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Dense orderings, partitions and weak forms of choice

by

Carlos G. G o n z á l e z (Campinas)

Abstract. We investigate the relative consistency and independence of statements
which imply the existence of various kinds of dense orders, including dense linear orders.
We study as well the relationship between these statements and others involving partition
properties. Since we work in ZF (i.e. without the Axiom of Choice), we also analyze the
role that some weaker forms of AC play in this context.

Since 1922, when Fraenkel presented his proof of the independence of the
Axiom of Choice, a considerable amount of research has been done on the
consistency and independence of several principles concerning the existence
of orderings, e.g., the assertion that every set can be linearly ordered, the
assertion that maximal antichains in a partially ordered set exist, the Kinna–
Wagner Principle, etc. However, as far as we know, there does not seem to
exist in the literature any study about principles affording the existence of
dense (partial) orderings, in the sense that there is an element between two
different ones. These principles are intimately related to statements about
the existence of certain partitions, which are of independent interest. All
such principles, as well as other statements analyzed here, constitute weak
versions of the Axiom of Choice (AC), in the sense that AC implies each of
them in ZF, though the converse is not true. This paper contains an initial
investigation in this field of research.

In order to simplify the hypotheses of the various set-theoretic inter-
relationships we prove all set-theoretic statements in ZF and assume the
consistency of ZF in all independence proofs. The main results of this paper
can be expressed by the following theorem:

Theorem 1. AC ⇒ DO ⇒ O ⇒ DPO; moreover , none of the implica-
tions is reversible in ZF and DPO is independent of ZF. (See Section 1 and
the Glossary at the end of this paper.)
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The various components of Theorem 1 are the following: AC ⇒ DO is
Lemma 1; DO ⇒ O is immediate; O ⇒ DPO is Corollary 1; DO does not
imply AC is Corollary 13; O does not imply DO is Corollary 11; DPO does
not imply O is Corollary 10, and the independence of DPO is Corollary 5.

The first section presents the definitions of various kinds of dense orders
and gives preliminary results. In the second section we introduce some state-
ments involving partitions and prove the first independence results. Finally,
in the last section we offer some independence results about principles which
imply the existence of various kinds of orderings. Theorem 8 in this section
shows that the Mostowski model has an infinite set that cannot be linearly
densely ordered.
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1. Preliminaries

Definition 1. A partial order is an irreflexive and transitive relation
<. We always use the symbol < in this sense. The formula x < y ∨ x = y
is denoted by x ≤ y. A dense partial order on a set A is a relation < such
that

∀x ∈ A∀y ∈ A (x < y ⇒ ∃z ∈ A (x < z ∧ z < y)).

This concept of dense partial order is not enough for representing the
intuitive idea of a dense order, since ∅ is a trivial dense partial order on any
set. For this reason, we make the following definition:

Definition 2. A non-trivial dense order on a set A is a dense partial
order < satisfying the additional condition

∃x ∈ A∃y ∈ A (x < y).

There are two other concepts closely related to the above:

Definition 3. An anywhere dense order on A is a dense partial order
< satisfying the additional condition

∀x ∈ A∃y ∈ A (x < y ∨ y < x).
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Definition 4. A partial order < is called somewhere dense on A if

∃a ∈ A∃b ∈ A (a < b ∧ ∀c ∈ A∀d ∈ A (a ≤ c < d ≤ b⇒
⇒ ∃h ∈ A (c < h < d))).

Definition 5. A (linear) order is a partial order which satisfies

∀x∀y (x = y ∨ x < y ∨ y < x).

A dense (linear) order has an obvious definition.

The existence of a non-trivial dense partial order on a set implies that
the set is infinite. By this fact, our principles must have the following form:

Definition 6. DPO (O, DO, resp.) are the statements “every infinite set
can be non-trivially densely ordered” (“every set can be linearly ordered”,
“every infinite set can be linearly and densely ordered”, resp.). (Note that
DO implies O.)

Definition 7. Given a partial order 〈A,<〉, an interval is a set I ⊆ A
such that x ∈ I ∧ y ∈ I ∧ x < z < y ⇒ z ∈ I (cf. [5], p. 10). An interval is
non-trivial if |I| > 1.

Lemma 1. AC⇒ DO.

P r o o f. (The countable case is trivial. The intuitive idea for the non-
trivial case is to divide an uncountable cardinal κ into intervals, each of
them isomorphic to ω, and then to define a dense linear order on each one
via a bijection with Q+.)

Let x be a set and let κ be its cardinal number. If κ = ω, we use the
order induced by a bijection from ω to Q+ (i.e., the set of positive rationals).
Now, assuming that κ > ω, we will define a linear dense order on κ which
induces a linear dense order on x. For this, let α, δ < κ be ordinals.

Let
A = {γ ≤ α : γ is a limit ordinal}, β =

⋃
A.

Then β is a limit ordinal (possibly 0) and α has the form β + n with n ∈ ω
(possibly n = 0). Let f be a bijection between ω and Q+ and let <Q+ be
the natural order of Q+. In order to define <D, a linear dense order on κ,
we distinguish three cases.

If δ < β then δ <D α.
If β + ω ≤ δ then α <D δ.
If β ≤ δ < β + ω then we first observe that δ can be written as β + m,

with m ∈ ω (possibly m = 0). Then we define: δ <D α⇔ β+n <D β+m⇔
f(n) <Q+ f(m).

We want to show that <D is a dense linear order. It is clearly a linear
order. To see that it is dense, we fix α, β < κ, α <D β. Then there exists
γ, which is either a limit ordinal or γ = 0, such that α = γ + n with
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n ∈ ω. We now proceed by cases. First, if β = γ + m with m ∈ ω, by
definition of <D, we have f(n) <Q+ f(m). Hence, by the density of <Q+ ,
also ∃q ∈ Q+ (f(n) <Q+ q <Q+ f(m)). As f is a bijection, there is an s such
that f(s) = q, and thus α = γ + n <D γ + s <D γ +m = β. In the second
case, note that γ+ω ≤ β. But then, since Q+ does not have a last element,
we conclude that there is a q such that f(n) <Q+ q = f(s) for some s, i.e.,
α <D γ + s. Finally, by the definition of <D, we have γ + s <D β.

There exists a simpler argument for the above proof based on model-
theoretic ideas, namely using the theorem of Löwenheim–Skolem (though
one must be careful in interpreting the symbol =). Our proof, however,
defines explicitly the dense linear order and can also be adapted to the use
of weaker forms of choice (for example, “every set can be ordered as the
linear sum of canonically countable intervals”, where “canonically” means
that there is a single function enumerating simultaneously the elements of
all intervals). In this paper “countable” always means “infinite countable”.
The definition of sum of orders is the usual one (see [5], p. 19).

In the sequel we analyze some equivalences between principles entailing
the existence of dense orders.

Lemma 2. Let < be a non-trivial dense order on a set A. Then < can be
extended to an anywhere dense order on A.

P r o o f. Let 〈A,<〉 be a non-trivial dense order. Then there exist a and
b in A such that a < b. Let (a, b) = {x : a < x < b}. Furthermore, let B
be the set of all elements of A which are not comparable with any other
one: B = {x : ¬∃y (x < y ∨ y < x)}. We define then <′= (< ∪((a, b)×B)).
Obviously <′ is an anywhere dense order on A.

Lemma 3. Let A be a set such that there exists a somewhere dense order
< on it. Then there exists an anywhere dense order on A.

P r o o f. Let 〈A,<〉 be a somewhere dense order. Then there are a and
b in A such that a < b and [a, b] = {x : a ≤ x ≤ b} is a dense interval
(i.e. a non-trivial interval which is anywhere dense). Now we define <′, the
restriction of < to [a, b], as: <′ = <¹[a, b] = < ∩ {〈x, y〉 : a ≤ x, y ≤ b}.
Furthermore, let B = A − [a, b] = {x : a 6≤ x ∨ x 6≤ b}. Then we define
<′′ = <′ ∪ ((a, b)×B). It is easy to see that <′′ is an anywhere dense order
on A.

The existence of a linear order on an infinite set implies the existence of a
non-trivial dense order on this set. The construction employed here (namely,
the finite collapsing of a partial order) is closely related to the condensation
method (see [5], Ch. 4).
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Lemma 4. Let 〈A,<〉 be a linear order and A an infinite set. Then there
exists a non-trivial dense order on A.

P r o o f. If A contains an infinite well-ordered, or anti-well-ordered inter-
val, we define a linear dense interval as in Lemma 1. Hence we can suppose
with no loss of generality that there are no intervals of these forms.

For x ∈ A we define Ix, the finite collapsing interval of x, as follows:

Ix = {y ∈ A : both [x, y] and [y, x] are finite},
where [x, y] is the closed interval with respect to <. We will see that Ix is
finite for x ∈ A. Otherwise, there exists an x such that either I<x = {y ∈
Ix : y < x} or I>x = {y ∈ Ix : x < y} is infinite. Then, by the definition of
Ix, every non-empty subset of I<x has a last element and every non-empty
subset of I>x has a first element, contradicting our assumption.

Now, for x, y ∈ A we define

x <′ y ⇔ x < y ∧ Ix 6= Iy.

We claim that <′ is a partial order. The irreflexivity is obvious. For the
transitivity, assume x <′ y and y <′ z. Clearly x < z. It remains to be
proved that Ix 6= Iz. Otherwise, the interval [x, z] is finite and thus Ir = Ix
for every r such that x < r < z. In particular, Ix = Iy, a contradiction. To
see that it is dense, let x, y ∈ A be such that x <′ y; then [x, y] is infinite.
Since Ix, Iy are finite, there exists z such that x < z < y and z 6∈ Ix, Iy, i.e.,
Iz 6= Ix and Iz 6= Iy. Then we have x <′ z <′ y.

Our case assumption implies that every finite collapsing interval is finite.
Since A is infinite, it contains at least two such intervals, and hence <′ is
non-trivial.

Corollary 1. O⇒ DPO.

From the proof of the last lemma we obtain immediately the following:

Corollary 2. Let 〈A,<〉 be an infinite linear order. Then either A has
a countable subset or there exists a dense suborder of 〈A,<〉.

2. Dense orderings and partitions. In this section we analyze the
relationship between the principles of dense partial order and the existence
of certain partitions of infinite sets.

Definition 8. A set is called partible if it is the union of two pairwise
disjoint infinite sets. PP is the statement: “every infinite set is partible”. An
infinite set is called amorphous if it is not partible (see [2], p. 52).

PP is independent of ZF (see [3], p. 12, and [2], pp. 52 and 96). Moreover,
PP is a very weak consequence of AC, since it is implied by “every infinite



16 C. G. González

set has a countable subset”. Let Inf(x) be the predicate “x is infinite”. Then
the following holds:

Lemma 5. Let x be a set and let p ⊆ P(x) be such that Inf(p) and ∀z ∈ p
(¬ Inf(z)⇒ ∃t ∈ p (Inf(t) ∧ z ⊆ t)). Then the conditions:

(i) for every infinite set h in p there exists a partition of h into two
disjoint infinite sets h1, h2 belonging to p;

(ii) ∀h1 ∀h2 (h1, h2 ∈ p⇒ (h1 ∪ h2) ∈ p ∧ (h1 − h2) ∈ p);
imply that there exists an anywhere dense order on p.

P r o o f. We define in p: a < b⇔ (a ⊆ b∧ Inf(b−a)). We see immediately
that it is a partial order. To see that it is dense, let a, b ∈ p. First, we divide
b−a: b−a = c∪d, with c and d infinite and disjoint, and then take r = c∪a,
so that a < r < b. Finally, let a ∈ p. If a is finite, there is an infinite b such
that a ⊆ b and thus a < b. If a is infinite, we divide it into c and d, both
infinite and disjoint, and obtain c < a, so that < is anywhere dense.

Corollary 3. Let x be a set and let h be such that h ⊆ P(x) and
∀z ∈ h Inf(z). Then the conditions (i) and (ii) of the preceding lemma imply
that there is an anywhere dense order on h.

Corollary 4. Let x be an infinite set. Then PP implies that there exists
an anywhere dense order on P(x).

The last corollary and, more notably, the next lemma show the close
relationship existing between PP and dense orders, since the existence of
non-trivial dense orders on every infinite set implies that every infinite set
is partible.

Lemma 6. DPO⇒ PP.

P r o o f. Let x be an infinite set. By DPO there exists a dense order <
on x and a and b in x such that a < b. Let c be such that a < c < b and let
s = {z ∈ x : z < c ∨ z = c} and t = {z ∈ x : z 6< c ∧ z 6= c}. Then s and t
satisfy the condition required by PP.

Corollary 5. DPO is independent of ZF.

We now introduce a statement stronger than PP.

Definition 9. A set x is called ℵ0-partible if there exists a partition of
x of cardinality ℵ0. P-ℵ0 is the statement “every infinite set is ℵ0-partible”.

If a set x is ℵ0-partible then there exists a countable partition of x formed
by infinite sets (and a fortiori x is partible). To see this let x0, x1, . . . , xi, . . .
be a countable partition of x. Then for each prime number p we define
yp =

⋃{xn : n = pm for some m ∈ ω, m 6= 0} and y0 =
⋃{xn : n has at

least two prime factors or n = 0 or n = 1}.
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Lemma 7. P-ℵ0 ⇒ DPO.

P r o o f. Let x be an infinite set and let B = {An : n ∈ ω} be a countable
partition of x. Furthermore, let f : ω → Q be a bijection and let <Q be
the natural order of Q. Then we define for a, a′ ∈ A: a < a′ ⇔ f(n) <Q
f(m) ∧ a ∈ An ∧ a′ ∈ Am. It can be easily shown that < is a non-trivial
dense order, using the facts that (1) Ai are disjoint and non-empty, (2) f is
a bijection, and (3) the properties of <Q.

If a set has a countable subset then it is ℵ0-partible, and consequently,
there exists a dense partial order on it. Alternatively, we can use the exis-
tence of a countable subset of this set to define a somewhere dense order on
it and then proceed as in Lemma 3. Hence, the statement “every infinite set
has a countable subset” implies DPO in ZF.

Since in ZF if a set x has a countable subset then x is ℵ0-partible, the
question of whether or not the converse holds poses itself naturally. The
following counterexample shows that the answer is negative.

Counterexample 1. There exists a model of ZF containing a set x
which is ℵ0-partible but has no countable subset.

P r o o f. We assume that there is a set of reals without a countable subset
(this property holds in various models found in the literature). Fixing such
an x, we want to show that this set is ℵ0-partible. We proceed by cases:

C a s e 1. If x has no upper bound or if it has no lower bound, we use the
set of integers Z to define a countable partition in the obvious way.

C a s e 2. If x has both lower and upper bounds, then there exists an
infinite y ⊆ x without a first element, since x is an infinite set without a
countable subset, and hence the natural order of the reals < restricted to
x is not a well-order. Let r be the greatest lower bound of y in R, and let
{qn : n ∈ ω} be a strictly decreasing sequence of rationals converging to r
(it is easily proved in ZF that such a sequence exists for every real r). Then
{[qn+1, qn) : n ∈ ω} is an ℵ0-partition of a subset of x.

Definition 10 (Dedekind’s Axiom). D is the statement “every infinite
set has a countable subset”.

The question whether P-ℵ0 implies D in ZF arises very naturally. There
is a well-known symmetric model (as we shall see below) in which P-ℵ0 is
true, whilst both AC and D fail. Hence the statement “P-ℵ0 implies D” is not
deducible in ZF. In order to deal with this question we need a preliminary
result.

Theorem 2. Let T be a family of sets such that for a fixed n ∈ ω, we
have t ∈ T ⇒ |t| ≤ n. Let {Ai : i ∈ ω} be a countable partition of

⋃
T .

Then there exists a countable partition of T .
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P r o o f. Let Bi = {t ∈ T : t ∩Ai 6= ∅}. Inductively we define a sequence
{Di : i ∈ ω} which will turn out to be a countable partition of some subset
of T . Suppose Dr is already defined for r < i. Let Ci be the condition “there
are infinitely many Aj ’s such that Aj ∩

⋃
(T − (

⋃
r<iDr ∪ Bi)) 6= ∅”, and

Fi the condition Bi − (
⋃
r<iDr) 6= ∅. Then we define

Di =
{
Bi − (

⋃
r<iDr) if Ci and Fi,

∅ otherwise.

We prove successively:

(1) Ci holds for at least one index i.

Assuming otherwise we show that
⋃
T is covered by finitely many Aj ’s,

a contradiction. Firstly, the fact that the elements of T have cardinality ≤ n
entails that the set

⋃
(
⋂
i<nBi) is covered by the A0, A1, . . . , An−1. The

complement of this set is

(∗)
⋃(

T −
⋂

i<n

Bi

)
=
⋃( ⋃

i<n

(T −Bi)
)

=
⋃

i<n

(⋃
(T −Bi)

)
;

it suffices, then, to show that
⋃

(T − Bi) is covered by finitely many Aj ’s,
for i = 0, . . . , n− 1.

The failure of Ci entails, by the definition above, that Di = ∅ for all
i ∈ ω; hence ¬Ci is equivalent to

“Aj ∩
⋃

(T −Bi) 6= ∅ for finitely many j’s ”.

Note that, for X ⊆ ⋃T , X is covered by finitely many Aj ’s iff X ∩ Aj 6= ∅
for finitely many Aj ’s. From the last two sentences it follows that

⋃
(T −Bi)

is covered by finitely many Aj ’s, as claimed.

(2) Ci ∧ Fi holds for infinitely many indices i .

We note first that Ci ∧Fi holds for at least one index i, e.g., for the first
i such that Ci holds (since

⋃
r<iDr = ∅ for such an i).

Assuming (2) fails, let k be the largest index i for which Ci ∧ Fi holds.
Under this assumption Di = ∅ for i > k. Hence, for i > k,

(∗∗)
⋃

r<i

Dr =
⋃

r≤k
Dr =

⋃

r<k

Dr ∪Bk

(since Ck ∧ Fk holds). Let

(∗∗∗) Tk = T −
( ⋃

r<k

Dr ∪Bk
)

= T −
( ⋃

r≤k
Dr

)
,

and
J =

{
Aj : j > k and Aj ∩

⋃
Tk 6= ∅

}
.

Since Ck holds,
⋃
Tk is not covered by finitely many Aj ’s and J is infinite.
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Next we prove:

(2.a) Aj ∈ J ⇒ ¬Cj .
From Aj ∈ J , we have Aj ∩

⋃
Tk 6= ∅ and hence Bj ∩ Tk 6= ∅. By (∗∗∗),

there is t ∈ Bj −
⋃
r≤kDr, and using (∗∗), Bj −

⋃
r<j Dr 6= ∅. This shows

Fj holds; since j > k, Cj must fail.

(2.b)
⋃
Tk is covered by finitely many Aj’s.

Let Aj0 , . . . , Ajn−1 be n distinct elements of J . Note that ji > k, for
each ji, since each Aji ∈ J . By the argument used in (1),

⋃
(
⋂
i<nBji) is

covered by Aj0 , . . . , Ajn−1 . Since Cji fails (see (2.a)),
⋃

(T − (
⋃
r<ji

Dr ∪
Bji)) =

⋃
(Tk − Bji) (see (∗∗) and (∗∗∗)) is covered by finitely many Aj ’s,

for 0 ≤ i ≤ n − 1. As in (1.(∗)), it follows that
⋃

(Tk −
⋂
i<nBji) is also

covered by finitely many Aj ’s, and hence so is
⋃
Tk.

This contradiction proves (2) and hence Theorem 2.

In [2], p. 77, a symmetric model N was defined in which there exists an
infinite set of reals A without a countable subset (in N ) and also possessing
an injective function F : N → I×On, where I is the set of all finite subsets
of A. We claim that in this model every set is ℵ0-partible.

Theorem 3. For all x ∈ N there exists a countable partition of x in N .

P r o o f. Let x ∈ N be such that (x is infinite)N . If (F [x])N has only
finitely many a ⊆ A (a finite) such that 〈a, α〉 ∈ F [x] for some α, we see
that R = {α : 〈a, α〉 ∈ F [x] for some a ⊆ A} is infinite. Then, using the
well-ordering of the ordinals we single out countably many elements of R
and, since F is injective, we can thus define a countable subset of x.

On the other hand, suppose that there are infinitely many a ⊆ A such
that 〈a, α〉 ∈ F [x] for some α, and let S be the set of such a. If the cardinality
of the elements of S is unbounded, in the sense that for n ∈ ω there is an
a ∈ S such that |a| > n, then S is partitioned into classes each of which
contains the elements of S which have the same cardinality, and in this way
we obtain a countable partition of F [x]. If this is not the case, then there
exists n ∈ ω such that |x| ≤ n for all x ∈ S. But then, as we have seen,
an infinite set of reals without a countable subset has a countable partition.
Hence we can use Theorem 2 to get a countable partition of S.

Corollary 6. P-ℵ0 does not imply D in ZF.

We shall prove in the sequel a generalization of Theorem 2, which was
first proved by Kuratowski. (See [7], pp. 94–95 for Kuratowski’s proof.)
However, Kuratowski’s argument to prove Theorem 4 is different from the
argument presented here.
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Theorem 4. Let x be a set such that there exists Y ⊆ P(x) such that
|Y | = ω. Then x is ℵ0-partible.

P r o o f. Let Y = {yn : n ∈ ω} ⊆ P(x). We can suppose without loss of
generality that yn 6= ∅ and yn 6= x for all n ∈ ω. We will define a sequence
{zn : n ∈ ω}, and we claim that it includes an ℵ0-partition of a subset of x.
Suppose we have defined the sequence up to zn.

We shall say that yr is n-equivalent to ym, yr ∼n ym, iff yr −
⋃
s<n zs =

ym−
⋃
s<n zs. Furthermore, let Sn =

⋃
r<n zr∪yn. Next we introduce another

equivalence relation, ◦∼n. Given n ∈ ω, we define: ym ◦∼n yr ⇔ ym − Sn =
yr − Sn. Let [ym]∼n and [ym]∼◦n be the equivalence classes corresponding to
these relations. Furthermore, we define

Hn = {[ym]∼n : m ∈ ω} and Kn = {[y −m]∼◦n : m ∈ ω}.
Finally, Cn is the condition “Kn is infinite”. Now we can define zn:

zn =
{
yn −

⋃
m<n zm if Cn,

x− (
⋃
m<n zm ∪ yn) otherwise.

We claim that there are infinitely many n ∈ ω such that zn 6= ∅. First, we
note that z0 6= ∅. Now to get a contradiction, suppose that there exist only
finitely many i ∈ ω such that zi 6= ∅, and let n be the last such i. According
to the next lemma, Hn+1 is infinite, and hence there exist infinitely many
ym such that ym −

⋃
r≤n zr 6= ∅. We fix some ym with this condition such

that m > n. Since for every r > m, zr = ∅, we have
⋃
r≤n zr =

⋃
r<m zr, and

thus ym −
⋃
r<m zr 6= ∅. From this and zm = ∅ we obtain ¬Cm, and hence

zm = x− (
⋃
r<m zr ∪ ym), from which

⋃
r<m zr ∪ ym = x. As a consequence

we obtain x−⋃r<m zr ⊆ ym, and since zr = ∅ for r > n, x−⋃r≤n zr ⊆ ym. If
we repeat the same argument for [ym′ ]∼n 6= [ym]∼n with m′ > n, we obtain
x−⋃r≤n zr ⊆ ym′ . We claim ym ∼n ym′ . For this, let h ∈ ym′−

⋃
r≤n zr. By

the inclusion above we have h ∈ ym, and h ∈ (ym −
⋃
r≤n zr). Exchanging

m′ for m, we obtain finally ym ∼n ym′ , a contradiction.

Lemma 8. For all n ∈ ω, Hn is infinite.

P r o o f. We proceed by induction on n. The assertion is true for n = 0,
since Y is infinite and x ∈ H0 iff x = {yr} for some r (note that ym ∼0 yr
iff ym = yr). We now suppose that it is true for n ∈ ω. We proceed by
analyzing two cases.

(i) Cn holds: This means that Kn is infinite and since Sn =
⋃
r<n+1 zr,

we have [yr]∼◦r = [yr]∼n+1 , and Kn = Hn+1.
(ii) ¬Cn holds: By the induction hypothesis Hn is infinite. We show that

there are infinitely many [ym]∼n+1 . Note that [yj ]∼n ⊆ [yj ]∼◦n for every j.
Since Kn is finite and Hn infinite, there exists an m such that {[yj ]∼n :
[yj ]∼n ⊆ [ym]∼◦n} is infinite. We fix one such m. Let m′, m′′ be such that
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[ym′ ]∼n 6= [ym′′ ]∼n and [ym′ ]∼n , [ym′′ ]∼n ⊆ [ym]∼◦n . It suffices to show that
[ym′ ]∼n+1 6= [ym′′ ]∼n+1 . Assuming otherwise, we have

ym′ −
( ⋃
s<n

zs ∪ zn
)

= ym′′ −
( ⋃
s<n

zs ∪ zn
)
,(1)

ym′ −
( ⋃
s<n

zs ∪ yn
)

= ym′′ −
( ⋃
s<n

zs ∪ yn
)
,(2)

ym′ −
( ⋃
s<n

zs

)
6= ym′′ −

( ⋃
s<n

zs

)
.(3)

Beginning with an element realizing (3) and using (1) leads to a contradic-
tion with (2).

This last Theorem gives an alternative way of showing that the statement
“if x is infinite then P(x) is Dedekind infinite” does not imply in ZF the
statement “if x is infinite then x is Dedekind infinite” (for the standard
proof of this, see [2], p. 81).

3. Further independence results. An important question in this con-
text is whether DPO implies O in ZF. Within the theory ZFA, a suitable
modification of ZF where the existence of atoms or Urelemente is admit-
ted, the answer is negative, since in the permutation model presented below
DPO is true, while O fails.

Let N be the second Fraenkel model, which is defined from the permu-
tations of a countable set of pairs of Urelemente. (See, e.g., [2], p. 48.) This
model is constructed from a countable set of atoms A (but this set is not
countable in the model). The set A is partitioned in countably many dis-
joint pairs. The set of all these pairs is called B and is in the model. We
use the following notation for B and its elements: B = {{a0, b0}, {a1, b1}, . . .
. . . , {an, bn}, . . .}. Now we consider the group G of all those permutations of
A which preserve pairs, i.e., π({a, b}) = {a, b}, and the filter generated by
the ideal of finite subsets of A (see [2], p. 47). We define symG(x) = {π ∈
G : π(x) = x} and fixG(y) = {π ∈ G : π(x) = x for every x ∈ y}. For x ∈ A,
we say that an element E of the ideal is a support of x iff fix(E) ⊆ sym(x).
(For the details of this construction, see [2], pp. 45–48.)

Counterexample 2. In the model N there exist sets without a least
support.

We consider the set {a0} with a0 ∈ A. If π ∈ G, π(a0) = a0, we have
π(b0) = b0, because π({a0, b0}) = {a0, b0}. We note that both {a0} and {b0}
are supports of {a0}, but ∅ = {a0} ∩ {b0} is not.

Definition 11. Let S be a support. Then S is called normal if it is of
the form {ai0 , bi0 , ai1 , bi1 , . . . , ain , bin}.
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We remark that if S is a normal support and π ∈ G, then π[S] = S and
π[A− S] = A− S. If π ∈ G, then π(π(a)) = a for all a ∈ A.

Lemma 9. Let x ∈ N . Then the intersection of two normal supports of
x is also a normal support of x.

P r o o f. Let S1 and S2 be two normal supports of x. We claim that
S = S1 ∩S2 is a normal support of x. Normality is obvious. To show that it
is a support, let π ∈ fix(S). We prove π ∈ sym(x).

We now define two permutations π1, π2 such that π1 ∈ fix(S1), π2 ∈
fix(S2) by setting for a ∈ A,

π1(a) =
{
π(a) if a 6∈ S1,
a otherwise,

π2(a) =
{
π(a) if a ∈ S1 − S2,
a otherwise.

Since S1, A− S1, etc., are normal supports and complements of normal
supports, by the above remark we see that π1 and π2 are permutations.
Furthermore, they preserve pairs, and thus they belong to G.

Straightforward verification using the fact that π(a) = a for a ∈ S shows
that π(a) = π1(π2(a)) for all a ∈ A.

Since a permutation of A yields an automorphism of the universe, we
have π = π1 ◦ π2. We observe that π2(x) = x since π2 ∈ fix(S2) and S2

is a support of x; similarly, π1(x) = x. Thus π(x) = π1(π2(x)) = x, and
π ∈ sym(x), showing that S is a support of x.

Corollary 7. Let x ∈ N . If K is the set of normal supports of x , there
exists a unique S0 ∈ K such that |S0| ≤ |S| for all S ∈ K. S0 is the least
normal support of x.

P r o o f. Standard, using Lemma 9 (pick S0 to be a member of K of
minimal cardinality).

We now consider the (proper class) function H : N → P<ω(A) (P<ω(A)
is the set of finite subsets of A), where H(x) is the least normal support
of x. Note that H is symmetric in the sense of [2], p. 49.

Lemma 10. Let x ∈ N , and let S be a support such that H(y) = S for
all y ∈ x. Then x can be well-ordered.

P r o o f. Let F be the filter that is used to define the model N . Recall
that fix(x) ∈ F implies x well-orderable (see [2], p. 47). We will show that
fix(x) ∈ F . For this we claim that fix(S) ⊆ fix(x). Let π ∈ fix(S) and let
y ∈ x. Since S is a support of y, we have fix(S) ⊆ sym(y), i.e., π(y) = y.
Hence π ∈ fix(x).

Lemma 11. There are countably many normal supports.

P r o o f. Let R be the set of normal supports. Then we define f : R →
P<ω(ω) in the following way: for S ∈ R, S = {ai0 , bi0 , ai1 , bi1 , . . . , aik , bik},
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let f(S) = {i0, i1, . . . , ik}. Note that f ∈ N because the enumeration of B
is in N . It is easy to see that f is a bijection between R and P<ω(ω), hence
R is countable.

Theorem 5. If x is infinite and x ∈ N , then x is ℵ0-partible in N .

P r o o f. Let H be as above. If the cardinal number of the elements of
H[x] is unbounded, we define a partition of x by putting in the same class
the elements of x whose least normal supports have the same cardinality.
Otherwise, we analyze two cases. If H[x] is infinite, then it is countable,
as follows immediately from the preceding lemma. Then an enumeration of
H[x] induces a countable partition of x. If H[x] is finite, there exists an
infinite subset of x such that H assigns the same least normal support to all
of them. But then this subset is well-ordered by Lemma 10, and it yields a
countable partition of x.

Corollary 8. DPO does not imply O in ZFA.

Definition 12. Let ACω2 be the Axiom of Choice restricted to countable
families of pairs.

Corollary 9. P-ℵ0 does not imply ACω2 in ZFA.

Now we briefly sketch the transfer of the above result into ZF. This trans-
fer was found independently by D. Pincus and the author. The technique
by Jech and Sochor seems too weak to transfer P-ℵ0. Indeed, on the one
hand, P-ℵ0 is not immediately equivalent to the existential closure of a for-
mula in which every quantifier is bounded to some rank of the permutation
model (see Problem 1 in [2], p. 94). On the other hand, there exist sets in N
without least support and thus we cannot use Theorem 6.6 of [2], p. 90. For
this transfer, we use the method developed in [4] from which the definitions
of boundable, injectively boundable and surjectively boundable formulas and
statements are taken (see [4], pp. 721–722). A statement Φ is called trans-
ferable if there is a metatheorem: “If Φ is true in a permutation model, then
Φ is consistent with ZF”. Pincus [4] proves:

Theorem 6. An injectively boundable statement is transferable. Hence,
so is any surjectively boundable statement.

We also need the following:

Definition 13. For a set x, the surjective cardinal |x|− is

|x|− = sup{α : there is a surjection from x onto α}.
Let θ(x) denote the property “if x is infinite, then x is ℵ0-partible”. Since

|x|− > ω implies θ(x), the following is provable in set theory with atoms:

∀x (|x|− ≤ ω ⇒ θ(x))⇔ ∀x θ(x).
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Thus, P-ℵ0 is equivalent to a surjectively boundable statement in set theory
with atoms. Furthermore, the statement “there exists a set of pairs without
a choice set” is boundable and hence surjectively boundable. From this we
deduce that the statement “P-ℵ0 and there exists a set of pairs without a
choice set” is transferable. Thus, we have:

Theorem 7. P-ℵ0 does not imply ACω2 in ZF.

Corollary 10. DPO does not imply O in ZF.

In the sequel we will show that O does not imply DO in ZF. Let N be
the ordered Mostowski model given by a set A of Urelemente isomorphic to
the rationals (see [2], p. 49). Let a, b, c be in A such that a < b and c 6∈ [a, b],
and let B = [a, b]∪ {c} in A. We note that B is in N with support {a, b, c}.
Then we have the following:

Theorem 8. B cannot be linearly and densely ordered in N .

P r o o f. To get a contradiction suppose that <D is a linear dense order
on B in N . Since <D∈ N , it has a finite support S: fix(S) ⊆ sym(<D).
Let S′ = (S ∩ B) − {a, b, c}. If S′ = ∅, let I0 = (a, b). (Intervals in this
theorem are always taken with respect to <, the order on A.) If not, let S′ =
{s0, . . . , sn−1} with |S′| = n and si < si+1. Then I0 = (a, s0), Ii = (si−1, si)
for 0 < i < n, and In = (sn−1, b). We observe that there is no s ∈ S between
two successive elements of S′. We claim that there is no r such that r 6∈ Ii for
i ≤ n, and x <D r <D y, with x <D y and x, y ∈ Ii. Otherwise, we fix such
x, y and r. Then we note that there exists a π ∈ fix(S′) such that π(z) = z
and π(x) = y for all z 6∈ Ii. In this case, since π ∈ fix(S′), π preserves
<D, and from x <D r we obtain π(x) <D π(r), i.e. y <D r, contradicting
r <D y. Thus B − (S ∪ {a, b, c}) is partitioned into sets Ii0 , . . . , Iin so that
∀x ∀y (x ∈ Iij ∧y ∈ Iij+1 ⇒ x <D y). Let T = S′∪{a, b, c}. Since S is finite,
and <D is a linear dense order, the elements of T must be either extremes of
<D, or we must have each of them separating two intervals Iij , Iij+1 . Since
we have n + 1 intervals, there can be at most n + 2 such elements. But T
has n+ 3 elements, a contradiction.

The result for ZFA proved by Theorem 8 is easily transfered into ZF
by using a technique due to Jech and Sochor (see [2], pp. 85, 90, and also
Problem 1 on p. 94). This method makes it possible to construct, from the
ordered Mostowski model, a symmetric model in which the Boolean Prime
Ideal Theorem (PI) and O hold (see op. cit., p. 113). In this way we obtain
the following:

Corollary 11. O does not imply DO in ZF.

Corollary 12. PI does not imply DO in ZF.
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A final remark: Sageev has constructed a model where the statements
“for every infinite cardinal m, m = ℵ0 ·m” and O hold but AC fails (see [6],
p. 148). Actually, Sageev shows that “for every infinite cardinalm,m = 2·m”
holds, but Halpern and Howard have proved the equivalence with the former
(see [1], p. 489). It is easy to see that these statements imply “every set can
be ordered as the linear sum of canonically countable intervals” (i.e. the
same function enumerates each interval). Using the argument of Lemma 1 it
can be shown that DO holds in this model. In this way we have the following:

Corollary 13. DO does not imply AC in ZF.

Glossary

DPO is “every infinite set can be non-trivially densely ordered”.
O is “every set can be linearly ordered”.
DO is “every infinite set can be linearly and densely ordered”.
D is “every infinite set has a countable subset”.
PP is “every infinite set is partible”.
P-ℵ0 is “every infinite set is ℵ0-partible”.
PI is the Boolean Prime Ideal Theorem.
ACω2 is the Axiom of Choice restricted to countable families of pairs.
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