
the layer at level ξ of the Baire space B(ω1).

A Souslin set S in a completely metrizable space X is the image under
the projection parallel to the Cantor set 2N of a Gδ-set in the product
X × 2N (equivalently, S is a result of the A-operation applied to closed sets
in X). Separable Souslin sets coincide with analytic sets (cf. [Kur], §3, XIV
and §39, II, [Kech], 25, [Ro]).

A set of countable ordinals is a c.u.b. set if it is closed and unbounded
in ω1, and it is stationary if it intersects each c.u.b. set in ω1 (cf. [Kun], II,
§6).

The phrase “property P (ξ) holds for all but non-stationary many ξ”
means that P (ξ) is satisfied for ξ in a set containing a c.u.b. set in ω1.

We shall denote by Lim the set of countable limit ordinals.
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1.2. Theorem. Let S be a Souslin set in the Baire space B(ω1) and let
C ⊂ S intersect stationary many layers Bξ. Then for all but non-stationary
many ξ, each Fσ-set containing S ∩Bξ intersects C ∩⋃α<ξ Bα.

1.3. Corollary. Let A be an analytic set in the Cantor space 2Q and
let E ⊂ A intersect stationary many constituents WOξ. Then for all but
non-stationary many ξ, each Fσ-set containing A ∩ WOξ intersects E ∩⋃
α<ξWOα.

Theorem 1.2 will be proved in Section 4 and Corollary 1.3 will be dis-
cussed in Section 5.

2. A complete non-separable resolution for WO. We adopt the
notation introduced in Section 1.1. For x ∈ B(ω1), let supp(x) = {q ∈ Q :
x(q) > 0}. Evidently, the map σ : B(ω1) → 2Q defined by σ(x) = supp(x)
is continuous.

Our resolution is the restriction of σ to a subset M of B(ω1) described
in the following lemma, where Bξ is the layer at level ξ in B(ω1) defined in
Section 1.1, (3) and (4).

2.1. Lemma. Let M be the subspace of B(ω1) consisting of functions x
such that x : supp(x)→ [1, κ(x)) is strictly increasing and onto. Then M is a
Gδ-set in B(ω1), σ : M →WO is one-to-one, onto, and σ(M ∩Bξ) = WOξ
for ξ ≥ ω0.

P r o o f. We have to check that M is a Gδ-set, the remaining properties
being transparent. To this end, consider

V (q, α) = {x ∈ B(ω1) : x(q) = α}.
The set of x ∈ V (q, α) such that [0, α) 6⊂ x(Q),

F (q, α) = V (q, α) \
⋂

β<α

⋃

r∈Q
V (r, β),

is an Fσ-set and since, for fixed q, {V (q, α) : α < ω1} is a discrete open
collection, the union

⋃
α<ω1

F (q, α) is of type Fσ in B(ω1).
We conclude that the set

G = B(ω1) \
⋃

q∈Q

⋃
α<ω1

F (q, α),

consisting of x ∈ B(ω1) such that [0, κ(x)) = x(Q), is a Gδ-set.
The set of functions x strictly increasing on supp(x),

H = B(ω1) \
⋃
q<r

{x : x(q) ≥ x(r) > 0},

is also of type Gδ.
Since M = G ∩H, this completes the proof.
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3. A topological solution of Lusin’s problem. As we have already
mentioned in the introduction, V. G. Kanovĕı [Ka1] solved Lusin’s problem
using metamathematical arguments (cf. Sec. 6.1).

We shall derive an answer to Lusin’s question from a non-separable per-
fect set theorem. Let A ⊂ 2Q be an analytic set intersecting each constituent
WOξ (cf. 6.1 for a reformulation in terms of Lusin sieves). We shall show
that some intersection A∩WOξ is uncountable. By Lusin’s covering theorem
([Kur], §39, VIII, Th. 5), it suffices to find a Cantor set L in A ∩WO.

To this end, consider the resolution σ : M → WO from Lemma 2.1 and
let S = σ−1(A). Then S is a Souslin set in B(ω1) intersecting every layer Bξ.
For each ξ ∈ Lim pick a point xξ ∈ S∩Bξ. Then xξ is a sequence of ordinals
from [0, ξ) with supremum ξ, and hence a result of Stone ([St2], Lemma 5.2)
shows that {xξ : ξ ∈ Lim} is not σ-discrete. Therefore the non-σ-discrete
Souslin set S contains a Cantor set L (cf. [St1], Sec. 4, [El]). Then σ(L) is
the Cantor set we were looking for.

4. A refinement of a perfect set theorem of A. H. Stone. The
argument in the previous section was based on the fact that any non-σ-
discrete Souslin set contains a perfect set, a simple instance of several more
sophisticated non-separable perfect set theorems considered by A. H. Stone
([St1], Sec. 4, [St2], Sec. 4, or [St3], Sec. 3.4). We shall appeal to Stone’s
results in this section to get more information about the constituents.

Since we did not find a convenient reference for the perfect set theorem
below, most suitable for our purpose, we include a brief proof, following
closely Stone’s ideas. This theorem will be further refined in Proposition 4.4.

4.1. Theorem. Let S be a Souslin set in a completely metrizable space
X of weight ℵ1. If C ⊂ S is not a union of countably many locally separable
sets, then S contains a copy K of B(ω1) closed in X such that K = K ∩ C.

P r o o f. We shall use Stone’s terminology ([St3], Sec. 2.1), calling a set
σLw(< ℵ1) if it is a union of countably many locally separable subsets.

Represent the Souslin set S as the image under the projection p : X ×
2N → X of a Gδ-set G in X × 2N .

Let Y denote the product X × 2N and fix sets Gi open in Y with G =⋂
i≥1Gi, and a subset D of G such that p maps D onto C in a one-to-one

manner.
Note that p, being a projection parallel to a compact factor, maps closed

subsets of Y onto closed subsets of X (cf. [Kur], §20, V, Theorem 7). Thus,
the images of discrete in Y collections of subsets of D are discrete in X. In
particular, D is not σLw(< ℵ1) (cf. [St3], Sec. 2.1), and removing from D
a σLw(< ℵ1) set, we can assume that all relatively open non-empty sets in
D have weight ℵ1 (cf. [St3], Sec. 2.2).



A theorem of Stone and Lusin’s constituents 313

Therefore, for each U open in Y and any d ∈ D∩U , there is FU ⊂ D∩U
of cardinality ℵ1, discrete in Y , with d ∈ FU . Furthermore, we can find a
collection V = {Vy : y ∈ FU} of open subsets of Y such that, for y ∈ FU ,
y ∈ Vy ⊂ V y ⊂ U and p(V) = {p(Vy) : y ∈ FU} is discrete in X.

Repeating this observation, we can define collections Vi discrete in Y
of subsets of Gi open in Y with mesh(Vi) ≤ 1/i, the closures of Vi+1 in
Y refining Vi, and p(Vi) discrete in X. Moreover, we can fix, for each i, a
subset Fi of D such that each V ∈ Vi contains exactly one point of Fi and
Fi ⊂ Fi+1.

Then L =
⋂
i≥1

⋃Vi ⊂ G is a copy of B(ω1) closed in Y and F =⋃
i≥1 Fi ⊂ D is a dense subset of L.

Let K = p(L) ⊂ S. Our construction assures that K is closed in X and p
maps L homeomorphically onto K. Thus K is a copy of B(ω1) closed in X,
p(F ) ⊂ C is dense in K, and the proof is complete.

Before stating Proposition 4.4, a basis for the next section, we shall con-
sider some natural “approximations” of non-separable spaces by separable
subspaces (more on this topic can be found in [Po2]).

Let X be a metrizable space of weight ℵ1 and let a sequence {Xξ}ξ<ω1

satisfy

(1) X1 ⊂ . . . ⊂ Xξ ⊂ . . . , ξ < ω1, Xξ is separable and closed in X,

(2) Xξ =
⋃

α<ξ

Xα for ξ ∈ Lim, X =
⋃

ξ<ω1

Xξ.

We shall call such a sequence {Xξ}ξ<ω1 admissible in X. The set

(3) Pξ = Xξ \
⋃

α<ξ

Xα

will be called the layer at level ξ determined by this sequence.
Clearly, the sequence {Kξ}ξ<ω1 , where

(4) Kξ = {x ∈ B(ω1) : κ(x) ≤ ξ},
is admissible in B(ω1), and the Bξ defined in Section 1, (4), are the layers
determined by this sequence.

Let us make two observations on admissible sequences.

4.2. Lemma. Let Y ⊂ X and let {Xξ}ξ<ω1 be an admissible sequence
in X. Then the sets X ′ξ defined , for ξ ≤ ω1, by

(5) X ′ξ = Y ∩
⋃

α<ξ

Xα

form an admissible sequence in Y . Moreover , if Y is closed in X and P ′ξ
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denotes the layer at level ξ determined by the sequence {X ′ξ}ξ<ω1 , then

(6) P ′ξ ⊂ Pξ for ξ ∈ Lim,

where Pξ denotes the layer at level ξ determined by the original sequence
{Xξ}ξ<ω1 .

Clearly {X ′ξ}ξ<ω1 satisfies condition (1). Thus in order to prove the first
part of 4.2, it suffices to show that it satisfies (2). Observe that for a limit
ξ ≤ ω1, we have X ′ξ = Y ∩⋃α<ξXα =

⋃
α<ξ(Y ∩Xα) =

⋃
α<ξ Y ∩Xα =⋃

α<ξX
′
α+1 =

⋃
α<ξX

′
α.

In particular, Y = X ′ω1
=
⋃
α<ω1

X ′α =
⋃
α<ω1

X ′α. The last equality
follows from the fact that the closure in X is determined by sequences. This
completes the first part of the proof.

If Y is closed in X, then for a limit ξ < ω1, we have P ′ξ = X ′ξ\
⋃
α<ξX

′
α ⊂

X ′ξ+1 \
⋃
α<ξX

′
α+1 = Y ∩Xξ \

⋃
α<ξ(Y ∩Xα) = Y ∩ Pξ ⊂ Pξ.

4.3. Lemma. Let {Xξ}ξ<ω1 and {X ′ξ}ξ<ω1 be two admissible sequences
in X and let Pξ, P ′ξ be the layers at level ξ corresponding to the sequences
{Xξ}ξ<ω1 and {X ′ξ}ξ<ω1 , respectively. Then there exists a c.u.b. set Γ with
Xξ = X ′ξ and Pξ = P ′ξ for ξ ∈ Γ .

To check this, let ψ(α) = min{β : Xα ⊂ X ′β and X ′α ⊂ Xβ}, and let
Γ be the set of limit ordinals ξ < ω1 with ψ(α) < ξ for α < ξ. Then⋃
α<ξXξ =

⋃
α<ξX

′
ξ for ξ ∈ Γ , hence, by (2) and (3), the set Γ has the

required property.

4.4. Proposition. Let X be a completely metrizable space of weight ℵ1

with an admissible sequence {Xξ}ξ<ω1 and the corresponding layers Pξ. Let
S be a Souslin set in X and let C ⊂ S intersect stationary many layers.
Then S contains a copy K of B(ω1) closed in X such that for all but non-
stationary many ξ, Cξ = C ∩K ∩⋃α<ξ Pα satisfies Cξ ⊂ Cξ ∩ Pξ 6= ∅.

In Hausdorff’s terminology (cf. [Kur], §12, VII), the relation Cξ⊂Cξ \Cξ
means that Cξ is its own residue.

Theorem 1.2 follows from Proposition 4.4 instantly. Consider X = B(ω1)
with the admissible sequence given by (4). Then Pξ = Bξ is the layer at level
ξ for this sequence.

Let K and ξ be as in the assertion of Proposition 4.4, and let F be an
Fσ-set containing K ∩ Pξ. Then F contains Cξ ∩ Pξ, a Gδ-set dense in Cξ,
hence by the Baire Category Theorem, F must intersect Cξ.

P r o o f o f P r o p o s i t i o n 4.4. By [Po1], Theorem 1, the set C is not
a union of countably many locally separable sets. Thus Theorem 4.1 assures
that S contains a copy K of B(ω1) closed in X with K ∩ C dense in K.
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We shall consider three admissible sequences {X ′ξ}ξ<ω1 , {X ′′ξ }ξ<ω1 ,
{X ′′′ξ }ξ<ω1 in K with P ′ξ, P

′′
ξ , P ′′′ξ being the corresponding layers at level ξ.

The first one is obtained by (5) of Lemma 4.2, where Y = C ∩K, so

(7) X ′ξ = Cξ.

The second one is again obtained by Lemma 4.2(5), with Y = K closed in
X, so by (6),

(8) P ′′ξ ⊂ Pξ for ξ ∈ Lim .

And finally, we set X ′′′ξ = h(Kξ), where h : B(ω1)→ K is a homeomorphism
and Kξ is defined by (4). Since Bξ is dense in Kξ and P ′′′ξ = h(Bξ), we get

(9) P ′′′ξ = X ′′′ξ .

By Lemma 4.3, for all but non-stationary many ξ, the sets X ′ξ, X
′′
ξ , X ′′′ξ

and the layers P ′ξ, P
′′
ξ , P ′′′ξ coincide. For any such ξ, by (7)–(9), we have

Cξ ∩ Pξ ⊃ X ′ξ ∩ P ′′ξ = P ′′′ξ = X ′ξ ⊃ Cξ.

5. Proof of Corollary 1.3. Let σ : M → WO be the resolution from
Lemma 2.1, let S = σ−1(A) and C = σ−1(E). Then, by Lemma 2.1, C
intersects stationary many layers Bξ in the Baire space. Let ξ be any ordinal
for which the assertion of Theorem 1.2 holds.

If F is an Fσ-set in 2Q containing A∩WOξ, then σ−1(F ) is an Fσ-set in
M containing S ∩Bξ. Therefore σ−1(F ) intersects C ∩⋃α<ξ Bα and hence
F intersects E ∩⋃α<ξWOα.

5.1. R e m a r k. Let Z be a separable completely metrizable space, let
A be an analytic set in Z × 2Q and let E ⊂ A intersect stationary many
strips Z × WOξ. Then, as in the assertion of Corollary 1.3, for all but
non-stationary many ξ, each Fσ-set in Z × 2Q containing A ∩ (Z ×WOξ)
intersects E ∩⋃α<ξ(Z ×WOα).

To see this, repeat the proof of Corollary 1.3 where the resolution σ :
M → WO is replaced by id × σ : Z ×M → Z ×WO and the reference
to Theorem 1.2 is replaced by Proposition 4.4 with X = Z × B(ω1) and
Xξ = Z × {x : κ(x) ≤ ξ} (then Pξ = Z ×Bξ).

6. Comments

6.1. Lusin sieves. A Borel sieve in a separable completely metrizable
space Z is a collection W = {Wq : q ∈ Q} of Borel sets Wq ⊂ Z. The sieve
W associates with each z ∈ Z a set of rationals φ(z) = {q ∈ Q : z ∈ Wq};
Wq being Borel, the map φ : Z → 2Q is Borel.

For ξ < ω1, the set Lξ = {z : type φ(z) = ξ} = φ−1(WOξ) is the ξth
constituent of C = φ−1(WO) determined by the sieve W and Z \ C is the
analytic set sifted by W (cf. [Kur], §39, VIII).



316 J. Chaber et al.

Let D ⊂ Z intersect stationary many constituents Lξ. Then, using Re-
mark 5.1 with A = {(z, φ(z)) : z ∈ Z} and E = {(z, φ(z)) : z ∈ D}, we
get the following conclusion: all but non-stationary many constituents Lξ
cannot be separated from D ∩⋃α<ξ Lα by any Fσ-set in Z.

Notice that if D intersects every constituent in at most one point, then
each set Dξ = D ∩⋃α<ξ Lα is countable, and therefore, for ξ < ω1, Z \Dξ

is a Gδ-set separating Lξ from Dξ.
V. G. Kanovĕı ([Ka1], Theorem 4) proved that if “sufficiently many”

constituents Lξ are non-empty, then the Borel rank of sets which separate
Lξ from

⋃
α<ξ Lα must be unbounded.

6.2. Borel additive families. A family A of subsets of a metrizable space
X is Borel (resp. Souslin)-additive if the union of each subfamily of A
is Borel (or Souslin, respectively). Investigation of such families in non-
separable spaces was originated by R. W. Hansell [Ha] and a discussion of
the subject can be found in [Fr], Sec. 3. We shall indicate a connection
between this topic and constituents.

In the proposition below, C is a coanalytic set in a separable completely
metrizable space Z, and the constituents are determined by a Borel sieve
through which Z \ C is sifted (cf. 6.1).

Proposition. Each point-countable Borel-additive family A in a coan-
alytic set C has a disjoint refinement E with

⋃ E =
⋃A such that each

selector for E intersects non-stationary many constituents of C.

We sketch a proof of this fact. Consider φ : Z → 2Q such that φ is Borel
and φ−1(WOξ) is the ξth constituent of C (cf. 6.1).

For Y ⊂ Z put Y ′ = {(z, φ(z)) : z ∈ Y }. Then Z ′ is the graph of
φ and A′ = {A′ : A ∈ A} is a point-countable Borel-additive family in
Z ′ ∩ (C × 2Q) = Z ′ ∩ (Z ×WO) and, consequently, it is Borel-additive in
Z ×WO.

As in Remark 5.1, use the one-to-one mapping σ̃ = id × σ : Z ×M →
Z ×WO to transfer A′ to the completely metrizable space Z × B(ω1) of
weight ℵ1. By [Po2], Theorem 1.3 (cf. [Fr], Theorem 3.J), there exists a
disjoint refinement E ′ of A′ such that

⋃ E ′ =
⋃A′ and σ̃−1(E) is σ-discrete

for each selector E of E ′.
Since σ-discrete sets in Z×B(ω1) intersect at most non-stationary many

layers Pξ = Z ×Bξ (cf. [Po1], Theorem 1), it follows that each selector E of
E ′ intersects at most non-stationary many strips Z ×WOξ.

Clearly the projections of the elements of E ′ onto Z form a refinement E
of A with the required properties.

One can also interpret in a similar way Hansell’s result, or its variations
concerning Souslin-additive families (cf. [Fr], Sec. 3).
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6.3. The product Nω1 . LetNω1 be the ℵ1-product of the natural numbers
and let G be the subspace of Nω1 consisting of functions x such that, for
some α < ω1, x : [0, α)→ N \ {0} is injective and x(β) = 0 for β ≥ α. The
space G is closed in Nω1 and locally homeomorphic to the irrationals.

The simple argument presented in Section 3 was a byproduct of our
investigation [Ch-G-P] of the Borel structure of G. In particular, one can
show that locally countable Borel sets in G are σ-discrete, and this in turn
easily provides a negative answer to Lusin’s question.

6.4. R e m a r k. Lusin ([Lu2], Sec. 1) set forth the problem we considered
in this note to test possibilities of describing a set of reals of cardinality ℵ1

without transfinite induction.
Stone ([St2], Sec. 5) pointed out that the lack of “nice” way to choose, for

each limit ordinal ξ, a sequence xξ : N → ω1 with supremum ξ is reflected
by the fact that the resulting set {xξ : ξ ∈ Lim} is not Borel (in fact, not
Souslin) in the Baire space of weight ℵ1.

The resolution defined in Section 2 confirms a connection between these
two points of view, as indicated in Section 3.
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