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Abstract. We present a new technique for showing that inverse limit spaces of certain
one-dimensional Markov maps are not homeomorphic. In particular, the inverse limit
spaces for the three maps from the tent family having periodic kneading sequence of
length five are not homeomorphic.

1. Introduction. Inverse limit spaces of one-dimensional maps com-
monly appear as attractors of dynamical systems (see, for example, [2], [3],
[12], [19]). It is then of interest to determine when such inverse limit spaces
are homeomorphic. In general, this appears to be a difficult question.

Let fn denote the map of the unit interval I with fn(m/n) = 0 if m is
even and fn(m/n) = 1 if m is odd (m = 0, 1, . . . , n), and which is linear
in between these points. Let (I, fn) denote the inverse limit space obtained
by using fn as a single bonding map. By investigating the combinatorial
structure of the composants containing the fixed point (0, 0, 0, . . .), Watkins
[18] proved that if n and m do not have the same prime factors, then (I, fn)
and (I, fm) are not homeomorphic. Dębski ([7]) has generalized this to cover
inverse limits constructed using multiple bonding maps selected from the fn.
(The corresponding classification problem for solenoids has also been solved;
see [5], [14] and [1].)

Define the family of tent maps fλ : I → I, for 0 ≤ λ ≤ 2, as

fλ(x) =
{
λx, 0 ≤ x ≤ .5,
λ(1− x), .5 ≤ x ≤ 1.

In terms of the topology of the inverse limit space, the map fλ serves as a pro-
totype for certain unimodal maps having the same kneading sequence. For
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example, if the kneading sequence of fλ is finite, and g is any unimodal map
with identical kneading sequence, the inverse limit space (I, g) is homeo-
morphic to (I, fλ) ([11], see also [9] for results of this sort). At the Spring
Topology Conference in 1992, T. Ingram asked whether members of the tent
family having distinct periodic kneading sequences of the same length can
have homeomorphic inverse limit spaces. (Unpublished work by Barge and
Martin indicates that for maps having periodic kneading sequences of differ-
ent lengths, the inverse limit spaces are distinct in virtue of having a different
number of endpoints.) While the inverse limit space of a map in the tent
family having periodic kneading sequence can be represented symbolically,
the combinatorial structure of the composants is sufficiently complicated so
as to make the generalization of Watkins’ techniques difficult.

In this paper, we present another technique for showing that inverse
limit spaces of one-dimensional maps are not homeomorphic. We prove
that for transitive Markov maps f and g of the interval, the existence of
a homeomorphism between inverse limit spaces leads to a commuting di-
agram of “transition” matrices (Theorem 3.4) and a relationship between
the eigenvalues of the transition matrices for f and g (Corollary 3.5). Com-
bining this with work of Lind [13], we deduce that if (I, f) and (I, g) are
homeomorphic, the algebraic extensions Q(α) and Q(β) are equal, where
α and β are the largest (in absolute value) and real eigenvalues (i.e., the
spectral radii) of the transition matrices for f and g (Corollary 3.5). Ap-
plying this to the three maps from the tent family with periodic knead-
ing sequence of length five, we conclude that the inverse limit spaces for
all three are distinct (Theorem 4.2), answering Ingram’s question in this
case.

The outline of the paper is as follows. In §2, we introduce notation and
mention some known results. In §3, we state the main results and prove all
except Theorem 3.4; the details of Theorem 3.4 are somewhat technical and
appear in §5. In §4, we apply the main results to the case of the three period
fives.

2. Notation and preliminaries. Given a continuous function f : I → I
of the interval I = [0, 1], the associated inverse limit space (I, f) with single
bonding map f is defined by

(I, f) = {x = (x0, x1, . . .) : xn ∈ I, f(xn+1) = xn, n = 0, 1, . . .}.
A continuous map f : I → I is Markov if there is a finite collection of points
0 = c0 < c1 < . . . < cn = 1 such that f({c0, c1, . . . , cn}) ⊆ {c0, c1, . . . , cn}, f
is not constant on [ci−1, ci] for any i, and each interval [ci−1, ci], i = 1, . . . , n,
is a finite union of subintervals [a, b] such that f |[a,b] is monotone and
f({a, b}) ⊆ {c0, c1, . . . , cn}. The collection {c0, c1, . . . , cn} will be called a
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Markov partition for f . If f is Markov with Markov partition {c0, c1, . . . , cn},
the transition matrix of f with respect to {c0, c1, . . . , cn} is the n × n in-
teger matrix C = (cij) where cij is the number of times f |[cj−1,cj ] covers
[ci−1, ci] (so cij is the number of components of (f |[cj−1,cj ])

−1((ci−1, ci))
and each component maps onto (ci−1, ci)). The matrix C is aperiodic or
eventually positive if there is a positive integer m such that every entry of
Cm is positive. For technical reasons, we say that a Markov map f is aper-
iodic if its transition matrix C is aperiodic and either n ≥ 2 or n = 1 and
c11 > 1.

If f is Markov, there is a second Markov map g with the same Markov
partition, the same transition matrix and no flat spots (that is, g is nowhere
locally constant) such that the inverse limit space (I, f) of I with single
bonding map f is homeomorphic to (I, g) ([10, Theorem 3.2]). Suppose that
f is Markov with Markov partition {c0, c1, . . . , cn} and that f has no flat
spots. A point c ∈ I is a critical point of f if either c ∈ {0, 1} or f |J is
not one-to-one for each subinterval J with c ∈ int(J). If c ∈ (0, 1) is a
critical point of f , we will call f(c) a critical value of f . Suppose that f
is onto, so that the critical values of fk+1 contain the critical values of fk

for each k ≥ 1. Since the collection of critical values of f is contained in
{c0, c1, . . . , cn} and f({c0, c1, . . . , cn}) ⊆ {c0, c1, . . . , cn}, there is an l > 0
such that the critical values of f l are the same as the critical values of
fk for all k ≥ l. If C′ is the collection of critical values of f l and C′ ∪
{0, 1} = {0 = c′0, c

′
1, . . . , c

′
m = 1} (⊆ {c0, c1, . . . , cn}), then {c′0, c′1, . . . , c′m}

is a Markov partition for f l with the property that for 0 < i < m, c′i
is a critical value of f l. If f is aperiodic, we may choose l large enough
so that 0 and 1 are also critical values, each element of the partition is
actually a critical point, and each critical value is realized at least k times
for a fixed positive integer k. (The last assumption provides a critical point
in the interior of I realizing a particular critical value for k ≥ 3.) Since
(I, f l) is homeomorphic to (I, f), we have established (a) through (e) of the
following.

Lemma 2.1. If f is aperiodic, there is an aperiodic (Markov) function
g with the following properties:

(a) g has no flat spots,
(b) the Markov partition C for g equals the set of critical values for g

and is contained in the set of critical points for g,
(c) each critical value is realized by at least three critical points of I,
(d) g[c, d] = I for distinct c, d ∈ C,
(e) (I, g) is homeomorphic to (I, f),
(f) g is piecewise linear with slope everywhere equal in absolute value to

the spectral radius of the transition matrix for g.
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P r o o f. According to the preceding remarks, we need only show that
(f) can be met. Suppose then that f itself satisfies (a), (b), (c) and (d).
Replace the Markov partition C for f witnessing (b) and (d) by a finer
Markov partition P (f) for which each entry in the transition matrix is
either a 0 or a 1. Let P (f) = {0 = a0 < a1 < . . . < an(f) = 1} and
{0 = b0 < b1 < . . . < bn(f) = 1} ⊆ I. Let φ : I → I denote the
homeomorphism with φ(ai) = bi for 0 ≤ i ≤ n(f) and which is linear
in between these points. Then the map g = φ ◦ f ◦ φ−1 is conjugate to
f on I, satisfies (a), (c) and (e) and has the same transition matrix as
f . Since g is strictly increasing or strictly decreasing between partition
points, g may be assumed to be linear between these points by [10, 3.2].
If the partition {b0, b1, . . . , bn(f)} is chosen so that for each i, bi − bi−1

is the ith entry in the normalized left eigenvector corresponding to the
spectral radius of the transition matrix, then (f) holds. Finally, there is
a Markov partition for g corresponding to the original Markov partition
for f (and thus with identical transition matrix) with the desired proper-
ties.

Note that the spectral radius is greater than one in the above result.
Since the transition matrix is aperiodic, a subinterval of I having nonempty
interior eventually maps under g over the entire interval I.

The Perron–Frobenius Theorem states that if M is a nonnegative aperi-
odic matrix, then M has a real positive eigenvalue which is larger than any
other eigenvalue of M in absolute value (and thus equals the spectral radius
of M) and which is unique in having an eigenvector with all components
positive ([8]). As in [13], we define the set P of Perron numbers to be the
set of algebraic integers greater than 1 which have the property that they
are larger than the modulus of all their algebraic conjugates. Lind has shown
that any Perron number is realized as the spectral radius of an aperiodic
nonnegative integral matrix ([13, Theorem 1]), thus the Perron numbers are
precisely the spectral radii of such matrices. He also proves that P is closed
under addition and multiplication ([13, Proposition 1]), and that if αβ = γ,
where α, β, γ ∈ P, then α, β ∈ Q(γ), the algebraic extension of the rationals
Q by γ ([13, Proposition 5]).

3. The main results. In the following, f and g are Markov maps of the
interval with Markov partitions P (f) = {0 = a0 < a1 < . . . < an(f) = 1}
and P (g) = {0 = b0 < b1 < . . . < bn(g) = 1}. We assume that both f and g
satisfy the conclusions of Lemma 2.1.

The following result concerning the topology of the inverse limit space
will be helpful. As usual, πk : (I, f)→ I and πk : (I, g)→ I denote projec-
tion onto the kth coordinate, k = 1, 2, . . .
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Lemma 3.1. Suppose that g is as above, and that H is a proper subcon-
tinuum of (I, g). There is a positive integer K so that πk|H is one-to-one
for k ≥ K.

P r o o f. Since H is a proper subcontinuum of (I, g), there is a positive
integer N so that for n ≥ N , πn(H) 6= I, and thus for n ≥ N + 1, πn(H)
contains at most one critical value of g. If there exists M such that for
m ≥ M , πm(H) does not contain any critical value of H, then πm is one-
to-one on H for m ≥ M . If πn(H) contains a critical value for infinitely
many n ∈ Z+, then there is a unique x ∈ (I, g) such that xn ∈ P (g) for
infinitely many n and thus for all n ∈ Z+. Suppose that for some j > N +1,
xj ∈ int(πj(H)). Then xj−1 is an endpoint of πj−1(H) since g turns at
xj and at no other point of πj(H). In fact, xn is an endpoint of πn(H) for
N+1 ≤ n ≤ j. But then xm 6∈ int(πm(H)) for m > j, hence πm is one-to-one
on H for m > j.

Given a homeomorphism between (I, f) and (I, g) and a sequence
{εl}l∈Z+ of positive numbers, Mioduszewski ([15]) constructs an infinite di-
agram of maps that εl-commute:

s1
}}||||||

fm1oo

s2
}}||||||

gn1
oo

t1

aaBBBBBB
gn2

oo

t2

aaBBBBBB · · · sl−1
}}||||||

fml−1oo

sl
}}||||||

gnl−1
oo

tl−1

aaBBBBBB
gnl

oo

tl

aaBBBBBB · · ·

We wish to use such a diagram to obtain a diagram of commuting
matrices (Theorem 3.4), and thus need to explicitly construct connecting
maps which “almost” map P (f) to P (g) and P (g) to P (f). In the case
in which, for each of f and g, there is a subinterval mapping in a one-
to-one fashion over the entire interval I, we are able to define a single
connecting map in each direction at each stage of the construction. For
technical reasons, when this is not the case, our techniques require sev-
eral connecting maps defined on subintervals of I at each stage of the dia-
gram.

Proposition 3.2. Suppose that (I, f) and (I, g) are homeomorphic.
Given a sequence {εl}l∈Z+ of positive numbers, there are sequences of pos-
itive integers {ml}l∈Z+ and {nl}l∈Z+ ; points α−i , α

+
i ∈ P (f) and β−j , β

+
j ∈

P (g) with α−i ≤ ai−1, α+
i ≥ ai, β−j ≤ bj−1, β+

j ≥ bj for 1 ≤ i ≤ n(f) and
1 ≤ j ≤ n(g); and maps sl,i : [α−i , α

+
i ] → I, tl,j : [β−j , β

+
j ] → I for l ∈ Z+,

1 ≤ i ≤ n(f) and 1 ≤ j ≤ n(g) such that :

(a) |sl,i ◦ tl,j − gnl | < εl and |tl,j ◦ sl+1,i − fml | < εl, where defined ;
(b) sl,i and tl,j are piecewise monotone with no flat spots;
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(c) the critical values of sl,i (respectively , tl,j) lie in P (g) (respectively ,
P (f)); moreover , each element of P (g) (respectively , P (f)) is a critical
value of each sl,i (respectively , tl,j) and is realized as such at least three
times,

(d) α−i (respectively , β−j ) is a local minimum of each tl,j (respectively ,
sl,i), and α+

i (respectively , β+
j ) is a local maximum of each tl,j (respec-

tively , sl,i).

P r o o f. We first prove the theorem under the assumption that f and
g have right inverses f1 : I → L and g1 : I → L′ (that is, there exist
subintervals L and L′ of I and maps f1 and g1 onto L and L′ respectively
such that f ◦ f1 : I → I and g ◦ g1 : I → I equal the identity on I). We
then indicate the proof of the more general result. Define right inverses,
ı̂k : I → (I, f) and ı̂k : I → (I, g), of the projection functions πk as fol-
lows:

ı̂k(x) = (fk(x), fk−1(x), . . . , x, f1(x), f2
1 (x), . . .)

or

ı̂k(x) = (gk(x), gk−1(x), . . . , x, g1(x), g2
1(x), . . .).

Suppose that Φ : (I, f) → (I, g) is a homeomorphism. For n,m ≥ 0, define
s(n,m), t(n,m) : I → I as

s(n,m) = πm ◦ Φ ◦ ı̂n, t(n,m) = πm ◦ Φ−1 ◦ ı̂n.
Note that gk ◦ s(n,m + k) = s(n,m) and fk ◦ t(n,m + k) = t(n,m)

for all k ≥ 0. Fix n,m ≥ 0. The map Φ ◦ ı̂n is an embedding of I onto
an arc H ⊆ (I, g). According to the previous lemma, for k large enough,
s(n,m + k) is one-to-one, so that s(n,m) = gk ◦ s(n,m + k) is piecewise
monotone with no flat spots and the critical values of s(n,m) are contained
in P (g). A similar statement holds for t(n,m).

Now ı̂m◦πm → id uniformly as m→∞. Also, πm◦ ı̂m+k = πm◦ ı̂m◦fk =
fk, so t(m, j) ◦ s(n,m) = πj ◦ Φ−1 ◦ ı̂m ◦ πm ◦ Φ ◦ ı̂n → πj ◦ ı̂n = fn−j

uniformly as m → ∞ and independently of n for fixed j, 0 ≤ j ≤ n.
Similarly, s(m, j) ◦ t(n,m)→ gn−j .

Claim. For m large enough, each element of P (g) is realized as a critical
value of s(m, 0) at least three times.

Choose H ′ to be an arc in (I, g) such that π2(H ′) = I and x, y ∈ H ′ such
that π2(x) = 0, π2(x) = 1. Choose ε > 0 such that g([ε, 1−ε]) = I, and δ1 >
0 such that for z, w ∈ (I, g), if |z−w| < δ1, then |π2(z)− π2(w)| < ε. There
is δ2 > 0 such that if |u− v| < δ2 for u, v ∈ (I, f), then |Φ(u)− Φ(v)| < δ1.
For m large enough, there are x, y ∈ I such that |̂ım(x) − Φ−1(x)| < δ2/2,
|̂ım(y) − Φ−1(y)| < δ2/2. For each i, there are xi, yi ∈ [ai−1, ai] such that
f(xi) = x, f(yi) = y. Finally, since ı̂m+k → ı̂m ◦fk uniformly as m→∞, m
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can be chosen large enough so that |̂ım+k − ı̂m ◦ fk| < δ2/2. Then for each
i, |̂ım+1(xi) − Φ−1(x)| ≤ |̂ım+1(xi) − ı̂m(f(xi))| + |̂ım(f(xi)) − Φ−1(x)| <
δ2/2 + δ2/2 = δ2. That is, s(m+ 1, 2)([ai−1, ai]) ⊇ [ε, 1− ε], so that s(m+
1, 1)([ai−1, ai]) ⊇ g[ε, 1− ε] = I. Then, certainly, s(m+ 1, 0)([ai−1, ai]) ⊇ I
for each i, and since s(m + 1, 0) = g ◦ s(m + 1, 1), each element of P (g) is
realized as a critical value of s(m + 1, 0) at least three times. The claim is
proved.

In the special case under consideration (f and g have right inverses),
take α−i = β−j = 0, α+

i = β+
j = 1, sl,i = sl, and tl,j = tl (1 ≤ i ≤ n(f),

1 ≤ j ≤ n(g)) where sl and tl are defined presently.
Let m be large enough so that |s(m + k, 0) − s(m, 0) ◦ fk| = |π0 ◦ Φ ◦

ı̂m+k − π0 ◦ Φ ◦ ı̂m ◦ fk| < ε1/2 for every k ≥ 0 and so that s(m, 0) sat-
isfies (c). Let s1 = s(m, 0). Choose k large enough so that |s(m + k, 0) ◦
t(n,m + k) − gn| < ε1/2 for n ≥ 0, and n large enough so that t(n,m)
satisfies (c) and |t(n + j,m) − t(n,m) ◦ gj | < ε2/2 for every j ≥ 0. Let
t1 = t(n,m) and n1 = n. Then |s1 ◦ t1 − gn1 | = |s(m, 0) ◦ t(n,m) − gn| =
|s(m, 0) ◦ fk ◦ t(n,m+ k)− gn| ≤ |s(m, 0) ◦ fk ◦ t(n,m+ k)− s(m+ k, 0) ◦
t(n,m+ k)|+ |s(m+ k, 0) ◦ t(n,m+ k)− gn| < ε1.

The inductive definition of sl and tl is now clear.
In the general case, let Li be a subinterval of I, maximal with respect to

the properties that f is one-to-one on Li and f(Li) ⊇ [ai−1, ai], 0 ≤ i ≤ n(f).
Let [α−i , α

+
i ] = f(Li) and fi : [α−i , α

+
i ] → Li be the inverse of f |Li ; define

L′j , β
−
j , β

+
j , gj in a like manner. In the foregoing, replace f1 in the definition

of ı̂k by fi to define ı̂k,i (or g1 by gj) and let si(n,m) = πm◦Φ◦ı̂n,i, tj(n,m) =
πm ◦ Φ ◦ ı̂n,j . The construction now proceeds as above. That (d) is satisfied
is guaranteed by the maximality of Li and L′j .

Corollary 3.3. With the hypotheses of Proposition 3.2, given a se-
quence {εl}l∈Z+ of positive numbers, for l = 1, 2, . . . , 0 ≤ i ≤ n(f) and
0 ≤ j ≤ n(g), there are nl,ml, sl,i, tl,j as above but with (a) improved to

|gr ◦ sl,i ◦ fM ◦ tp,j − gr+N | < εl

and

|fr′ ◦ tl,j ◦ gN
′ ◦ sp+1,i − fr

′+M ′ | < εl

where defined , for p ≥ l, 0 ≤ r ≤ ∑l−1
i=1 ni, 0 ≤ r′ ≤ ∑l−1

i=1mi, and where
M =

∑p−1
k=l mk, M ′ =

∑p
k=lmk, N =

∑p
k=l nk and N ′ =

∑p
k=l+1 nk.

Theorem 3.4. Suppose that f, g are as above with aperiodic transition
matrices A,B respectively , and that (I, f) and (I, g) are homeomorphic.
Then for l = 1, 2, . . . , there exist nonnegative matrices Sl, Tl and positive
integers nl,ml such that SlTl = Bnl and TlSl+1 = Aml :
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S1}}||||||
Am1oo

S2}}||||||

Bn1
oo

T1

aaBBBBBB
Bn2

oo

T2

aaBBBBBB · · ·
Sl−1}}||||||

Aml−1oo

Sl}}||||||

Bnl−1
oo

Tl−1

aaBBBBBB
Bnl

oo

Tl

aaBBBBBB · · ·

As we mentioned earlier, the proof of Theorem 3.4 is somewhat technical,
and is left to §5. If the maps sl,i, tl,j respected the Markov partitions for
f and g in that each sl,i mapped partition elements for f into those for g,
etc., then the matrices Sl, Tl could be defined simply as a type of transition
matrix for sl,i, tl,j . The difficulty arises in showing that the maps sl,i, tl,j
are close enough to respecting the partitions for f and g so that what is
essentially a transition matrix for each can be defined and has the desired
properties.

We are now ready to indicate the relationship between the spectral radii
α and β of the transition matrices for f and g.

Corollary 3.5. Suppose that (I, f) and (I, g) are homeomorphic, where
f , g, A, B, α and β are as above. Then

(a) there are Perron numbers c and d and positive integers n and m
such that cα = βm and dβ = αn,

(b) Q(α) = Q(β).

P r o o f. (a) We first prove that for each i, there are ci, di such that
Si(~v) = ci ~w and Ti(~w) = di~v, where ~v and ~w are right eigenvectors cor-
responding to the eigenvalues α and β respectively. Let hB denote the
map on the set D of unit vectors with nonnegative components defined
by hB(~x) = B~x/|B~x|. According to [16, Remark 3.6.9], hB is a contrac-
tion on D with fixed point ~w/|~w|. In particular, given any neighbourhood
U of ~w/|~w| in D, there is a positive integer N so that if n ≥ N , then
hnB(D) ⊆ U . According to Theorem 3.4, αklS1(~v) = S1A

kl(~v) = BjlSl(~v),
where kl =

∑l
i=0mi and jl =

∑l
i=0 ni. Then, normalizing,

S1(~v)
|S1(~v)| =

BjlSl(~v)
|BjlSl(~v)| .

But jl →∞ and BjlSl(~v)/|BjlSl(~v)| converges to ~w/|~w| as l→∞. That is,
S1(~v) is a scalar multiple of ~w. Similarly, Si(~v) is a scalar multiple of ~w for
i > 1 and Ti(~w) is a scalar multiple of ~v for i ≥ 1.

Note that for each i, cidi+1 is an eigenvalue for SiTi+1 with eigenvector
~w, since SiTi+1(~w) = Sibi+1(~v) = cidi+1(~w). The matrix SiTi+1 is positive
and thus has a real and positive eigenvalue which is larger in absolute value
than any other and is the only eigenvalue having an associated eigenvector
with all components positive ([8, p. 63]). That is, for each i, cidi+1 and dici
are Perron numbers.
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Now S1A
n1T2 = Bm1+m2 , and thus

S1A
n1T2(~w) = Bm1+m2(~w), S1d2α

n1(~v) = βm1+m2(~w),

S1A
n1d2(~v) = βm1+m2(~w), d2α

n1c1(~w) = βm1+m2(~w),

hence d2α
n1c1 = βm1+m2 . That is, cα = βm1+m2 for the Perron number

c = d2α
n1−1c1. Similarly, there is a Perron number d and positive integer n

such that dβ = αn.
(b) According to (a) and the remarks concluding §2, α ∈ Q(βm) ⊆ Q(β),

and thus Q(α) ⊆ Q(β). Similarly, Q(β) ⊆ Q(α), so that Q(α) = Q(β).

We point out that (a) of Corollary 3.5 is stronger than (b). Recall the
definition of fn from §1, and let n0,m0 be positive integers. Since a Perron
number is, by definition, an algebraic integer, and a rational algebraic integer
is an integer, it follows from (a) that if (I, fn0) is homeomorphic to (I, fm0),
then n0 and m0 must have the same prime factors. (This is the result of
Watkins mentioned in the introduction.) On the other hand,Q(n) = Q(m) =
Q for all positive integers n,m.

If f is a transitive Markov map of the interval, then either f2 has a
dense orbit and f is aperiodic, or there are subintervals J,K of I with
f(J) = K, f(K) = J and |J ∩K| = 1 (cf. [4]). In this second case, f2|J and
f2|K are aperiodic, (I, f2) = (I, f2|J)∪(I, f2|K), (I, f2|J) and (I, f2|K) are
indecomposable, and |(I, f2|J)∩ (I, f2|K)| = 1. If f, g are transitive Markov
maps of the interval, and (I, f) and (I, g) are homeomorphic, then either
both f and g are aperiodic and 3.5 applies as stated, or there are subintervals
J,K,C,D of I such that f2|J , f2|K , g2|C , g2|D are aperiodic, (I, f2|J) is
homeomorphic to (I, g2|C), (I, f2|K) is homeomorphic to (I, g2|D), and 3.5
applies to the pairs f2|J , g2|C and f2|K , g2|D.

4. The period fives. There are three parameter values in [
√

2, 2] for
which the corresponding maps from the tent family have periodic critical
point of period five, i.e., periodic kneading sequence of length 5. (We refer
the reader to [6] for a description of kneading theory.) We are interested
in the inverse limit space of the tent map itself but actually work with the
inverse limit space of the associated core map. If fλ is in the tent family for
λ ∈ [

√
2, 2], the core map associated with fλ is simply fλ restricted to the

interval [f2(.5), f(.5)].
The inverse limit space of the core map is an indecomposable continuum;

the inverse limit space for the original map is identical to that of the core
map except in having an additional composant (of the fixed point (0, 0, . . .))
entwined with the indecomposable continuum. The inverse limit spaces for
the core maps are homeomorphic if and only if so are the inverse limit spaces
for the original maps.
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The kneading sequences and corresponding characteristic polynomials of
the transition matrices for the core maps are: RLRRC, P1 = x4− x3− x2 +
x−1; RLLRC, P2 = x4−x3−x2−x+1; and RLLLC, P3 = x4−x3−x2−x−1.
Let α, λ, and β denote the parameter values corresponding to RLRRC,
RLLRC, and RLLLC respectively. Equivalently, α, λ, and β are the roots
of the characteristic polynomials P1, P2, and P3 that are largest in abso-
lute value and are real and positive. (Each transition matrix for the in-
terval map is irreducible and aperiodic, thus such an eigenvalue for the
matrix exists by the Perron–Frobenius Theorem. It is well known that
for the tent family parametrized as above, this eigenvalue is the param-
eter value corresponding to the map, and the entropy of the map is the
logarithm of this eigenvalue.) According to Corollary 3.5, to show that
corresponding inverse limit spaces are distinct, it is enough to show that
so are corresponding algebraic extensions. We first indicate that Q(λ) is
distinct from each of Q(α) and Q(β). Recall that the splitting field of a
polynomial P ∈ Q[x] is the smallest extension of Q containing all roots
of P .

Theorem 4.1. The extension Q(λ) is distinct from each of Q(α) and
Q(β).

P r o o f. According to [17, p. 110], if the splitting field of a polynomial
contains a root of an irreducible polynomial, then it contains all roots of
the polynomial. That is, if Q(λ) = Q(α), then the splitting field of P1

equals the splitting field of P2. Let λ2 denote the second real root of P2;
then

λ, λ2 =
1
4

[
1 +
√

13±
√

2
√

13− 2
]
,

while the two complex roots λ3 and λ4 of P2 are given by

λ3, λ4 =
1
4

[
1 +
√

13±
√
−2
√

13− 2
]
.

Then Q(λ) = Q(λ2) = Q
(√

2
√

13− 2
)
, which is of degree 4, and the split-

ting field of P2, Q(λ, λ2, λ3, λ4) = Q
(√

2
√

13− 2,
√
−2
√

13− 2
)
, which is

of degree 2 over Q
(√

2
√

13− 2
)

and thus of degree 8 over Q.
We claim that the degree of Q(α, α2) over Q is 12, where α2 denotes the

second real root of P1, thus the splitting field of P2 cannot equal that of P1.
Define

y =
1
3

[
3

√
−83

2
− 3

2

√
(331)(3) + 3

√
−83

2
+

3
2

√
(331)(3)− 1

]
.

According to the CRC Mathematical Tables, the two real roots of P1 are of
the form 1/4 + R/2 ±D/2 where R2 − 5/4 = y and D is a term involving
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various radicals we are not concerned with. Then R ∈ Q(α, α2), thus y ∈
Q(α, α2). Since y is of degree 3 (y is a root of the resolvent cubic equation
of P1, x3 + x2 + 3x+ 4 = 0), the degree of Q(α, α2) over Q is 3m for some
positive integer m. But the degree of Q(α, α2) over Q is 4n for some positive
integer n since α is of degree 4. Finally, the degree of Q(α, α2) is less than
or equal to 16, since α2 is of degree at most 4, so the degree of Q(α, α2)
is 12.

A similar argument applies to show that the degree of Q(β, β2) is 12.

To prove that Q(α) and Q(β) are distinct, we note that if α ∈ Q(β),
then P1, the irreducible polynomial for α, factors over Q(β). One method
for indicating that such a factoring does not occur is outlined in van der
Waerden [17] and is the basis for the Maple algorithm determining factoring
over algebraic extensions. We include only those details relevant to this
example.

Suppose that g(x, θ) is a polynomial with coefficients in Q(θ), where θ
has irreducible polynomial f over Q, and that the n conjugates of θ are
given by θ = θ1, θ2, . . . , θn. The norm of g(x, θ) with respect to θ is

∏

i

g(x, θi).

Since the norm is symmetric in the θi, the coefficients of the norm are
actually in Q. (See §41 of [17] for a discussion of the norm. One can have
Maple calculate the norm as the resultant of g(x, θ) and f(θ) with respect
to θ.)

The method of van der Waerden involves the norm of P1(x − yβ) with
respect to β (i.e., the resultant of P1(x − yβ) and P3(β) with respect to
β), which is a polynomial F (x, y) with integer coefficients and of degree 16
in both variables. According to [17, p. 136], if F (x, y) is irreducible over
the integers, then P1 is irreducible over Q(β). Maple indicates that F (x, y)
is irreducible over the integers; we provide a few details. The polynomial
F (x, y) does not factor as f(x)g(y), since

F (x, 0) = (x4 − x3 − x2 − x+ 1)4

and

F (x, 1) = x16 − 8x15 + 19x14 + 2x13 − 63x12 + 48x11

+ 95x10 − 288x9 + 640x8 − 1042x7 + 806x6

+ 146x5 − 603x4 + 214x3 + 132x2 − 40x− 16

are not integer multiples of a common polynomial f(x). Then a nontrivial
factoring of F (x, y) must be of the form f(x, y)g(x, y) where the highest
power of x appearing in each of f and g is at least 1, which leads to a
nontrivial factoring of F (x, 1) as f(x, 1)g(x, 1). There are a number of de-
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terministic algorithms for factoring polynomials over the integers which vary
in efficiency; a simple argument that such a factoring can be performed in
a finite number of steps appears in [17, §41]. According to Maple, F (x, 1) is
irreducible over the integers.

We have proved

Theorem 4.2. Let fα, fλ and fβ be the three maps in the tent family
having periodic kneading sequence of length five. The inverse limit spaces
(I, fα), (I, fλ) and (I, fβ) are topologically distinct.

We note that Theorem 4.1 can also be proved by pointing out that
according to Maple, P2 does not factor over Q(α) or Q(β). We find the
argument given more appealing.

The same techniques imply that the inverse limit spaces for any two
distinct maps from the tent family having periodic critical point of ei-
ther period six or seven are topologically distinct. In theory, these tech-
niques might discriminate successfully between nonhomeomorphic inverse
limit spaces for maps from the tent family with periodic critical point of ar-
bitrary period. The primary practical limitation is the amount of computer
time required to determine whether a factoring of the type described above
exists.

5. The diagram of matrices. We now prove Theorem 3.4. Suppose
that f and g are as in §3 with P (f) = {0 = a0 < a1 < . . . < an(f) = 1},
P (g) = {0 = b0 < b1 < . . . < bn(g) = 1}, and associated (aperiodic) transi-
tion matrices A and B respectively. Also, suppose that sl,i, tl,j , εl, nl,ml are
as in Corollary 3.3.

To keep notation as simple as possible, as with Proposition 3.2, we first
prove each of the results in this section for the case in which the maps f and
g have right inverses, and thus single connecting maps sl and tl defined. As
we indicate at the end of each proof, the general case follows with very few
changes.

Lemma 5.1. For each i ∈ {0, . . . , n(f)} and k ∈ {1, . . . , n(f)} for which
sl,k(ai) is defined , there exists j ∈ {0, . . . , n(g)} such that |sl,k(ai) − bj | <
2εl. A similar statement holds for tl,j.

P r o o f. Suppose that the maps f and g have right inverses, so that
there are maps sl and tl defined as in the proof of 3.2 with sl,i = sl and
tl,j = tl for all i and j. Fix i and l, and suppose that |sl(ai) − bj | ≥ 2εl
for 0 ≤ j ≤ n(g). Since the critical values for tl are precisely the ai’s, there
exist c1 < c < c2 such that tl(c) = ai, tl(c1) and tl(c2) are equal to, without
loss of generality, ai+1, and tl is one-to-one on each of [c1, c] and [c, c2]. (If
ai only occurs as a maximum when it occurs as a critical value for tl, then
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replace ai+1 with ai−1 in what follows.) Suppose that sl(ai) ∈ [bk, bk+1], and,
without loss of generality, that for a slightly larger than ai, sl(a) > sl(ai).
Since the critical values for sl are the bk’s and sl([ai, ai+1]) = I, there is
ai < d < ai+1 such that sl(d) = bk+1 and sl is one-to-one on [ai, d]. There
are d1 and d2 with c1 ≤ d1 ≤ c ≤ d2 ≤ c2 and sl ◦ tl(di) = bk+1 for
i = 1, 2.

Now |sl ◦ tl − gnl | < εl, so gnl(d1) and gnl(d2) are within εl of bk+1.
On the other hand, |gnl(c)− sl(ai)| < εl, and so gnl has a turning point in
(d1, d2) with associated critical value less than or equal to bk, contradicting
the fact that |sl ◦ tl(x)− bk| ≥ 2εl for all x ∈ [d1, d2].

The only possible difficulty in the more general case is that the map sl,k
may not be defined on the interval [ai, ai+1]. But in this case, ai occurs as
a maximum for each tl,j , and the proof can proceed as above with [ai−1, ai]
replacing [ai, ai+1].

The following technical statement is easily proved.

Lemma 5.2. Suppose that maps h, k : [c1, c2] → I have the following
properties:

(a) h(c1) = h(c2),
(b) there is c ∈ (c1, c2) such that h is one-to-one on each of [c1, c] and

[c, c2],
(c) there is d ∈ [c1, c2] such that k is one-to-one on [c1, d] and [d, c2],

and
(d) if h(c) is a maximum, then k(d) is not a maximum; if h(c) is a

minimum, then k(d) is not a minimum.

Then |h− k| ≥ δ/2, where δ = |h(c)− h(c1)|.
In the following, for 1 ≤ i ≤ n(f) and 1 ≤ j ≤ n(g), let Ii = [ai−1, ai]

and Jj = [bj−1, bi]. For each i, j, define

a′i =
ai−1 + ai

2
, b′j =

bj−1 + bj
2

.

Suppose that k, l, j are fixed, and let (sl,j |[aj−1,aj ])
−1{b′k} = {x1 < x2 <

. . . < xp}. For 1 ≤ i ≤ p, let K(xi) denote the maximal subinterval of
[aj−1, aj ] satisfying:

(a) xi ∈ K(xi),
(b) sl,j |K(xi) is one-to-one, and
(c) sl,j(K(xi)) ⊆ [bk−1, bk].

Lemma 5.3. For sufficiently large l, 1 ≤ i ≤ p, and 0 ≤ m ≤ n(g),

([bk−1, bk]\sl,j(K(xi))) ∩ (tl−1,m)−1{a′1, . . . , a′n(f)} = ∅.
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P r o o f. Suppose that the maps f and g have right inverses, so that
sl,i = sl and tl,j = tl for all i and j. Because the critical values of sl are
precisely the elements of P (g), sl takes each of K(x2), . . . ,K(xp−1) exactly
onto Jk and (provided p > 1) the right endpoint of K(x1) and the left
endpoint of K(xp) into P (g). Furthermore, either the left endpoint of K(x1)
is aj−1 or sl takes this endpoint into P (g) and the right endpoint of K(xp)
is either aj or is taken into P (g) by sl. That is, if sl does not take K(x1)
onto Jk, then K(x1) = [aj−1, a] where either sl(a) ∈ P (g) or a = aj .
In the latter case, p = 1 and K(x1) = [aj−1, aj ], so that sl(K(x1)) =
sl([aj−1, aj ]) = I and the result holds. If sl(K(x1)) 6= Jk, then suppose
without loss of generality that sl is orientation preserving on K(x1), i.e.,
that bk−1 < sl(aj−1) < b′k.

Choose c ∈ I\{0, 1} such that tl(c) = aj−1 and c is a critical point of tl.

Claim. There are c1 < c < c2 such that sl ◦ tl is one-to-one on each of
[c1, c] and [c, c2] and either sl ◦ tl(c1) = bk−1 = sl ◦ tl(c2) or sl ◦ tl(c1) =
bk = sl ◦ tl(c2).

P r o o f o f c l a i m. Suppose that aj−1 = 0. Then there are e1 < c < e2

such that tl is one-to-one on [e1, c] and [c, e2] and tl(ei) = aj for i = 1, 2,
and thus c1, c2 such that e1 < c1 < c < c2 < e2, tl is one-to-one on [c1, c]
and [c, c2] and tl(ci) = a.

Suppose that aj−1 6= 0. Then there is b < aj−1 such that sl(b) = bk−1

and sl is one-to-one on [b, aj−1]. There are e1 < c < e2 such that tl is one-
to-one on [e1, c] and [c, e2] and either tl(ei) = aj for i = 1, 2 or tl(ei) = aj−2

for i = 1, 2. Then there are c1, c2 such that e1 < c1 < c < c2 < e2, tl is
one-to-one on [c1, c] and [c, c2] and either tl(ci) = a or tl(ci) = b. The claim
is proved.

We consider the two cases separately. We assume without loss of gener-
ality that {εl}l∈Z+ is a decreasing sequence converging to 0, and choose l
large enough so that 2εl < minb∈P (g){d(b, g−1(P (g))\{b})}.

C a s e I: sl ◦ tl(c1) = bk = sl ◦ tl(c2). Assume that 2εl < bk − b′k =
(bk − bk−1)/2. If gnl |[c1,c2] were one-to-one, then according to Lemma 5.2,
|gnl − sl ◦ tl| ≥ (bk − bk−1)/4 ≥ εl on [c1, c2]. Then gnl has a turning point
in [c1, c2], so either gnl(d) = bk−1 for some d ∈ [c1, c2], or gnl(d) = bk for
some d. If the former case does not occur, then gnl must have a maximum
at d and be one-to-one on [c1, d] and [d, c2]. But then Lemma 5.2 implies
that |gnl − sl ◦ tl| ≥ εl. Thus there exists d ∈ [c1, c2] such that gnl(d) =
bk−1.

Since εl < minb∈P (g){d(b, g−1(P (g))\{b})}, the map g restricted to
[bk−1, sl◦tl(d)] = [gnl(d), sl◦tl(d)] is one-to-one. Thus diam(g[bk−1, sl(aj−1)])
≤ diam(g[bk−1, sl ◦ tl(d)]) = |g ◦ sl ◦ tl(d)− g(bk−1)| < εl (where the last in-
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equality follows from Corollary 3.3). But then g|g[bk−1,sl◦tl(d)] is one-to-one.
Continuing, diam(gr[bk−1, sl(aj−1)]) ≤ diam(gr[bk−1, sl ◦ tl(d)]) < εl for
0 ≤ r ≤∑l−1

i=1 ni.

C a s e II: sl ◦ tl(c1) = bk−1 = sl ◦ tl(c2). In this case, gnl can have at
most one critical point in [c1, c2], and if there is a critical value, it must be
bk−1. Suppose then that there exists d ∈ (c1, c2) such that gnl(d) = bk−1.
Then gnl is one-to-one on [c1, d] and on [d, c2].

If gnl has a minimum at d, then since |bk−sl(aj−1)| < εl, g is one-to-one
on [bk−1, sl(aj−1)] and g ◦ sl ◦ tl and gnl+1 satisfy the hypotheses of Lemma
5.2. Then |g◦sl◦tl−gnl+1| < εl implies that |g(bk−1)−g◦sl(aj−1)| < 2εl, thus
g is one-to-one on g[bk−1, sl(aj−1)]. Continuing, diam(gr[bk−1, sl(aj−1)]) <
2εl for 0 ≤ r ≤∑l−1

i=1 ni.
If gnl has a maximum at d or does not turn at d, then bk−1 is not

an endpoint of I and g turns at bk−1. Since the map g is one-to-one on
[bk−1 − 2εl, bk−1] and [bk−1, bk−1 + 2εl], it follows that g ◦ sl ◦ tl has a
single maximum (or minimum) in [c1, c2] while g ◦ gnl has a single mini-
mum (or maximum) in [c1, c2]. By Lemma 5.2, gr ◦ sl ◦ tl[c1, c2], and hence
gr[bk−1, sl(aj−1)], remains small.

If there is no d ∈ (c1, c2) for which gnl(d) = bk−1, then gnl and gnl+1

are one-to-one on [c1, c2], and arguments similar to the above apply.

We have proved that in either case, gr[bk−1, sl(aj−1)] remains small for
0 ≤ r ≤∑l−1

i=1 ni. Now suppose that tl−1[bk−1, sl(aj−1)]∩{a′1, . . . , a′n(f)} 6= ∅,
say a′i ∈ tl−1[bk−1, sl(aj−1)]. Also, tl−1(sl(aj−1)) ∈ tl−1[bk−1, sl(aj−1)] and,
if l is large enough, tl−1(sl(aj−1)) ≈ fml−1(aj−1) ∈ P (f). According to
Lemma 2.1, there is N such that for all n ≥ N , fn(tl−1[bk−1, sl(aj−1)]) = I.
Let l and i′ be large enough so that n =

∑l−1
i=i′ mi ≥ N and εi′ < 1/4. Let

r =
∑l−1
i=i′ ni. Then |si′ ◦fn ◦ tl−1−gr| < 1/4 (Corollary 3.3), while si′ ◦fn ◦

tl−1[bk−1, sl(aj−1)] = I and gr[bk−1, sl(aj−1)] is small. This contradiction
proves the lemma in the simpler case.

In the more general case, sl,j may not be defined for x < aj . In this case,
since aj = α−j , aj occurs as a minimum for each tl,k, and hence c can be
chosen so that Case I holds. The proof then follows.

We are now ready to complete the proof of Theorem 3.4. For each l, the
matrices Sl and Tl that appear in the statement of Theorem 3.4 are defined
by

(Sl)kj = #(sl,j |[aj−1,aj ])
−1(b′k), (Tl)ik = #(tl,k|[bk−1,bk])

−1(a′i).

P r o o f o f T h e o r e m 3.4. The proof of the general case is identical
to that for the simpler case, in which sl,i = sl and tl,j = tl for all i and
j. We avoid the more complicated notation of the general case and merely
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present the argument for the simpler case. Fix k ∈ {1, . . . , n(g)} and let
K(x1), . . . ,K(xp) ⊆ Ij be as above. Let {y1, . . . , yr} = [(tl−1)−1(a′i)] ∩
Jk. Then r = (Tl−1)ik, sl(K(xn)) ⊇ {y1, . . . , yr} for 1 ≤ n ≤ p and
l large enough by Lemma 5.3, and p = (Sl)kj . Since sl|K(xn) is one-to-
one, #(sl|Ij )−1({y1, . . . , yr}) = rp = (Tl−1)ik(Sl)kj . According to Lemma
5.1, for l large enough, each point of (tl−1)−1({a′1, . . . , a′n(f)}) is in ex-

actly one of the Jk’s, hence #(tl−1 ◦ sl|Ij )−1(a′i) =
∑n(g)
k=1 (Tl−1)ik(Sl)kj =

(Tl−1Sl)ij .
Now we argue that #(tl−1 ◦ sl|Ij )−1(a′i) = #(fml−1 |Ij )−1(a′i). Let

L1, . . . , Lq be the distinct subintervals of Ij with fml−1(Ln) = Ii, fml−1 |Ln
one-to-one (1 ≤ n ≤ q) and q = (Aml−1)ij . Since |tl−1 ◦ sl − fml−1 | <
εl−1, a′i ∈ tl−1 ◦ sl(Ln) for each n as long as l is sufficiently large. Thus
#(tl−1 ◦ sl|Ig )−1(a′i) ≥ #(fml−1 |Ij )−1(a′i).

Suppose that #(tl−1 ◦ sl|Ln)−1(a′i) ≥ 2. The critical values of sl lie in
P (g), and those of tl−1 lie in P (f), so the critical values of tl−1 ◦ sl lie close
to tl−1(P (g)) ∪ P (f) (Lemma 5.1). That is, the critical values of tl−1 ◦ sl
lie far away from a′i. Then there are elements c1 < c < c2 of Ln with
tl−1 ◦ sl(c1) = tl−1 ◦ sl(c2) = a′i and (tl−1 ◦ sl)|[c1,c] and (tl−1 ◦ sl)|[c,c2]
one-to-one. Since fml−1 is one-to-one on [c1, c2], Lemma 5.2 implies that
diam(tl−1 ◦ sl([c1, c])) ≤ 2εl. But tl−1 ◦ sl(c1) = a′i and tl−1 ◦ sl(c) is close
to tl−1(P (g)) ∪ P (f), so this is a contradiction.

Finally, since the result holds for large enough l, it can be assumed to
hold for all l by considering a tail of the original sequence.
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