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On Radon measures on first-countable spaces

by

Grzegorz P l e b a n e k (Wrocław)

Abstract. It is shown that every Radon measure on a first-countable Hausdorff space
is separable provided ω1 is a precaliber of every measurable algebra. As the latter is implied
by MA(ω1), the result answers a problem due to D. H. Fremlin.

Answering the problem posed by D. H. Fremlin ([4], 32R(c)), we show
in this note that, assuming

(∗) ω1 is a precaliber of every measurable Boolean algebra,

every Radon measure on a first-countable space is separable.
We treat here only finite measures. By the Maharam type of a measure

µ we mean the density character of the Banach space L1(µ) (see [4] or [5]).
Thus the Maharam type of µ is the least cardinal κ for which there exists
a family D of measurable sets such that |D| = κ, and D approximates all
measurable sets, that is, for every measurable B and ε > 0 there is D ∈ D
with µ(B4D) < ε. In particular, a measure µ of Maharam type ω is called
separable.

Basic facts concerning Radon measures can be found in [7] or [5]. Al-
though one can use several definitions of a Radon measure, differences are
not so important when the measure in question is finite. Let us agree that,
given a topological space S, the statement “µ is a Radon measure on S”
means that µ is defined on some σ-algebra containing all open subsets of
S, and µ(B) = sup{µ(K) : K ⊆ B, K compact} for every measurable
set B.

Recall that ω1 is said to be a precaliber of a Boolean algebra A if for
every family {aξ : ξ < ω1} of non-zero elements of A one can find an un-
countable set X ⊆ ω1 such that the family {aξ : ξ ∈ X} is centered, that
is,
∏
ξ∈I aξ 6= 0 for every finite I ⊆ X (see [6], A2T). Recall also that a
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measurable algebra is a complete Boolean algebra having a strictly positive
and countably additive finite measure (see [5]).

It is known that (∗) is a consequence of Martin’s axiom (more precisely of
MA(ω1), see [4]), and of the existence of an atomlessly measurable cardinal
(see [6], 6C). Using the Maharam theorem one can check that, to have (∗)
granted, it suffices to assume that ω1 is a precaliber of the measure algebra
of the usual product measure on {0, 1}ω1 .

Note that (∗) implies that ω1 is a caliber of every Radon measure in the
following sense: Given a Radon measure µ, for every family {Bξ : ξ < ω1} of
µ-measurable sets of positive measure

⋂
ξ∈X Bξ 6= ∅ for some uncountable

X ⊆ ω1. Indeed, we can find compact sets Fξ ⊆ Bξ with µ(Fξ) > 0. Now
(∗) applied to the measure algebra of µ implies that there is an uncount-
able X ⊆ ω1 such that {Fξ : ξ ∈ X} is centered. Hence, by compactness,⋂
ξ∈X Bξ ⊇

⋂
ξ∈X Fξ 6= ∅.

It is well known that CH implies that (∗) is false (see e.g. [2]). More-
over, CH implies the existence of first-countable compact spaces admitting
non-separable Radon measures, see Haydon [9] and Kunen [10]. Thus the
result we are aiming at is not provable in ZFC. The remark at the end of
the paper explains that (∗) is in fact the weakest set-theoretic assumption
we need.

The author is very indebted to David Fremlin for several valuable sug-
gestions.

The main result is given below as Theorem 3. Its proof is based on two
auxiliary facts we shall now present.

Lemma 1. Assume (∗) and let µ be a Radon measure on a space S.
If (Xα)α<ω1 is an increasing family of arbitrary subsets of S with S =⋃
α<ω1

Xα then there is a ξ < ω1 such that µ∗(Xξ) = µ(S).

P r o o f. Suppose that µ∗(Xα) < µ(S) for every α < ω1. This means
that we can find, for every α < ω1, a compact set Fα ⊆ S \ Xα with
µ(F ) > 0. By (∗), ω1 is a caliber of µ, so there is an uncountable set
I ⊆ ω1 such that F =

⋂
α∈I Fα 6= ∅. But F ⊆ S \⋃α<ω1

Xα, a contradic-
tion.

The next lemma is, in essence, known; its proof closely follows the argu-
ment used in [8], Proposition 2.1.

Lemma 2. If a compact space K admits a non-separable Radon measure
then there exists a Radon measure µ on K of Maharam type ω1.

P r o o f. Using the Maharam theorem (see part 3 of [5]), we can take
a probability Radon measure λ on K whose measure algebra is isomor-
phic to the usual measure algebra on {0, 1}κ, where κ ≥ ω1. We can thus
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find a sequence (Bα)α<ω1 of λ-independent Borel subsets of K with λ(Bα)
= 1/2.

Choose for every α < ω1 two compact sets Fα, Hα, each of measure at
least 7/16, and such that Fα ⊆ Bα, Hα ⊆ K \Bα. Note that

λ(Fα ∩Hβ) ≥ λ(Bα ∩ (K \Bβ))− 1/8 ≥ 1/8,

whenever α 6= β.
Let gα : K → [0, 1] be a continuous function which is zero on Fα and

equals 1 on Hα. Now consider the mapping

g = (gα)α<ω1 : K → [0, 1]ω1 ,

and the induced measure ν = g(λ) on [0, 1]ω1 .
Given α < ω1 and i ∈ {0, 1}, we put

Ziα = {x ∈ [0, 1]ω1 : x(α) = i}.
Since for α 6= β,

ν(Z0
α ∩ Z1

β) = λ(g−1(Z0
α ∩ Z1

β)) ≥ λ(Fα ∩Hβ) ≥ 1/8,

it follows that ν(Z0
α 4 Z0

β) ≥ 1/4; consequently, ν is not separable. On the
other hand, the Maharam type of any Radon measure on [0, 1]ω1 is not
greater than its topological weight. Thus ν is of type ω1.

Now consider the set Λ of all Radon measures µ such that g(µ) = ν.
Λ is non-empty convex and weak∗ compact so it has an extreme point, say
µ0. Now µ0 is the required measure since the spaces L1(µ0) and L1(ν) are
isometric, see Douglas [3].

Theorem 3. If ω1 is a precaliber of every measurable Boolean alge-
bra then every Radon measure on a first-countable Hausdorff space is
separable.

P r o o f. It is clear that we can work in a compact space. By Lemma 2 it
suffices to check that whenever K is a first-countable compact space and µ
is a Radon measure on K of Maharam type less than or equal to ω1 then µ
is separable.

Suppose that B = {Bα : α < ω1} is a family of (Borel) subsets of
K that approximates µ-measurable sets. For every ξ < ω1 we put Bξ =
{Bα : α < ξ}. For every x ∈ K we choose a countable base (Vn(x))n∈ω
at x.

Given x ∈ K, there is ξ(x) < ω1 such that Bξ(x) approximates the
family (Vn(x))n∈ω. Putting Xξ = {x ∈ K : ξ(x) < ξ} we thus have
K =

⋃
ξ<ω1

Xξ. It follows from Lemma 1 that µ∗(Xξ0) = µ(X) for some
ξ0 < ω1; write Y = Xξ0 for simplicity. We let D be the closure of Bξ0 under
finite unions. As D is countable, it suffices to check that it approximates all
open sets.
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Take an open set U ⊆ K. For every x ∈ U ∩ Y we choose a natural
number nx such that Vnx(x) ⊆ U . Putting

W =
⋃

x∈U∩Y
Vnx(x),

we have U ∩ Y ⊆ W ⊆ U . As µ∗(U ∩ Y ) = µ(U), we get µ(U \W ) = 0.
Since W can be approximated by finite sums of Vnx(x)’s (which is due to
τ -additivity of µ), it follows that W , as well as U , is approximated by D.
This completes the proof.

As D. H. Fremlin remarked, Theorem 3 can be generalized to higher
cardinals, namely for every cardinal κ we have the following:

Assuming that κ+ is a precaliber of every measurable algebra, if S is a
space of character κ then every Radon measure on S is of Maharam type at
most κ.

For this we can argue as before, adapting Lemma 1 and Lemma 2 in a
straightforward manner.

We can slightly generalize the theorem above in another direction, re-
placing the assumption of first-countability by a certain covering property.
A topological space S is called metalindelöf if every open cover of S has a
point-countable refinement. This concept is very useful in topological mea-
sure theory; see [7], 4.9 (and [12] for further references).

Corollary 4. Assume that ω1 is a precaliber of every Boolean alge-
bra. If S is a Hausdorff space such that K \ {x} is metalindelöf for ev-
ery x ∈ S and every compact K ⊆ S then every Radon measure on S is
separable.

P r o o f. Again it suffices to prove that whenever µ is a Radon measure
on a compact space K, where K ⊆ S, then µ is separable. In turn, this
reduces to the case when K is the support of µ, that is, µ(V ) > 0 for every
non-empty V which is open in K.

It follows that K is first-countable. Indeed, take any x ∈ K, and let
U be the family of open sets with x 6∈ U . Then U is a cover of K \ {x};
since this space is assumed to be metalindelöf, there is an open refine-
ment V of U which is point-countable. But a point-countable family of
sets of positive measure has to be countable by our assumption on the
caliber. Now the sets K \ (V 1 ∪ . . . ∪ V n), where Vi ∈ V, form a count-
able base at x. Thus µ is separable by Theorem 3 above and the proof is
complete.

The class of topological spaces satisfying the assumption of Corollary 4
contains, of course, all first-countable spaces; besides, it contains all Σ-
products of the real line. This is due to the fact that a Corson compact, i.e.
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a compact space which is (homeomorphic to) a subset of some Σ-product
of R, is hereditarily metalindelöf (see e.g. [12]).

It is known that the negation of (∗) gives rise to the following construc-
tion of a Corson compact space (see [1]).

Let A be a probability measure algebra and let {aα : α < ω1} be
a sequence in A witnessing the fact that ω1 is not a precaliber of A.
Put

K =
{
C ⊆ ω1 :

∏

α∈I
aα 6= 0 for every finite I ⊆ C

}
.

Such a K may be treated as a subspace of {0, 1}ω1 ; it is then compact. It is
moreover Corson compact since every C ∈ K is countable.

As shown in [13], K has a strictly positive non-separable Radon measure.
More subtle results in this direction have been recently obtained by Kunen
and van Mill [11]. Under the same assumption non-(∗) they constructed
a first-countable Corson compact space carrying a non-separable measure.
Thus the assertion every Radon measure on a first-countable space is sepa-
rable is in fact equivalent to the axiom ω1 is a precaliber of every measurable
algebra.
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