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M-rank and meager types

by

Ludomir N e w e l s k i (Wrocław)

Abstract. Assume T is superstable and small. Using the multiplicity rankM we find
locally modular types in the same manner as U -rank considerations yield regular types.
We define local versions of M-rank, which also yield meager types.

0. Introduction. Throughout, T is superstable, small, and we work in
C = Ceq. In [Ne1] we defined the multiplicity rank M and proved that M
has additivity properties similar to those of U -rank. In [Ne2] we defined the
notion of meager regular type and proved that every such type is locally
modular. It turns out that using M-rank we can produce locally modular
regular types of prescribedM-rank. These types are either trivial or meager
(the second case always holds when T has < 2ℵ0 countable models).

We use the following notation. If s(x) is a (partial) type over C, then [s]
denotes the class of (partial) types over C containing s. For p ∈ S(A), St(p)
is the set of stationarizations of p over C, StA(p) = {r|acl(A) : r ∈ St(p)}.
For B ⊇ A, Sp(B) = S(B) ∩ [p] and Sp,nf(B) = {q ∈ S(B) ∩ [p] : q does not
fork over A}. We regard strong types over A as types over acl(A). We define
TrA(s) (the trace of s on A) as the set of types r(x) ∈ S(acl(A)) consistent
with s(x). Thus if p ∈ S(A) then TrA(p) = StA(p). In general, TrA(s) is
closed. TrA(a/B) abbreviates TrA(tp(a/B)). If a |∪ B (A) then sometimes
we use StA(a/B) to denote TrA(a/B). Also, xA denotes the tuple of variables
x indexed by elements of A. We will often tacitly use the following easy fact.

Fact 0.1. Assume A ⊆ B ⊆ C. Then either TrA(a/C) is open in
TrA(a/B) or TrA(a/C) is nowhere dense in TrA(a/B).

P r o o f. Suppose TrA(a/C) is not nowhere dense in TrA(a/B). Since
TrA(a/C) is closed, this means that for some ϕ = ϕ(x, c′) with c′ ∈ acl(A),
∅ 6= [ϕ] ∩ TrA(a/B) ⊆ TrA(a/C). Thus we can choose a′ realizing ϕ(x, c′)
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with a′ ≡ a (C). Now let r ∈ TrA(a/C). So r = stp(a′′/A) for some a′′ ≡
a (C). Choose c′′ with a′′c′′ ≡ a′c′ (C). Clearly, r ∈ [ϕ(x, c′′)] ∩TrA(a/B) ⊆
TrA(a/C). This shows that TrA(a/C) is open in TrA(a/B).

We define the multiplicity rank M on complete types p over finite sets
A, with values in Ord ∪ {∞}, by the following conditions.

(1) M(p) ≥ 0.
(2) M(p) ≥ α+ 1 iff for some finite B ⊇ A and q ∈ Sp,nf(B), M(q) ≥ α

and St(q) is nowhere dense in St(p).
(3) For limit δ, M(p) ≥ δ iff M(p) ≥ α for every α < δ.

M(a/A) abbreviates M(tp(a/A)).
Notice that we have proved in [Ne2] that if I(T,ℵ0) < 2ℵ0 thenM(p) <

∞ for every p.
Suppose P is a closed subset of S(acl(A)) for some finite set A. We say

that forking is meager on P if for every formula ψ forking over A, the set
of types r ∈ P consistent with ψ is nowhere dense in P , that is, P ∩TrA(ψ)
is nowhere dense in P .

Suppose p is a stationary non-trivial regular type. Let ϕ be a p-simple
formula over a finite set A such that the p-weight of ϕ is 1 and for each
a ∈ ϕ(C), if wp(a/A) > 0 then stp(a/A) is regular non-orthogonal to p. Let
Pϕ = {r ∈ S(acl(A)) ∩ [ϕ] : wp(r) > 0}. Assume Pϕ is closed in S(acl(A)),
and for each a ∈ ϕ(C) and b ⊆ C, if wp(a/b) = 0 then for some formula
ψ(x, y) over acl(A) true of a, b, whenever ψ(a′, b′) holds then wp(a′/b′) = 0.
We call any ϕ with the above properties a p-formula (over A). Given p, a
p-formula ϕ over some finite set A exists by [Hr-Sh]. We say that p is meager
if forking is meager on Pϕ. In [Ne2] we show that this definition does not
depend on the choice of ϕ, and also that if p is meager then p is locally
modular. A complete regular type p is meager iff every stationarization of p
is meager.

In the next lemma we collect the properties of M we shall use.

Lemma 0.2. (1) M(ab/A) ≤M(a/Ab)⊕M(b/A).
(2) If p ∈ S(A) and A ⊆ B are finite, then M(p′) = M(p) for some

p′ ∈ Sp,nf(B).
(3) If a |∪ b (A) then M(a/Ab) +M(b/A) ≤M(ab/A).
(4) Assume A ⊆ B and a |∪ B (A). If St(a/B) is open in St(a/A) then

M(a/B) =M(a/A). If M(a/B) =M(a/A) <∞ then St(a/B) is open in
St(a/A).

(5) (Symmetry) If a |∪ b (A) and St(a/Ab) is open in St(a/A) then
St(b/Aa) is open in St(b/A) and M(ab/A) =M(a/A)⊕M(b/A).

P r o o f. (1)–(3) are proved in [Ne1]. (4) and (5) are easy.
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The next theorem is a kind of open mapping theorem. It is an easy conse-
quence of Shelah’s finite equivalence relation theorem ([Sh]). However, it has
non-trivial applications. In fact, the open mapping theorem of Lascar–Poizat
([Ba]) follows from the finite equivalence relation theorem in a similar way.

Theorem 0.3. Assume A ⊆ B ⊆ C and f : TrB(ab/C) → TrA(a/C) is
restriction to acl(A) and to formulas with free variable xa. Then f is an
open surjection.

P r o o f. Clearly f is a surjection. To show that f is open, let E(xab, x′ab) ∈
FE(B). Let X = {[E(xab, a′b′)] ∩ TrB(ab/C) : a′b′ ≡ ab (C)}. We see that
X is finite, elements of X are closed, C-conjugate, and cover TrB(ab/C).
Hence TrA(a/C) =

⋃{f(S) : S ∈ X} and f(S) is closed for each S ∈ X.
It follows that for some (hence every) S ∈ X, f(S) has non-empty interior
in TrA(a/C). It is easy to see that in fact f(S) is open in TrA(a/C). This
shows that f is open.

In [Ne1] I pointed out thatM-rank may be defined in a way similar to the
definition of Morley rank. It was puzzling whether there are local versions of
M-rank, just as there are local versions of Morley rank. Local Morley ranks
measure (type-)definable sets by means of instances of formulas from some
(finite) set ∆. A local M-rank should measure St(p) with respect to some
fixed (finite) set C ⊆ Dom(p). We define some local versions of M-rank in
§2. This must be done carefully, so that the resulting rank has the additivity
properties of M. We show that these local versions of M-rank can also be
used to produce meager types.

1.M-rank and meager types. In this section we show how to produce
meager types with the help of M-rank. The next lemma improves Lemma
0.2(2).

Lemma 1.1. Assume A ⊆ B are finite.

(1) If TrA(a/B) is open in StA(a/A) then M(a/B) ≥M(a/A).
(2) If p(x) ∈ S(A) and s(x) is a (partial) type over B and TrA(s) ∩

StA(p) is open in StA(p) then there is a p′ ∈ Sp(B)∩[s] with M(p′) ≥M(p).

P r o o f. (1) First we prove the following.

(a) For every finite B′ ⊇ A with B′ |∪ a (A) there is a B′′ with B′′ ≡
B′ (Aa), B′′ |∪ B (A), a |∪ B′′ (B) and with TrB′′(a/BB′′) open in
StB′′(a/B′′).

Given B′ as in (a) choose B∗ ≡ B′ (Aa) with B∗ |∪ B (A). Let p(x) =
tp(a/A), p′(x) = tp(a/B) and q = tp(a/B∗). Since TrA(p′) is open in StA(p)
and stp(a/A) ∈ TrA(q) ∩ TrA(p′) ⊆ StA(p), we see that TrA(q) ∩ TrA(p′)
is non-empty and open in TrA(q). Let s(x) be the type over BB∗ saying
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that x |∪ B∗ (B). Let f : StB∗(q) → TrA(q) be restriction and let U =
f−1(TrA(q) ∩ TrA(p′)). Then U is open in StB∗(q). Also we have

(b) U ⊆ TrB∗(p′(x) ∪ s(x)).

Indeed, let r ∈ U . Then r|acl(A) ∈ TrA(p′), hence we can choose c
realizing p′ ∪ r|acl(A), and without loss of generality, c |∪ B∗ (B). Now,
B∗ |∪ B (A) implies c |∪ B∗ (A), hence c realizes r ∪ p′(x) ∪ s(x).

Since T is small, there is a p′′ ∈ Sq(BB∗)∩ [p′∪s] such that TrB∗(p′′)∩U
is open in StB∗(q). By Fact 0.1 we see that TrB∗(p′′) is open in StB∗(q). Let
a′′ realize p′′. We see that a′′ ≡ a (B), a′′ |∪ B∗ (B), TrB∗(a′′/BB∗) is open
in StB∗(a′′/B∗) and a′′B∗ ≡ aB′. Choose B′′ with a′′B∗ ≡ aB′′ (B). Clearly,
B′′ satisfies our demands in (a).

Now we prove by induction on α thatM(a/A) ≥ α impliesM(a/B) ≥ α.
We check only the successor step. Suppose M(a/A) ≥ α + 1. So there is a
finite B′ ⊇ A with a |∪ B′ (A), M(a/B′) ≥ α and St(a/B′) nowhere dense
in St(a/A). By (a), without loss of generality, a |∪ B′ (B) and TrB′(a/BB′)
is open in StB′(a/B′). Thus by the inductive hypothesis, M(a/BB′) ≥ α.
To finish, we must show

(c) St(a/BB′) is nowhere dense in St(a/B).

In the following diagram all the maps αi are restrictions.

StBB′(a/BB′) StB(a/B)

StB′(a/B′) StA(a/A)

α0 //

α1

²²
α2

²²
α3 //

This diagram commutes. Also, TrA(a/B) = Rngα2, hence by Theo-
rem 0.3 and our assumptions, α2 is open. By (a) and Theorem 0.3 also α1

is open. StBB′(a/BB′) and StB(a/B) are naturally homeomorphic to
St(a/BB′) and St(a/B) respectively. So to prove (c) it suffices to show
that α0(StBB′(a/BB′)) is nowhere dense in StB(a/B).

If not, then α0(StBB′(a/BB′)) is open in StB(a/B), hence also
α2α0(StBB′(a/BB′)) is open in StA(a/A). We have

α2α0(StBB′(a/BB′)) = α3α1(StBB′(a/BB′)) ⊆ α3(StB′(a/B′)).

Since St(a/B′) is nowhere dense in St(a/A), we see that α3(StB′(a/B′)) is
nowhere dense in StA(a/A). Hence the more so α2α0(StBB′(a/BB′)) is no-
where dense in StA(a/A), a contradiction.

(2) By the smallness of T , Sp(B) ∩ [s] is countable. The sets TrA(p′),
p′ ∈ Sp(B) ∩ [s], cover TrA(s) ∩ StA(p). Hence for some p′ ∈ Sp(B) ∩ [s],
TrA(p′) is not nowhere dense in StA(p). By Fact 0.1, TrA(p′) is open in
StA(p). Hence (2) follows from (1).
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The range of M is of the form I ∪ {∞} or I, for some proper initial
segment I of ω1. Let α = ωβ for some β ∈ Ord, or α = β =∞. Assume α is
in the range of M. Let γβ be the minimal γ such that M(p) ≥ α for some
type p of ∞-rank γ. Notice that if β′ < β and α′ = ωβ

′
then γβ′ ≤ γβ .

Theorem 1.2. Assume A is finite, q ∈ S(A), R∞(q) = γβ and M(q) ≥
α. Then q is regular and locally modular. If q is non-trivial then q is meager
and for some isolated q′ ∈ S(A), R∞(q′) = γβ , M(q′) ≥ α and q′ is non-
orthogonal to q.

We begin the proof of Theorem 1.2 with two lemmas.

Lemma 1.3. q is regular and orthogonal to every type with ∞-rank < γβ.

P r o o f. Suppose not. Then for some finite B ⊇ A and r ∈ S(B) with
R∞(r) < γβ , r is not almost orthogonal to some nf extension q′ of q over
B. Choose ψ ∈ r with R∞(ψ) < γβ . Since r a6⊥ q′, for some a, b realizing
r, q′ respectively, a -∪ b (B). This is witnessed by a formula δ(x, y) over B,
true of a, b. Since forking means decreasing some local rank, without loss of
generality we have

(a) if δ(a′, b′) holds and b′ satisfies a nf extension of q over B, then ψ(a′)
and a′ -∪ b′ (B).

Let δ′(y) = ∃x δ(x, y). So δ′(y) does not fork over A. Let s(y) be the type
over B saying:

“δ′(y) and q(y) and tp(y/B) does not fork over A.”

We see that TrA(s) is open in StA(q). By Lemma 1.1(2) for some q′′ ∈
Sq,nf(B) ∩ [δ′], we have M(q′′) ≥ α. Let b′′ realize q′′, and choose a′′ with
δ(a′′, b′′). By (a), R∞(b′′/Ba′′) < γβ and R∞(a′′/B) < γβ (as R∞(ψ) <
γβ). By the choice of γβ , we have M(a′′/B),M(b′′/Ba′′) < α. By Lemma
0.2 we have M(b′′/B) ≤ M(a′′b′′/B) ≤ M(a′′/B) ⊕M(b′′/Ba′′) < α, a
contradiction.

Choose p′ ∈ S(A) non-orthogonal to q, with R∞(p′) = γβ , M(p′) ≥ α
and Cantor–Bendixson rank CB(p′) minimal possible. Choose ϕ ∈ p′ with
R∞(ϕ) = γβ , CB(p′) = CB(ϕ) and CB-multiplicity of ϕ equal to 1. By
Lemma 1.3, p′ is regular.

Lemma 1.4. p′ is orthogonal to every type in S(A)∩[ϕ]\{p′} and forking
is meager on StA(p′).

P r o o f. Suppose r ∈ S(A) ∩ [ϕ] \ {p′} is non-orthogonal to p′. Then
for some finite B ⊇ A and a, b realizing over B nf extensions of r, p′

respectively, we have a -∪ b (B). As in Lemma 1.3, for some b′ realizing p′,
we have b′ |∪ B (A),M(b′/B) ≥ α and for some a′ ∈ ϕ(C)\p′(C), a′ -∪ b′ (B).
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IfM(a′/A) ≥ α and a′ |∪ B (A), then by the choice of p′ and ϕ, tp(a′/A)
is orthogonal to q, hence to p′. Thus also tp(a′/B) is orthogonal to p′, a
contradiction. If a′ -∪ B (A) then R∞(a′/B) < γβ , so again (by Lemma 1.3
applied to q := p′), tp(a′/B) is orthogonal to p′.

Hence we get M(a′/A) < α and a′ |∪ B (A). Thus M(a′/B) < α and
M(b′/Ba′) < α, because R∞(b′/Ba′) < γβ . Hence M(b′/B) ≤ M(a′b′/B)
≤M(a′/B)⊕M(b′/Ba′) < α, a contradiction.

To prove the second clause, suppose forking is not meager on StA(p′).
Then for some forking formula δ(x) over a finite set B ⊇ A, TrA(δ)∩StA(p′)
is open in StA(p′). By Lemma 1.1, for some p′′ ∈ Sp′(B) ∩ [δ], we have
M(p′′) ≥M(p′) ≥ α. Since p′′ forks over B, R∞(p′′) < γβ . HenceM(p′′) <
α, a contradiction.

Now we can conclude the proof of Theorem 1.2. Suppose q is non-trivial.
So p′ is non-trivial. Let p be any stationarization of p′. We shall prove that
ϕ satisfies the conditions from the definition of a meager type, and forking
is meager on Pϕ, hence that p is meager. By Lemmas 1.3 and 1.4, every type
in S(A) ∩ [ϕ] \ {p′} is hereditarily orthogonal to p. Also, p is orthogonal to
any forking extension of p′, and every type in StA(p′) is regular. Hence ϕ is
p-simple of p-weight 1. By the claim in the proof of Lemma 1.6(2) in [Ne2],
the set of r ∈ StA(p′) such that r is non-orthogonal to p is clopen in StA(p′).
Thus Pϕ is clopen in StA(p′). Since all stationarizations of p′ have the same
local ranks, as in Lemma 1.3 we see that the p-weight 0 is definable on ϕ(C).
Thus ϕ is a p-formula. By Lemma 1.4, forking is meager on Pϕ, hence p is
meager.

Next notice that if some type in Pϕ is modular, then every type in Pϕ
is, since they are all stationarizations of the complete type p′. But then
if c realizes one of them, then they all have forking extensions over Ac,
contradicting meagerness. It follows that every type in Pϕ is not modular.
By [Ne2, Corollary 1.8], Pϕ is open in S(acl(A)). Hence also StA(p′) is open
in S(acl(A)). This means that p′ is isolated, proving the theorem.

Notice that by Lemma 1.4 and [Ne2, Lemma 1.6(1)], if I(T,ℵ0) < 2ℵ0

then in the proof of Theorem 1.2 the type p′ is non-trivial. It follows that if
I(T,ℵ0) < 2ℵ0 then the type q in Theorem 1.2 is non-trivial and meager.

Lemma 1.5. Let q ∈ S(A) be as in Theorem 1.2. Assume A′ is finite,
q′ ∈ S(A′) is isolated , R∞(q′) = γβ and q′ is non-orthogonal to q. Then
M(q′) ≥ α and M(q) ≤M(q′)⊕ α′ for some α′ < α.

P r o o f. First we prove that M(q) ≤ M(q′) ⊕ α′ for some α′ < α. For
some finite B ⊇ A ∪ A′ there are a, b realizing over B nf extensions of q, q′

respectively, with a -∪ b (B). As in Lemma 1.3, by Lemma 0.2, changing a
somewhat we can assume thatM(a/B) ≥M(q). This change affects b, but
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since q′ is isolated, b still realizes q′, and since q is orthogonal to any type
with ∞-rank < γβ , we have b |∪ B (A′). Hence M(b/B) ≤ M(q′). Also,
a -∪ b (B) yields M(a/Bb) < α. Let α′ =M(a/Ba). Hence we get

M(q) ≤M(a/B) ≤M(ab/B) ≤M(q′)⊕M(a/Bb) =M(q′)⊕ α′.
If M(q′) < α, then M(q) ≤M(q′)⊕ α′ < α, a contradiction.

Suppose M(p) = n1ω
β1 ⊕ . . . ⊕ nkω

βk , where ni are finite, n1 6= 0,
and β1 > . . . > βt ≥ β > βt+1 > . . . > βk = 0. We define Mβ(p) as
n1ω

β1 ⊕ . . . ⊕ ntω
βt . If M(p) = ∞ then Mβ(p) = ∞. If β = ∞ then

Mβ(p) = 0 if M(p) <∞ and Mβ(p) =∞ otherwise.
Given β and α = ωβ , for isolated q over a finite set such that R∞(q) = γβ

and M(q) ≥ α, Mβ(q) is determined by the non-orthogonality class of q.
The next corollary clarifies the orthogonality relations between the locally
modular types q obtained in Theorem 1.2.

Corollary 1.6. Assume α = ωβ , α′ = ωβ
′

are in the range of M,
A, A′ are finite and q ∈ S(A), q′ ∈ S(A′) are isolated with R∞(q) = γβ ,
R∞(q′) = γβ′ , M(q) ≥ α and M(q′) ≥ α′. If q, q′ are non-orthogonal then
γβ = γβ′ and Mβ(q) =Mβ′(q) =Mβ(q′) =Mβ′(q′).

In the case when T has < 2ℵ0 countable models, we can strengthen
Theorem 1.2.

Theorem 1.7. Assume I(T,ℵ0) < 2ℵ0 . For q and A as in Theorem 1.2,
we have Mβ(q) = α.

P r o o f. By Theorem 1.2 there is an isolated p over A non-orthogonal
to q, with R∞(p) = γβ and M(p) ≥ α. By the claim in [Ne2, Lemma 1.6],
extending A by an element of acl(A), we can assume that all types in StA(p)
are non-orthogonal. Let ϕ isolate p over A. By the proof of Theorem 1.2,
ϕ and Pϕ = StA(p) witness that p is meager. By Lemma 1.5 it suffices to
prove that M(p) < α⊕ α.

We shall use Corollary 2.15 from [Ne2], which says that in our case, for
every finite B extending A, for every a realizing p with a |∪ B (A), exactly
one of the following holds.

(a) For some b realizing p with b |∪ B (A), tp(b/B) is isolated and
a -∪ b (A).

(b) There are finitely many a0, . . . , an realizing r = tp(a/B) such that for
every b realizing r, for some i ≤ n and b′≡

s
b (A), we have b′ -∪ ai (A).

Suppose for a contradiction thatM(p) ≥ α⊕α. Let a realize p. We can
find a finite set B ⊇ A with a |∪ B (A) and M(a/B) = α. The proof splits
into two cases, depending on which of conditions (a), (b) holds.
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C a s e 1: (a) holds. So choose b realizing p with tp(b/B) isolated, b |∪
B (A) and a -∪ b (A). It is easy to see thatM(b/B) =M(p), henceM(b/B)
≥ α ⊕ α. Since a -∪ b (B), by the choice of γβ we have M(b/Ba) < α.
Hence α ⊕ α ≤ M(b/B) ≤ M(ab/B) ≤ M(a/B) ⊕M(b/Ba) < α ⊕ α, a
contradiction.

C a s e 2: (b) holds. Extending B by an element from acl(B), we can
assume that n = 0, that is, for every b realizing r = tp(a/B), for some
b′≡

s
b (A), we have b′ -∪ a (A). In other words, every s ∈ StB(r) has a forking

extension over Ba. Since T is countable, there is a single formula ψ(x) over
Ba, forking over B, such that the set of s ∈ StB(r) consistent with ψ has
non-empty interior in StB(r). Without loss of generality, R∞(ψ) < γβ . Since
M(r) = α, by Lemma 1.1 there is a type r′ ∈ Sr(Ba)∩ [ψ] withM(r′) ≥ α.
Since R∞(r′) < γβ , this contradicts the choice of γβ .

Corollary 1.8. Assume I(T,ℵ0) < 2ℵ0 .

(1) Assume β < β′, α = ωβ , α′ = ωβ
′

and α′ is in the range of M.
Then γβ′ > γβ + 2. Also, γ0 ≥ 1 and γ1 ≥ ω.

(2) Assume A is finite, p ∈ S(A) andM(p) ≥ ωβ. Then R∞(p) ≥ 1+2β.

P r o o f. (1) Without loss of generality, β′ = β + 1. Choose a finite set A
and an isolated p ∈ S(A) with R∞(p) = γβ′ and M(p) ≥ α′. So p is non-
trivial, regular and meager. Without loss of generality, all stationarizations
of p are non-orthogonal, and the formula ϕ isolating p witnesses that p is
meager. Again we apply Corollary 2.15 from [Ne2] (see the proof of Theorem
1.7 above). Let a realize p. Since β < β′, for some finite B ⊇ A with
a |∪ B (A) we have M(a/B) = α⊕ α. Since α⊕ α < α′, as in Theorem 1.7
we see that in Corollary 2.15, case (b) holds, and (without loss of generality)
n = 0 there. As in Theorem 1.7, we find a forking extension r′ of tp(a/B)
over Ba withM(r′) ≥ α⊕α. In particular, R∞(r′) ≥ γβ . In fact, R∞(r′) ≥
γβ + 1. If not, then R∞(r′) = γβ and M(r′) ≥ α ⊕ α, which contradicts
Theorem 1.7. Since r′ forks over B, we get γβ′ ≥ R∞(r′) + 1. Altogether we
get γβ′ ≥ γβ + 2.

We have γ0 ≥ 1 trivially, and γ1 ≥ ω because by [Ne1], every type with
finite U -rank has finite M-rank.

(2) Notice that R∞(p) ≥ γβ , and by (1), γβ ≥ 1 + 2β.

Corollary 1.8 shows that there is a bound onM-rank, depending on the
∞-rank. Can we improve the bound obtained there? Assuming I(T,ℵ0) <
2ℵ0 , is it true that M(p) ≤ U(p)? This is proved in [Ne1] for types with
finite U -rank.

Corollary 1.9. Assume I(T,ℵ0) < 2ℵ0 , β < β′, α = ωβ , α′ = ωβ
′

and
α′ is in the range of M. Suppose A and A′ are finite, p ∈ S(A), p′ ∈ S(A′),
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R∞(p) = γβ , R∞(p′) = γβ′ , M(p) ≥ α and M(p′) ≥ α′. Then p and p′ are
meager , regular and orthogonal.

To illustrate our ideas we shall give an example of a superstable theory
with a meager type p of M-rank ω.

Example 1.10. Let V = ω×ω2 and let + be pointwise addition on V ,
modulo 2. We think of V as the product

∏
n
{n}×ω2. We define certain

subgroups of V . For n > 0 let

Pn = {f ∈ V : f |n× n ≡ 0} and Gn = {f ∈ Pn : f |(ω \ n)× ω ≡ 0}.
Clearly, Gn and Pn are subgroups of (V,+) and Gn ∩ Pn+1 ⊆ Gn+1. More-
over, for each n > 1, Gn/Gn−1 is naturally isomorphic to ({n−1}×(ω\n)2,+),
and G1∩Pn is isomorphic to {0}×(ω\n)2. Thus the mapping g : {n−1}×(ω\n)2
→ {0}×(ω\n)2 given by g(f)((0, k)) = f((n− 1, k)) induces a group isomor-
phism fn : Gn/Gn−1 → G1 ∩ Pn.

Let M = (V ; +, Pn, Gn, fn+1)0<n<ω and T = Th(M). Then T is a su-
perstable 2-dimensional 1-based theory. Up to non-orthogonality, there are
two regular types in T : p0, the principal generic type of M , and p1, the
principal generic type of G1. Both types are meager, p1 is weakly minimal,
R∞(p0) = U(p0) = ω. The functions fn, n > 1, ensure that the weakly
minimal groups Gn/Gn−1, n > 1, are non-orthogonal to G1.

Let p ∈ S(∅) be the type generated by ¬P1(x). Thus p is regular non-
orthogonal to p0, R∞(p) = U(p) = ω and St∅(p) = Str(∅) ∩ [¬P1(x)]. Let a
realize p and let ϕn(x, a) be Gn(x− a), n > 0. We see that Tr∅(ϕn(x, a)) ⊆
St∅(p) and Tr∅(ϕn(x, a))∩ [Pn+1(x−a)] is nowhere dense in Tr∅(ϕn+1(x, a))
(the formula Pn+1(x− a) is almost over ∅). This is essentially because in V
with the product topology, Gn ∩ Pn+1 is nowhere dense in Gn+1.

Let pn ∈ S(a) be one of the countably many non-forking extensions
of p such that St∅(pn) is an open subset of Tr∅(ϕn(x, a)). Of course every
stationarization of pn is modular. We see that M(pn) = n and M(p) = ω.
Also γ0 = 1 and γ1 = ω here.

Notice that γ0 is the minimal γ such that some type without Morley
rank has ∞-rank γ. By Theorem 1.7, if I(T,ℵ0) < 2ℵ0 then for every type
p of ∞-rank ≤ γ0, M(p) ≤ 1, and if M(p) = 1 then p is meager (hence
locally modular). This is related to Proposition 1.11 in [Pi]. Pillay proves
there (under the few models assumption) that if G is a locally modular
superstable group of rank γ0, without Morley rank, then for every finite
A and a ∈ G, if tp(a/A) is non-isolated then it has finite multiplicity. In
general we cannot claim that much. The following example shows that it can
happen that a type p ∈ S(∅) has∞-rank γ0,M(p) = 1 and p is non-isolated
(in this case necessarily γ0 ≥ ω).
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Example 1.11. Let V = ω×ω2 and + be as in Example 1.10. We define
some subgroups of V . For n > 0 let

Pn = {f ∈ V : f |{0} × n ≡ 0},
Gn = {f ∈ V : f |{0} × ω ≡ 0 and f |(ω \ (n+ 1))× ω ≡ 0},
Hn = {f ∈ V : f |(ω \ n)× 1 ≡ 0}.

Thus Gn ⊆ Gn+1 ⊆
⋂
n Pn, Hn ⊆ Hn+1, [Gn+1 : Gn] is infinite and

[Hn+1 : Hn] = 2. Consider the structures M0 = (V ; +, Pn, Gn)n>0 and
M1 = (V ; +, Hn)n>0 and their theories T0, T1 respectively. They are 1-
based. T0 is superstable, with ∞-rank ω and γ0 = ω, while T1 has Morley
rank 2 and ∞-rank 2. T0 and T1 have countably many countable models.
Now we do not have to include into M0 the functions fn (as in Example
1.10) since Gn/Gn−1 are strongly minimal and ω-categorical.

We shall define a structure M with universe V ′ = V × V . Let E be
the equivalence relation on V ′ defined by (a, b)E(a′, b′) iff b = b′. We can
naturally identify V ′/E with V . Let Qn = {(a, b) ∈ V ′ : a ∈ Hn}. For each
a ∈ V ′, a/E can be endowed with a structure isomorphic to M1, uniformly in
a. However, we do not want to have in M a full group structure on a/E. Let
R be the 4-ary relation on V ′ defined by: R((a0, b0), (a1, b1), (a2, b2), (a3, b3))
iff b0 = b1, b2 = b3 and a1 − a0 = a3 − a2.

We see that R gives an affine group structure on each a/E, and addi-
tionally a group isomorphism between any two E-classes, after fixing single
points in them.

Finally, let M = (V ′;E,Qn, R; +, Pn, Gn)n>0, where +, Pn, Gn are de-
fined on V ′/E via the identification of V ′/E with V . Let T = Th(M). Then
T is a superstable 1-based theory with countably many countable models.
Here γ0 = ω. Let p(x) ∈ S(∅) be the type generated by {¬Qn(x), n <
ω} ∪ {¬P1(x/E)}. Clearly p is non-isolated, R∞(p) = ω and M(p) = 1.
Also, p is regular and meager. Notice, however, that since M/E is bi-
interpretable with M0, M/E is a regular group of∞-rank ω, non-orthogonal
to p, with meager generics. If a realizes p, then a/E is generic in M/E
and tp((a/E)/∅) is isolated, as promised by Proposition 1.11 in [Pi]. More-
over, ϕ(x) = (x = x) is a p-formula in M , and isolated types are dense in
Pϕ = Str(∅)∩⋂n>0[¬Gn(x/E)]. This is a good illustration of the phenomena
encountered in [Ne2].

2. Localization. There are several motivations for this section. One
is that unfortunately possibly not all meager types (even up to non-ortho-
gonality) are obtained by the minimization process from §1. Another is that
if, for example, S(acl(∅)) is uncountable (and hence M(q) ≥ 1 for some
q ∈ S(∅); remember that T is small), then the minimization procedure from
§1 yields some meager (or trivial) p ∈ S(A) withM(p) ≥ 1. However, p may
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have nothing in common with the rich topological structure of S(acl(∅)), that
is, possibly Tr∅(p) is finite. My feeling was that we should be able to find
a type p as above such that the topological structure of St(p) is related to
S(acl(∅)). In other words, that the complicated structure of S(acl(∅)) really
forces the existence of a locally modular type. In this section we will show
that this is the case. To do this we need some local versions of M-rank,
which we define below. These local versions have many additivity properties
of M. Another reason for trying to define local M-ranks is an attempt to
find the most basic impact that the structure of acl(C) (for a given finite
C ⊆ C) has on the structure of the whole theory. So local M-ranks are in-
tended to play the same role in the “theory of multiplicities” as local Morley
ranks in the theory of forking. I leave it to the reader to judge how much I
succeeded in this attempt.

In this section let C be a fixed finite subset of C. We define local rank MC

on types p ∈ S(A) for finite sets A ⊇ C, as follows. Suppose p = tp(a/A).
We define MC(p) =MC(a/A) by the following conditions:

(1) MC(a/A) ≥ 0.
(2) MC(a/A) ≥ α + 1 iff for some finite B ⊇ A with a |∪ B (A),

MC(a/B) ≥ α and TrC(a/B) is nowhere dense in TrC(a/A).
(3) MC(a/A) ≥ δ for limit δ iff MC(a/A) ≥ α for each α < δ.

From now on we usually assume that C is contained in the sets of pa-
rameters A, B we consider. MC has the following properties.

Lemma 2.1. Assume C ⊆ A ⊆ B, A, B are finite.

(1) MC(a/A) ≤M(a/A).
(2) If a |∪ A (C) then MC(a/A) =M(a/A).
(3) If TrC(b/A) = TrC(a/A) then MC(b/A) =MC(a/A).
(4) For each a there is a b with b |∪ A (C) such that TrC(b/A) =

TrC(a/A), hence M(b/A) =MC(b/A) =MC(a/A).
(5) If a |∪ B (A) and MC(a/A) < ∞ then MC(a/B) = MC(a/A) iff

TrC(a/B) is open in TrC(a/A).
(6) For every a there is a b with b ≡ a (A), b |∪ B (A) and MC(b/B) =

MC(a/A).

P r o o f. (1) We prove by induction on α that MC(a/A) ≥ α implies
M(a/A) ≥ α. Let us check the successor step. Suppose MC(a/A) ≥ α+ 1.
Choose a finite B ⊇ A with a |∪ B (A), MC(a/B) ≥ α and TrC(a/B)
nowhere dense in TrC(a/A). Let fB : StB(a/B)→ TrC(a/B), fA : StA(a/A)
→ TrC(a/A) and g : StB(a/B)→ TrA(a/B) ⊆ StA(a/A) be restrictions. By
Theorem 0.3, fA, fB and g are open. Also, fB = g ◦ fA. It follows that
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TrA(a/B) is nowhere dense in StA(a/A). Otherwise TrA(a/B) is open in
StA(a/A), hence TrC(a/B) = g(TrA(a/B)) is open in TrC(a/A), a contra-
diction.

As TrA(a/B) is nowhere dense in StA(a/A), and StA(a/A) and StB(a/B)
are canonically homeomorphic to St(a/A) and St(a/B) respectively, we see
that St(a/B) is nowhere dense in St(a/A). By the inductive hypothesis,
M(a/B) ≥ α, hence by the definition of M, M(a/A) ≥ α + 1. The proofs
of the other parts of the lemma are equally easy, so we omit them.

Unfortunately, MC does not have the additivity properties of M from
Lemma 0.2. One of the reasons for that is as follows. Suppose b ⊆ A. Then
St(ab/A) is homeomorphic to St(a/A), hence M(ab/A) = M(a/A). Let
p(xab) = tp(ab/A). Consider TrC(a/A) = TrC(p|xa) and TrC(ab/A) =
TrC(p). Let f : TrC(ab/A) → TrC(a/A) be restriction to formulas with
free variable xa. Then f is continuous and open; however, f need not to
be injective. In particular, it could happen that TrC(a/A) is finite and
TrC(ab/A) is infinite. Then MC(a/A) = 0 and MC(ab/A) ≥ 1, showing
that MC(ab/A) ≤MC(a/Ab)⊕MC(b/A) fails.

It turns out that the situation described above is the only obstacle pre-
ventingMC from having the additivity properties ofM. We correct this by
defining an eventual version of MC , denoted by Me

C . It is defined just like
MC , but with (2) replaced by the following condition:

(2′)Me
C(a/A) ≥ α+ 1 iff for some finite B, D extending A with B ⊆ D

and a |∪ D (A), we have Me
C(a/D) ≥ α and TrC(aB/D) is nowhere dense

in TrC(aB/B).

Notice that Me
C is an eventual version of MC just as the Morley rank

is an “eventual” version of the Cantor–Bendixson rank. Also, in (2′) we
can additionally assume that TrC(aA/B) is open in TrC(aA/A) (by Lemma
2.2(3) below and Theorem 0.3). We can give another, equivalent definition of
Me

C . For finite B ⊆ C define an equivalence relation ∼B on S(C) by r ∼B r′

iff r|acl(C)B = r′|acl(C)B. For X ⊆ S(C) let X/∼B be {r/∼B : r ∈ X}. We
can equivalently replace (2′) by the following condition:

(2′′)Me
C(a/A) ≥ α+1 iff for some finite B, D extending A, with B ⊆ D

and a |∪ D (A), we haveMe
C(a/D) ≥ α and

⋃
St(a/D)/∼B is nowhere dense

in St(a/B).

We shall not use (2′′), however. If in (2′′) we required only that⋃
St(a/D)/∼B is nowhere dense in St(a/A), we would end up with Me

C =
M. The role of B in (2′) and (2′′) is puzzling. It would be natural to re-
quire in (2′), (2′′) additionally that St(a/B) is open in St(a/A). If we did
so, however, we might lose the property of Me

C that Me
C(p) ≥Me

C(p′) for
any nf extension p′ of p (see Lemma 2.2(3) below).
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Lemma 2.2. (1) MC(a/A) ≤Me
C(a/A) ≤M(a/A).

(2) If a |∪ A (C) then MC(a/A) =Me
C(a/A) =M(a/A).

(3) If A ⊆ B and a |∪ B (A) then Me
C(a/B) ≤Me

C(a/A).
(4) If A ⊆ B, a |∪ B (A) and St(a/B) is open in St(a/A) (which implies

M(a/B) =M(a/A)), then Me
C(a/B) =Me

C(a/A).
(5) If A ⊆ B, then for every a there is an a′ ≡ a (A) with a′ |∪ B (A) and

Me
C(a′/B) =Me

C(a′/A). Also, if additionally B ⊆ acl(A) thenMe
C(a/A) =

Me
C(a/B).
(6) In (2′) we can additionally assume that D\A ⊆ C= (C= is the “real”

sort of Ceq).

P r o o f. (1) To showMC(a/A) ≤Me
C(a/A), we prove by induction on α

thatMC(a/A) ≥ α impliesMe
C(a/A) ≥ α. Let us check the successor step.

AssumeMC(a/A) ≥ α+1. Choose a finite B ⊇ A with a |∪ B (A) such that
MC(a/B) ≥ α and TrC(a/B) is nowhere dense in TrC(a/A). It follows that
TrC(aA/B) is nowhere dense in TrC(aA/A). By the inductive hypothesis,
Me

C(a/B) ≥ α, and by the definition of Me
C , Me

C(a/A) ≥ α+ 1. Similarly
we prove Me

C(a/A) ≤M(a/A).
(2) follows from (1) and Lemma 2.1(2). (3) is easy.
(4) By (3), Me

C(a/B) ≤ Me
C(a/A). By Lemma 2.5(1) below, also

Me
C(a/A) ≤Me

C(a/B) (and no vicious circle arises).
(5) Since T is small, we can find an a′ ≡ a (A) with a′ |∪ B (A) and

St(a′/B) open in St(a/A). Hence (5) follows from (4).
(6) Suppose Me

C(a/D) ≥ α and TrC(aB/D) is nowhere dense in
TrC(aB/B) (for some B, D as in (2′)). Choose finite B′, D′ with B′ ⊆
D′ ⊆ C=, B \A ⊆ acl(B′), D\A ⊆ acl(D′) and a |∪ D′ (A). As in (4) we can
choose B′, D′ so that Me

C(a/DD′) ≥ α and TrC(aBB′/DD′) is nowhere
dense in TrC(aBB′/BB′). As in (4) and (5), we see that Me

C(a/AD′) ≥
α and TrC(aAB′/AD′) is nowhere dense in TrC(aAB′/AB′), so we are
done.

Notice that Lemma 2.2(4) naturally corresponds to the following prop-
erty of forking: If A ⊆ B and U(a/B) = U(a/A) then R(a/B) = R(a/A) for
any (local) rank R. This shows again a similarity between our treatment of
multiplicities and the theory of forking.

To evaluate Me
C(ab/A) in terms of Me

C(a/Ab) and Me
C(b/A) we need

the following technical lemma.

Lemma 2.3. Assume C ⊆ A ⊆ B and b |∪ B (A).

(1) If TrC(a/Bb) is open in TrC(a/Ab) and TrC(bA/B) is open in
TrC(bA/A) then TrC(a/B) is open in TrC(a/A).

(2) If TrC(ab/B) is open in TrC(ab/A) then TrC(a/B) is open in
TrC(a/A).
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P r o o f. (1) Let ϕ(xa;B, yb) be a formula over B such that for some
E(xa, x′a) ∈ FE(C), for each b′, ϕ(C;B, b′) is a union of some E-classes, and

(a) TrC(a/Ab) ∩ [ϕ(xa;B, b)] = TrC(a/Bb).

Let ϕ′(xa, xb) be a formula over some c ∈ acl(A), saying: for B′≡
s
B (A) with

B′ |∪ xaxb (A), ϕ(xa;B′, yb) holds. We can also assume that c ∈ dcl(B).
Now, ϕ′(xa, b) is equivalent to ϕ(xa;B, b).

Indeed, ϕ′(a′, b) implies that ϕ(a′;B′, b) holds for some B′ |∪ a′b (A)
with B′≡

s
B (A). This gives B′b≡

s
Bb (A), hence ϕ(C;B, b) = ϕ(C;B′, b),

and ϕ(a′;B, b) holds. The other direction is similar.
So we can assume ϕ = ϕ′, that is, ϕ(xa;B, yb) is both over B and over

c ∈ dcl(B) ∩ acl(A). We need the following claim.

Claim. Suppose C ⊆ A ⊆ B and c ∈ acl(b)∩A. If TrC(b/B) is open in
TrC(b/A) then TrC(bc/B) is open in TrC(bc/A).

P r o o f. For b′ ≡ b (A) let Xb′ = {stp(b′′c/C) : b′′≡
s
b′ (C) and b′′ ≡

b (A)}. Since c ∈ acl(b) ∩ A, Xb′ is finite. Indeed, let Cb′ = {c′ : c′ ≡ c (b′)
and for some b′′ ≡ b (A), b′′c≡

s
b′c′ (C)}. Since c ∈ acl(b)∩A, Cb′ is finite and

Ab′-definable. Moreover, if stp(b′′c/C) ∈ Xb′ then for some c′, stp(b′′c/C) =
stp(b′c′/C), and c′ ∈ Cb′ , hence Xb′ = {stp(b′c′/C) : c′ ∈ Cb′}. Also, if
b′′ ≡ b′ ≡ b (A) then Xb′′ is the b′′-copy of Xb′ over A, hence |Xb′′ | = |Xb′ |.

Similarly, for b′ ≡ b (B) let

Yb′ = {stp(b′′c/C) : b′′≡
s
b′ (C) and b′′ ≡ b (B)}

= {stp(b′c′/C) : c′ ≡ c (b′) and for some b′′ ≡ b (B), b′′c≡
s
b′c′ (C)}.

We see that stp(b′c/C) ∈ Yb′ ⊆ Xb′ . Notice that

TrC(bc/A) =
⋃
{Xb′ : b′ ≡ b (A)} and TrC(bc/B) =

⋃
{Yb′ : b′ ≡ b (B)}.

Choose a formula χ(ybc) over acl(C) with Xb ∩ [χ(ybc)] = {stp(bc/C)}.
Clearly,

if b′≡
s
b (C) and b′ ≡ b (A) then Xb′ = Xb, and

if b′≡
s
b (C) and b′ ≡ b (B) then Yb′ = Yb.

So by compactness there is a formula α(yb) over acl(C), true of b, such that:

if b′ ≡ b (A) and α(b′) then Xb′ ∩ [χ(ybc)] has size 1, and

if b′ ≡ b (B) and α(b′) then Yb′ ∩ [χ(ybc)] has size 1.

Thus if b′ ≡ b (B) and α(b′) then moreover Xb′ ∩ [χ(ybc)] = Yb′ ∩ [χ(ybc)].
Since TrC(b/B) is open in TrC(b/A), for some β(yb) over acl(C),

TrC(b/B) = TrC(b/A) ∩ [β(yb)].
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Let γ(ybc) be α(yb)&β(yb)&χ(ybc). So γ(bc) holds. To finish, it suffices
to show that

TrC(bc/A) ∩ [γ(ybc)] ⊆ TrC(bc/B).

So suppose b′c′ ≡ bc (A) and γ(b′c′) holds (and necessarily c′ = c).
We want to find b′′ with b′′c≡

s
b′c (C) and b′′ ≡ b (B). Now, β (b′) yields a

b′′≡
s
b′ (C) with b′′ ≡ b (B). So α(b′′) holds, which gives that Xb′′ ∩ [χ(ybc)]

equals Yb′′ ∩ [χ(ybc)] and has size 1. By the definition of Yb′′ , there is a
b∗≡

s
b′′ (C) with b∗ ≡ b (B) and {stp(b∗c/C)} = Yb′′ ∩ [χ(ybc)]. Without loss

of generality, b∗ = b′′. Since b′′≡
s
b′ (C) and b′′ ≡ b′ (A), we get Xb′ = Xb′′ . So

stp(b′c/C) ∈ Xb′ ∩ [χ(ybc)] = Xb′′ ∩ [χ(ybc)] = Yb′′ ∩ [χ(ybc)] = {stp(b′′c/C)}.
It follows that b′′c≡

s
b′c (C) and b′′ ≡ b (B), hence stp(b′c/C) ∈ TrC(bc/B).

This proves the claim.
Returning to the proof of the lemma, since TrC(bA/B) is open in

TrC(bA/A), and c ∈ dcl(B) gives TrC(bA/B) ⊆ TrC(bA/Ac), we deduce
that TrC(bA/B) is open in TrC(bA/Ac). Applying the claim to b := bA,
A := Ac and B := Bc, we see that TrC(bAc/B) is open in TrC(bAc/Ac).
Moreover, c ∈ acl(A) gives that TrC(bAc/Ac) is open in TrC(bAc/A). Alto-
gether we conclude that TrC(bAc/B) is open in TrC(bAc/A). Hence there is
a formula δ(ybAc;B) almost over C such that

(b) TrC(bAc/A) ∩ [δ(ybAc;B)] = TrC(bAc/B).

Let S = SB = {stp(a′/C) : for some b′, a′b′ ≡ ab (Ac) and δ(b′Ac;B)
and ϕ(a′;B, b′) hold}.

Then SB is a closed subset of TrC(a/A). Since c ∈ dcl(B), SB is definable
over B (that is, AutB(C)-invariant), and for B′ ≡ B (A) we can define SB′
as the B′-copy of SB over A. Since δ and ϕ are almost over A, the set
X = {SB′ : B′ ≡ B (A)} is finite and TrC(a/A) =

⋃
X. It follows that S is

open in TrC(a/A) and stp(a/C) ∈ S. So to show that TrC(a/B) is open in
TrC(a/A) it suffices to prove

(c) S ⊆ TrC(a/B).

So suppose stp(a′/C) ∈ S. Thus for some b′ we have a′b′ ≡ ab (Ac)
and δ(b′Ac;B) and ϕ(a′;B, b′) hold. We must find a′′ with a′′≡

s
a′ (C) and

a′′ ≡ a (B). By (b), for some b′′ with b′′Ac≡
s
b′Ac (C), we have b′′ ≡ b (B).

Hence we can find a0 and a1 with

(d) a0b
′′Ac≡

s
a′b′Ac (C), ab ≡ a1b

′′ (B).

In particular, we have

(e) a0b
′′ ≡ a′b′ ≡ ab ≡ a1b

′′ (Ac).
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By (a) and (d) we have

(f) TrC(a1/Ab
′′) ∩ [ϕ(xa;B, b′′)] = TrC(a1/Bb

′′).

By (e), since ϕ(xa;B, yb) is over c, we get ϕ(a0;B, b′′). Thus by (e), (f), for
some a′′ we have a′′≡

s
a0 (C) and a′′b′′ ≡ a1b

′′ (B). By (d) we get a′′≡
s
a′ (C)

and a′′ ≡ a (B), as needed.
(2) Let f : TrC(ab/A) → TrC(a/A) be restriction to formulas with free

variable xa. By Theorem 0.3, f is an open surjection and f(TrC(ab/B)) =
TrC(a/B). Since TrC(ab/B) is open in TrC(ab/A), we see that TrC(a/B) is
open in TrC(a/A).

Corollary 2.4. (1)Me
C(a/A) ≤Me

C(ab/A) ≤Me
C(a/Ab)⊕Me

C(b/A).
If a |∪ b (A) then also Me

C(a/Ab)+Me
C(b/A) ≤Me

C(ab/A) and if addition-
ally St(a/Ab) is open in St(a/A) then Me

C(ab/A) =Me
C(a/A)⊕Me

C(b/A).
(2) MC(a/A) ≤ MC(ab/A) ≤ MC(ab/Ab) ⊕Me

C(b/A). If a |∪ b (A)
then MC(a/Ab) +MC(b/A) ≤MC(ab/A).

(3) MC(a/A) ≤MC(a/Ab)⊕Me
C(b/A).

(4) If MC(bA/A) =MC(a/Ab) = 0, then MC(a/A) = 0.

P r o o f. It is standard, and relies on Lemma 2.3 (see also the proofs in
[Ne1]). For example we shall prove that

Me
C(ab/A) ≥ α implies Me

C(a/Ab)⊕Me
C(b/A) ≥ α.

We proceed by induction on α. Suppose Me
C(ab/A) ≥ α + 1. Then for

some finite A′ ⊆ B′ extending A, with ab |∪ B′ (A), we see TrC(abA′/B′)
is nowhere dense in TrC(abA′/A′) and Me

C(ab/B′) ≥ α. By the inductive
hypothesis, Me

C(a/B′b) ⊕Me
C(b/B′) ≥ α. By Lemma 2.3(1) (applied to

a := abA′, b := b, A := A′, B := B′) either TrC(abA′/B′b) is nowhere dense
in TrC(abA′/A′b) or TrC(bA′/B′) is nowhere dense in TrC(bA′/A′). Hence
Me

C(a/Ab)⊕Me
C(b/A) ≥ α+ 1.

The next lemma strengthens Lemma 1.1.

Lemma 2.5. Assume C ⊆ A ⊆ B are finite.

(1) If TrA(a/B) is open in StA(a/A) then M(a/B) ≥ M(a/A),
MC(a/B) ≥MC(a/A) and Me

C(a/B) ≥Me
C(a/A).

(2) Assume p(x) ∈ S(A), s(x) is a (partial) type over B and TrA(s) ∩
StA(p) is open in StA(p). Then there is p′ ∈ Sp(B)∩[s] withM(p′) ≥M(p),
MC(p′) ≥MC(p) and Me

C(p′) ≥Me
C(p).

P r o o f. (2) follows from (1) and smallness of T . So it suffices to prove
(1). The following condition is proved in Lemma 1.1.

(a) For every finite B′ ⊇ A with B′ |∪ a (A) there is a B′′ with B′′ ≡
B′ (Aa), B′′ |∪ B (A), a |∪ B′′ (B) and with TrB′′(a/BB′′) open in
StB′′(a/B′′).
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We prove that Me
C(a/B) ≥ Me

C(a/A) as in Lemma 1.1. We prove by
induction on α that Me

C(a/A) ≥ α implies Me
C(a/B) ≥ α. We check the

successor step.
So suppose Me

C(a/A) ≥ α + 1. Thus there are finite B′ and D′ with
A ⊆ B′ ⊆ D′, a |∪ D′ (A),Me

C(a/D′) ≥ α and TrC(aB′/D′) nowhere dense
in TrC(aB′/B′). Applying (a) twice we can assume additionally that D′ |∪
B (A), a |∪ D′ (B), TrB′(a/BB′) is open in StB′(a/B′) and TrD′(a/BD′) is
open in StD′(a/D′). Since Me

C(a/D′) ≥ α, by the inductive hypothesis we
get Me

C(a/BD′) ≥ α. Hence to show that Me
C(a/B) ≥ α + 1 it suffices to

prove that

(b) TrC(aBB′/BD′) is nowhere dense in TrC(aBB′/BB′).

Notice that e.g. StBD′(aBB′/BD′) is naturally homeomorphic to
StBD′(a/BD′). Hence it makes sense to speak of restriction from
StBD′(aBB′/BD′) to StD′(aB′/D′). In the following diagram all the func-
tions βi, γi are natural restrictions and δi’s are inclusions.

StBD′ (aBB
′/BD′) StBB′ (aBB

′/BB′)

StD′ (aB
′/D′) TrC(aBB′/BD′) δ0−−−→TrC(aBB′/BB′) StB′ (aB

′/B′)

TrC(aB′/D′) TrC(aB′/B′)

β0

²²

β1

UUUUUUUUUUUUUUUU**

γ1

ttiiiiiiiiiiiiiiii
γ0

²²

β2

²²
β3

ttiiiiiiiiiiiiiiii
γ3

UUUUUUUUUUUUUUUU**
γ2

²²
δ1 //

Notice that this diagram commutes.
Since TrD′(a/BD′) is open in StD′(a/D′) and TrD′(a/BD′) = Rng f ,

where f : StBD′(a/BD′) → StD′(a/D′) is restriction, and by Theorem
0.3, f : StBD′(a/BD′) → TrD′(a/BD′) is open, it follows that also f :
StBD′(a/BD′)→ StD′(a/D′) is open. It follows that β0 is open. By Theorem
0.3, β1 and β2 are also open. Since the diagram commutes, we see that β3

is open. Symmetrically, we deduce that all γi’s are open.
Suppose for a contradiction that TrC(aBB′/BD′) is open in

TrC(aBB′/BB′). Then γ3δ0(TrC(aBB′/BD′)) is open in TrC(aB′/B′). On
the other hand, by the choice of B′ and D′, δ1(TrC(aB′/D′)) is nowhere
dense in TrC(aB′/B′). Since the diagram commutes, we get

γ3δ0(TrC(aBB′/BD′)) = δ1β3(TrC(aBB′/BD′)) ⊆ δ1(TrC(aB′/D′)).

Hence γ3δ0(TrC(aBB′/BD′)) is nowhere dense in TrC(aB′/B′), a contra-
diction.

We leave the proof that MC(a/B) ≥MC(a/A) as an exercise.
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Now using the properties ofMe
C proved above we can repeat most of the

arguments from §1. Let α = ωβ for some β ∈ Ord or α = β = ∞. Assume
that M(p) ≥ α for some p ∈ S1(C). Let γβ be the minimal γ such that for
some finite A ⊇ C and some p ∈ S1(A) of ∞-rank γ we have Me

C(p) ≥ α.
The following theorem has the same proof as the corresponding items in §1.

Theorem 2.6. Assume A ⊇ C is finite, q ∈ S1(A), R∞(q) = γβ and
Me

C(q) ≥ α. Then q is regular and locally modular. If q is non-trivial (which
is the case if I(T,ℵ0) < 2ℵ0) then q is meager and non-orthogonal to some
isolated q′ ∈ S1(A) with R∞(q′) = γβ and Me

C(q′) ≥ α. Moreover , for any
such q′,Me

C(q) ≤Me
C(q′)⊕α′ for some α′ < α and if q′′ ∈ S(A′′) (for some

finite A′′ ⊇ C) is another isolated type non-orthogonal to q, with R∞(q′′) =
γβ , then (Me

C)β(q′′) = (Me
C)β(q′). If I(T,ℵ0) < 2ℵ0 then (Me

C)β(q) = α.

Here (Me
C)β is defined analogously to Mβ in §1.

Also, assuming I(T,ℵ0) < 2ℵ0 we see that the types q obtained in The-
orem 2.6 for distinct β, β′ are orthogonal.

Theorem 2.6 has the advantage over Theorem 1.2 that the locally modu-
lar type we get here is strongly related to S(acl(C)). Let us illustrate this by
an example. Suppose p ∈ S(C) is isolated and of infinite multiplicity (that
is, M(p) ≥ 1). Theorem 2.6 yields a finite set A ⊇ C and a locally modular
q ∈ S(A) of infinite multiplicity extending p. Say, q = tp(a/A). Still it may
happen that MC(a/A) = 0, that is, TrC(a/A) is finite. By Theorem 2.6,
Me

C(q) ≥ 1, that is, for some finite b with a |∪ b (A), TrC(ab/Ab) is infinite.
Notice that from the point of view of forking and meagerness, the types
tp(ab/Ab) and tp(a/A) are practically the same.

Corollary 2.4(4) enables us to produce meager types with the use ofMC

in one special case.

Theorem 2.7. Assume some p ∈ S(C) has infinite multiplicity and γ∗

is the minimal γ such that for some type q ∈ S(A) (for some finite A ⊇ C),
MC(q) > 0 and R∞(q) = γ. Then any q ∈ S(A) (for some finite A ⊇ C)
with MC(q) > 0 and R∞(q) = γ∗ is locally modular , and if q is non-trivial
then q is meager.

P r o o f. We give a sketch only. Suppose q = tp(a/A), MC(q) > 0 and
R∞(q) = γ∗. It is easy to see that q is regular. Suppose q is non-trivial.
Notice that for any q′ = tp(b/A) non-orthogonal to q, with R∞(q′) = γ∗ and
CB(q′) minimal, for some finite B ⊇ A with b |∪ B (A) we have TrC(bB/B)
> 0. Then choose such q′ and B with CB(bB/B) minimal possible, and
let ϕ(xbB , B) ∈ tp(bB/B) witness the CB-rank of tp(bB/B) and have CB-
multiplicity 1. As in §1 we see that ϕ also witnesses that tp(bB/B) is meager.
Hence tp(b/B) and tp(b/A) are meager and isolated, and q is meager.

Notice that the types p, q in Theorem 2.7 may have different arity. Now
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suppose p is a fixed stationary meager type. Suppose ϕ is a p-formula over a
finite set A. By [Ne2, Corollary 1.8], after adding to A an element of acl(A)
there is a meager isolated type q ∈ S(A)∩[ϕ] such that each stationarization
of q is non-orthogonal to p. We cannot claim in general that q is obtained
by the minimization process from §1. Thus we cannot say what M(q) is.
Suppose ϕ′ is another p-formula over a finite set A′ and q′ ∈ S(A′) ∩ [ϕ′] is
another meager isolated type non-orthogonal to p. Then using Corollary 2.4
we can compare M(q) and M(q′). Let us say that a term ωβ appears in γ
if γ = γ′ ⊕ ωβ for some γ′.

Corollary 2.8. If M(q′) < ωβ
′+1 then in M(q) there appears a term

ωβ for some β ≤ β′.
P r o o f. Since q and q′ are non-orthogonal, for some finite C ⊇ A∪A′ and

a, b realizing over C nf extensions of q, q′ respectively, we have a -∪ b (C).
As in Lemma 1.3, by Lemma 1.1 we can assume thatM(a/C) =M(q) and
tp(a/C) is isolated. We also have MC(a/C) = M(a/C) and MC(b/C) =
M(b/C) ≤M(b/A′). Suppose no term ωβ with β ≤ β′ appears inM(q). By
Corollary 2.4(3) we have M(a/C) ≤MC(a/Cb)⊕M(b/C). Since tp(a/C)
is isolated, forking is meager on StC(a/C), which implies MC(a/Cb) <
MC(a/C) =M(a/C). This quickly leads to a contradiction.

For example, Corollary 2.8 gives that if M(q) = ωβ then M(q′) > ωβ .
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