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On composants of solenoids

by

Ronald d e M a n (Eindhoven)

Abstract. It is proved that any two composants of any two solenoids are homeo-
morphic.

1. Introduction. Solenoids were introduced by van Dantzig [5]. His
original description was the following. Let P = (p1, p2, . . .) be a sequence
of primes. The solenoid SP is the intersection of a descending sequence of
solid tori T1 ⊃ T2 ⊃ T3 ⊃ . . . such that Ti+1 is wrapped around inside
Ti longitudinally pi times without folding back. Van Heemert proved that
solenoids are indecomposable continua [8].

There exists a classification theorem for solenoids, conjectured by Bing
[3] and proved by McCord [9], giving necessary and sufficient conditions for
two solenoids SP and SQ to be homeomorphic (see also [2]).

The composants of solenoids coincide with the arc components. Since
solenoids are topological groups, any two composants of the same solenoid
are homeomorphic. The main theorem of this paper is

Theorem 1. Any two composants of any two solenoids are homeomor-
phic.

The composants of solenoids are examples of orbits in dynamical systems
that are not locally compact. A locally compact orbit is either a singleton,
a simple closed curve, or a topological copy of the real line. For orbits which
are not locally compact the situation is much more complicated. Fokkink
has proved the existence of uncountably many of them [6, 7].

In [4] Bandt shows that any two composants of the bucket handle are
homeomorphic. Following a suggestion of Fokkink, we shall adapt the ideas
from that article to prove the result of this paper.

For the proof, we need a different description of solenoids. We define
the cascade (CP , σ) as follows. CP is the Cantor set represented as the
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topological product CP =
∏∞
i=1 pi of discrete spaces pi = {0, 1, . . . , pi − 1}.

The homeomorphism σ : CP → CP has the form

σ(x1, x2, . . .) = (x1 + 1, x2, x3, . . .) if x1 < p1 − 1,

σ(p1 − 1, . . . , pk−1 − 1, xk, . . .) = (0, 0, . . . , 0, xk + 1, . . .) if xk < pk − 1,

σ(p1 − 1, p2 − 1, . . .) = (0, 0, . . .).

Now we define the solenoid SP to be the suspension Σ(CP , σ), obtained
from the product CP × [0, 1] by identifying each (x, 1) with (σ(x), 0).

Since CP is the topological group of P -adic integers and the map σ cor-
responds to the addition of (1, 0, 0, . . .), it is easy to see that the composant
of SP containing the point zero can be represented as a suspension Σ(Z, τ),
where Z is the set of integers with the P -adic topology and τ : Z → Z is
defined by τ(x) = x+ 1.

In proving the theorem, we may clearly confine ourselves to the case
of the composants of the zero point of the solenoids SP and SQ, where
P = (2, 2, . . .) and Q = (q1, q2, . . .) is an arbitrary sequence of primes. We
now describe these composants.

Let I denote the set of integers with the 2-adic topology. Then a local
basis for x ∈ I is given by {x + Un}n≥0, where Un = 2nZ. Now Σ(I, τ)
(with τ(x) = x + 1) represents the composant of the zero point of the
2-solenoid S(2,2,...). Similarly, we let Σ(J, τ) represent the composant of the
zero point of the solenoid SQ by setting J = Z and taking {x + Vm}m≥0

with Vm = q1 . . . qmZ as a local basis for x ∈ J .
For a clopen subset A of I, we define the return map τA : A → A by

τA(x) = min{y ∈ A : y > x}. If there exist clopen subsets A and B of I and
J , respectively, and a homeomorphism f : A→ B such that f ◦ τA = τB ◦ f ,
we say that (I, τ) and (J, τ) are first return equivalent . From Theorem 5.2
in [1] it follows that (I, τ) and (J, τ) are first return equivalent if and only
if Σ(I, τ) and Σ(J, τ) are homeomorphic.

2. Composants of solenoids. We now define some subsets of I and J .
These will be the building blocks in the construction of the sets A and B.
First, choose sequences of integers 0 = n0 < n1 < n2 < . . . and 0 = m0 <
m1 < m2 < . . . We define blocks {Ik}k≥0 inductively. We set I0 = {0}
and

Ik+1 =
⋃
{Ik + v2nk : −2nk+1−nk−1 ≤ v ≤ 2nk+1−nk−1 − 1}.

Note that I0 ⊂ I1 ⊂ I2 ⊂ . . . , that
⋃
Ik = I and that Ik consists of 2nk−nl

consecutive copies of I l (0 ≤ l ≤ k). Next, for v ∈ Z we set Ikv = Ik + v2nk .
Analogously, we define J0 = {0}, let Jk+1 denote
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⋃{
Jk + wq1 . . . qmk :

[
− qmk+1 . . . qmk+1 − 1

2

]
≤ w ≤

[
qmk+1 . . . qmk+1 − 1

2

]}

and set Jkw = Jk + wq1 . . . qmk+1 . We also define translations ϕkv : Ik → Ikv
and ψkw : Jk → Jkw by ϕkv(x) = x+ v2nk and ψkw(x) = x+ wq1 . . . qmk .

The blocks Ik and Jk will be called central blocks. Also, blocks Ikv and Jkw
will be referred to as k-blocks. The special k-blocks of the form Ik + v′2nk+1

and Jk+w′q1 . . . qmk will be called k-return blocks. At places where we want
to make clear that we are dealing with return blocks, we shall use the indices
r and s (so that e.g. r is assumed to be a multiple of 2nk+1−nk). Note that
each (k + 1)-block contains exactly one k-return block, which is positioned
in the middle of the (k+ 1)-block. By an interval of k-blocks we shall mean
a union of consecutive k-blocks.

The following lemma shows how we should piece the blocks together to
form the sets A and B.

Lemma 1. Suppose we have non-empty subsets A ⊂ I, B ⊂ J and a
bijection f : A→ B such that

(i) f is strictly increasing ,
(ii) for k ≥ 0, f maps Ik ∩A onto Jk ∩B,

(iii) for even k ≥ 0 and each k-return block Ikr , Ikr ∩A = ϕkr (Ik ∩A) and
there exists w such that f(ϕkr (x)) = ψkw(f(x)) for x ∈ Ik ∩A,

(iv) for odd k ≥ 0 and each k-return block Jks , Jks ∩B = ψks (Jk ∩B) and
there exists v such that f(ϕkv(x)) = ψks (f(x)) for x ∈ Ik ∩A.

Then the sets A,B are clopen, f is a homeomorphism and f◦τA = τB◦f .

P r o o f. First we show that A is clopen. Let x ∈ I and choose an even
integer k with x ∈ Ik. Let v ∈ Z. Since Ik + v2nk+1 is a k-return block,
Ikv ∩ A = ϕkv(Ik ∩ A). Therefore x + v2nk+1 ∈ A iff x ∈ A. Hence either
x + Unk+1 ⊂ A or x + Unk+1 ⊂ I \ A, so that A is clopen. In the same way
it follows that B is clopen.

Next we show that f is continuous. Let x ∈ A and choose k with x ∈
Ik. Let V be a neighborhood of f(x). There is l > k with l even and
f(x) + Vml ⊂ V . Since I l + v2nl+1 is an l-return block, for some l-block J lw
we have f(x+v2nl+1) = f(x)+wq1 . . . qml ∈ f(x)+Vml . So f(x+Unl+1) ⊂ V
and hence f is continuous. The continuity of f−1 is proved in the same way.
Finally, we claim that f ◦ τA = τB ◦f . Let x ∈ A. Since τA(x) > x, it follows
from (i) that f(τA(x)) > f(x). Hence f(τA(x)) ≥ τB(f(x)). Since f−1 is also
increasing, the same reasoning gives f−1(τB(x)) ≥ τA(f−1(x)) for x ∈ B.
Therefore τB(f(x)) ≥ f(τA(x)) for x ∈ A.
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In the next section, sets A and B and a bijection f : A → B will be
constructed satisfying the conditions of this lemma.

3. Construction of f . We shall now describe our construction of f .
In what follows we tacitly assume that all choices are made in such a way
that f remains order-preserving. In order to facilitate the construction, we
introduce some terminology.

To indicate which points of I are to be included in A, we introduce the
special symbol ⊥. For all x ∈ I that are not to be included in A, we shall set
f(x) = ⊥. So A = {x ∈ I : f(x) 6= ⊥} and B = f(A). We let ψkw(⊥) = ⊥. In
this notation, the condition Ikv ∩A = ϕkv(Ik ∩A) and f(ϕkv(x)) = ψkw(f(x))
for x ∈ Ik ∩A is equivalent to f(ϕkv(x)) = ψkw(f(x)) for all x ∈ Ik.

If f has been defined on k-blocks Ikv and Ikv′ and there exist k-blocks
Jkw and Jkw′ such that (ψkw)−1(f(ϕkv(x))) = (ψkw′)

−1(f(ϕkv′(x))) for x ∈ Ik,
then we say that Ikv is a copy of Ikv′ . Note that condition (iii) now says that
for even k ≥ 0 each k-return block in I is a copy of Ik. We use the same
terminology for blocks in J . For the construction it is important to note
that a copy of a copy is again a copy.

Note that there is a symmetry in the conditions of Lemma 1. To empha-
size this symmetry, we view f as a relation between I ∪ {⊥} and J ∪ {⊥}.
In that way we can use the symmetry in defining f . So instead of f(x) = y

we write xfy. We also set Î l = I l ∪ {⊥} and Ĵ l = J l ∪ {⊥}.
In order to satisfy condition (ii), we define f on Î l × Ĵ l by induction

on l. To define f on I0, we set 0f0. In making the inductive step, we have to
take care that the conditions (iii) and (iv) are satisfied. To make clear how
we proceed and to indicate what difficulties arise, we shall now describe the
extension of f from Î3 × Ĵ3 to Î4 × Ĵ4.

First we consider the return blocks inside I4 and J4. Since the only
3-return block in J4 is the central block J3, and f has already been defined
on this block, we do not have to worry about condition (iv) for k = 3.

We take care of condition (iii) for k = 2. The block I4 is built up out
of 3-blocks, each containing a 2-return block. We have already defined f on
the 2-return block inside I3. For the 2-return blocks in I4 \ I3 we choose
2-blocks in J4 \ J3 in an almost linear fashion (this will be explained later).
We copy the definition of f on Î2 × Ĵ2 to each of these blocks.

Next, we deal with (iv) for k = 1. The complement of J3 and the chosen
2-blocks in J4 is a union of intervals of 2-blocks. To each of these intervals
corresponds an interval in the remaining part of I4. For each of the 1-return
blocks in such an interval we choose a 1-block in the corresponding interval,
again per interval in an almost linear fashion.

Finally, we take care of (iii) for k = 0. Now we have intervals of 1-blocks
and each 1-block has its 0-return block. In the corresponding intervals in J4
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we now choose 0-blocks again in an almost linear fashion. The points x ∈ I4

(x ∈ J4 respectively) on which f has not yet been defined are taken care of
by setting xf⊥ (⊥fx respectively).

At three stages in this construction, blocks have to be selected. It is
conceivable that at some stage there will not be enough room to select the
destination blocks. We shall later show how to avoid this.

We now give a general procedure to define f on subsets of I × J . We
assume that we have already defined f on Î l × Ĵ l. If Ĩ is an interval of
(k + 1)-blocks inside I l+1 not containing a (k + 1)-return block and J̃ is a
similar subset of J l+1, we can use the following recursive procedure to define
f on Ĩ and J̃ :

• If k is even (odd), then for each k-return block in Ĩ (in J̃), we select
a k-block in J̃ (in Ĩ).
• We define f on these blocks by copying the central blocks Ik and Jk.
• Let Ĩ0, . . . , Ĩc and J̃0, . . . , J̃c denote the intervals of k-blocks that

remain. If k ≥ 1, we use the same procedure to define f on each
of these blocks. Otherwise, we set xf⊥ for x ∈ ⋃ Ĩi and ⊥fx for
x ∈ ⋃ J̃i.

Of course, we still have to show that this procedure does indeed work.
To define f on Î l+1 × Ĵ l+1, we apply this procedure with k = l − 1 to each
of the two components of I l+1 \ I l and the corresponding components of
J l+1 \ J l.

We shall now show how we can make the procedure above work. We have
to make sure that there will always be enough room to select the destination
blocks. It will turn out that we need to choose the sequences {nk}k and
{mk}k in such a way that for all k, nk+1−nk ≥ k+22, mk+1−mk ≥ k+22
and 1/2 < 2nk/(q1 . . . qmk) < 2. It is easily seen that this is possible by
using induction on k and first choosing mk and then nk. Let Pk = 2nk+1−nk
and Qk = qmk+1 . . . qmk+1 . Then a (k + 1)-block in I (in J respectively)
contains Pk (Qk respectively) k-blocks. Note that Pk, Qk ≥ 2k+22 and that
for j ≤ k, 1/4 < (Pj . . . Pk)/(Qj . . . Qk) < 4. The following lemma shows
that, given intervals Ĩ and J̃ of (k + 1)-blocks satisfying certain conditions,
we can define f on all k-return blocks inside Ĩ (in case k is even). It also
provides information on the blocks we are left with. For blocks in J mapped
to blocks in I the same assertion is true and has a similar proof.

Lemma 2. Suppose Ĩ ⊂ I and J̃ ⊂ J are intervals of c, respectively d,
(k + 1)-blocks, where 1/α ≤ c/d ≤ β and α, β ≤ 16. If Ikp1

, . . . , Ikpc are the
k-return blocks in Ĩ, we can find c many k-blocks Jkw1

, . . . , Jkwc in J̃ , such
that after removal of these blocks we end up with non-empty intervals of
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k-blocks Ĩ0, . . . , Ĩc and J̃0, . . . , J̃c with the following property : if Ĩi contains
ci and J̃i contains di k-blocks, then

1
α+ 1

4 · 2−(k+1)

Pk
Qk
≤ ci
di
≤
(
β +

1
4
· 2−(k+1)

)
Pk
Qk

.

P r o o f. The set Ĩ contains cPk many k-blocks that we number from left
to right with the integers 1, . . . , cPk. We do the same with the dQk many
k-blocks in J̃ .

Let a1, . . . , ac denote the ordinals of the return blocks in Ĩ. We set a0 = 0
and ac+1 = cPk + 1. Since any k-return block is in the middle of a (k + 1)-
block, we know that ai+1−ai = Pk for 1 ≤ i ≤ c−1, that a1−a0 ≥ (Pk−1)/2
and that ac+1 − ac ≥ (Pk − 1)/2. Therefore, ai+1 − ai ≥ Pk/4 for 0 ≤ i ≤ c.
For 1 ≤ i ≤ c we choose the block Jkwi to be the block with ordinal bi =
[(dQk/cPk)ai+1/2]. We can write bi = (dQk/cPk)ai+εi with |εi| ≤ 1/2. Let
b0 = 0 and bc+1 = dQk+1. We have to show that the blocks we have chosen
are distinct and satisfy the requirements. To do this, we fix an arbitrary i
and let ci = ai+1 − ai − 1 and di = bi+1 − bi − 1. Clearly, ci equals the
number of k-blocks in Ĩi and di the number of k-blocks in J̃i. It suffices to
show that

(
α+ 1

4 · 2−(k+1)
)−1

Pk/Qk ≤ ci/di ≤
(
β + 1

4 · 2−(k+1)
)
Pk/Qk.

Since

di =
dQk
cPk

(ai+1 − ai − 1) +
dQk
cPk

+ εi+1 − εi − 1

we have
di
ci
≤ dQk
cPk

+
dQk/cPk
Pk/4− 1

.

Also,

ci =
cPk
dQk

(bi+1 − bi − 1) +
cPk
dQk

(εi − εi+1 + 1)− 1

and hence
ci
di
≤ cPk
dQk

+
2(cPk/dQk)− 1

(dQk/cPk)Pk/4− 2
.

Using the inequalities 1/64 < cPk/dQk < 64 and Pk ≥ 2k+22, it is now easy
to check that

1
α+ 1

4 · 2−(k+1)

Pk
Qk
≤ ci
di
≤
(
β +

1
4
· 2−(k+1)

)
Pk
Qk

.

If we use Lemma 2 to select the destination blocks for the return blocks,
we can define f on the whole of Î l+1 × Ĵ l+1. This will be demonstrated
in the next lemma, which completes the inductive step in the construction
of f .

Lemma 3. Suppose f has been defined on Î l× Ĵ l. Then f can be defined
on Î l+1 × Ĵ l+1.
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P r o o f. As has already been said, to define f on Î l+1 × Ĵ l+1, we apply
the procedure described above to each of the two components of I l+1\I l and
the corresponding components of J l+1 \ J l. We shall show, using Lemma 2,
that the procedure can define f on the (l− 1)-return blocks in Ĩ (or J̃) and
can then be applied to the remaining (l − 1)-blocks. We assert that after
repeating the procedure n times (where 0 ≤ n ≤ l), the length ratio c/d of
corresponding intervals of (l−n)-blocks Ĩ and J̃ , measured in (l−n)-blocks,
satisfies the inequalities

1
αn
≤ c

d
≤ βn,

where

αn =
(

3 +
n−1∑

i=0

2−(l−i)
)
QlQl−1 . . . Ql−n
PlPl−1 . . . Pl−n

and

βn =
(

3 +
n−1∑

i=0

2−(l−i)
)
PlPl−1 . . . Pl−n
QlQl−1 . . . Ql−n

.

Note that αn, βn ≤ 16 for all k. So if these inequalities hold, the requirements
of Lemma 2 will always be satisfied. We prove the inequalities by induction
on n. It is easy to see that our bound on c/d holds for n = 0. Now suppose
it holds for some n ≥ 0 with n < l. Then we can apply Lemma 2 with
k = l − n− 1, α = αn and β = βn to get a length ratio c′/d′ of intervals of
(l − n− 1)-blocks with

1
αn + 1

4 · 2−(l−n)
· Pl−n−1

Ql−n−1
≤ c′

d′
≤
(
βn +

1
4
· 2−(l−n)

)
Pl−n−1

Ql−n−1
.

Since(
αn +

1
4
· 2−(l−n)

)
Ql−n−1

Pl−n−1

=
((

3 +
n−1∑

i=0

2−(l−i)
)Ql . . . Ql−n
Pl . . . Pl−n

+ +
1
4
· 2−(l−n)

)
Ql−n−1

Pl−n−1

≤
(

3 +
n−1∑

i=0

2−(l−i) + 2−(l−n)
)Ql . . . Ql−n−1

Pl . . . Pl−n−1
= αn+1

and similarly
(
βn + 1

4 · 2−(l−n)
)
Pl−n−1/Ql−n−1 ≤ βn+1, we get

1
αn+1

≤ c′

d′
≤ βn+1.

This proves the inequalities. We conclude that f can be constructed on
Î l+1 × Ĵ l+1.
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