Co-H-structures on equivariant Moore spaces

by

Martin Arkowitz (Hanover, N.H.) and Marek Golasiński (Toruń)

Abstract. Let G be a finite group, \mathbb{O}_G the category of canonical orbits of G and $A: \mathbb{O}_G \to \mathbb{A}$ b a contravariant functor to the category of abelian groups. We investigate the set of G-homotopy classes of comultiplications of a Moore G-space of type (A, n) where $n \geq 2$ and prove that if such a Moore G-space X is a cogroup, then it has a unique comultiplication if dim X < 2n - 1. If dim X = 2n - 1, then the set of comultiplications of X is in one-one correspondence with $\operatorname{Ext}^{n-1}(A, A \otimes A)$. Then the case $G = \mathbb{Z}_{p^k}$ leads to an example of infinitely many G-homotopically distinct G-maps $\varphi_i: X \to Y$ such that $\varphi_i^H, \varphi_j^H: X^H \to Y^H$ are homotopic for all i, j and all subgroups $H \subseteq G$.

1. Introduction. If A is an abelian group and n an integer ≥ 2 , then a *Moore space of type* (A,n) is a space with a single nonvanishing homology group A in dimension n. Moore spaces play a central role in homotopy theory and have been widely studied. In particular, the co-H-structures of a Moore space have been investigated. It is known that for n > 2 there is a unique co-H-structure (up to homotopy) on a Moore space, but that for n = 2 there may be several distinct co-H-structures (e.g., see [A–G]). In this paper we consider these results within the context of equivariant homotopy theory.

Throughout, G denotes a finite group and all spaces, maps, homotopies and actions are pointed. We work in the category G-Top_{*} of G-spaces which have the G-homotopy type of G-CW-complexes [Br]. We denote by \mathbb{O}_G the category of canonical orbits of G whose objects are the left cosets G/H as H ranges over all subgroups of G and whose morphisms are the equivariant maps $G/H \to G/K$ with respect to left translation. An \mathbb{O}_G -module is a contravariant functor from \mathbb{O}_G into Ab, the category of abelian groups. For a pair (X, Y) of G-spaces and an integer $n \ge 1$, an \mathbb{O}_G -module $H_n(X, Y) :$ $\mathbb{O}_G \to Ab$ can be defined as follows: $H_n(X, Y)(G/H) = H_n(X^H, Y^H)$, where H_n denotes the *n*th singular homology functor and X^H is the Hfixedpoint subspace of X. Similarly, with $n \ge 3$ $(n \ge 2$ if Y is the base point *) we define $\pi_n(X, Y) : \mathbb{O}_G \to Ab$ using the *n*th homotopy functor π_n . For

¹⁹⁹¹ Mathematics Subject Classification: 55P45, 55P91, 55U35, 18G55.

^[59]

Y = *, these \mathbb{O}_G -modules are denoted by $H_n(X)$ and $\pi_n(X)$, respectively. Now let $A : \mathbb{O}_G \to \mathbb{A}b$ be an \mathbb{O}_G -module and $n \ge 2$ an integer. Following

Kahn [Ka₁], we define a *Moore G-space of type* (\mathbf{A}, n) to be a *G*-space X such that

- (1) X^H is 1-connected for all subgroups H of G,
- (2) $\widetilde{\boldsymbol{H}}_n(X) \cong \boldsymbol{A}$ as \mathbb{O}_G -modules,
- (3) $\boldsymbol{H}_i(X) = 0$ for $i \neq n$.

If the *H*-fixedpoint sets X^H are disregarded when *H* is a nontrivial subgroup, then we obtain a classical Moore *G*-space. More precisely, if *A* is a *G*-module and $n \ge 2$, then a classical Moore *G*-space of type (A, n) is a *G*-space *X* such that

- (1) X is 1-connected,
- (2) $\widetilde{H}_n(X) \cong A$ as *G*-modules,
- (3) $H_i(X) = 0$ for $i \neq n$.

Moore G-spaces have been considered in several papers ([Do₁], [Do₂], [Ka₁], [Ka₂]) and shown to be important in equivariant homotopy theory (e.g., the construction of an equivariant homology decomposition [Ka₂]). Furthermore, classical Moore spaces have been extensively studied in connection with the Steenrod problem (e.g., [Ca], [Ka₃], [Sm]). Unlike the nonequivariant case, Moore G-spaces need not exist for any \mathbb{O}_{G} -module A, and when they exist, they need not be unique (see Section 2 for known existence and uniqueness results). This is so even for classical Moore G-spaces.

In this paper we extend the results of [A–G] to the equivariant case and investigate the set of G-homotopy classes of comultiplications of a Moore G-space. We begin with some generalities on closed model categories \mathbb{C} . We show that if X is a cogroup object in $\operatorname{Ho} \mathbb{C}$, the associated homotopy category of \mathbb{C} , then the collection of comultiplications of X is in one-one correspondence with the set of morphisms $\operatorname{Ho} \mathbb{C}(X, F)$, where F is the fibre of the canonical morphism $X \vee X \to X \times X$. Next we introduce two closed model structures on G-Top_{*}, one to be used for Moore G-spaces and the other for classical Moore G-spaces. We then deduce in the next section that a Moore G-space X of type (A, n) which is a cogroup has a unique comultiplication if dim X < 2n - 1. If dim X = 2n - 1, we show that the set of comultiplications of X is in one-one correspondence with $\operatorname{Ext}^{n-1}(A, A \otimes A)$. Analogous results are established for classical Moore G-spaces. We then apply these considerations to the case $G = \mathbb{Z}_{p^k}$. This leads to an example of infinitely many G-homotopically distinct G-maps $\varphi_i : X \to Y$ such that $\varphi_i^H, \varphi_j^H : X^H \to Y^H$ are homotopic for all i, j and all subgroups $H \subseteq G$.

2. Background. The general reference here for category theory is [Qu]. Let \mathbb{C} be a pointed category with finite products and coproducts. For objects X and Y of \mathbb{C} , morphisms are written $f: X \to Y$ or $f \in \mathbb{C}(X,Y)$. In particular, the zero morphism is $0: X \to Y$ and the identity morphism is $1_X: X \to X$. Let $X \lor Y$ denote the coproduct of X and Y and $X \times Y$ the product of X and Y. Then for an object X, there is a canonical morphism j: $X \lor X \to X \times X$ determined by two morphisms $(1_X, 0), (0, 1_X) : X \to X \times X$. Let $\triangle = (1_X, 1_X) : X \to X \times X$ be the diagonal morphism. A morphism $\varphi: X \to X \lor X$ such that $j\varphi = \triangle$ is called a *comultiplication* of X, and X is said to have co-structure φ . If $(1 \lor \varphi)\varphi = (\varphi \lor 1)\varphi : X \to X \lor X \lor X$ then φ is associative. If there exists a morphism $\eta : X \to X$ such that $\nabla(\eta \vee 1_X)\varphi = \nabla(1_X \vee \eta)\varphi = 0 : X \to X$, where $\nabla : X \vee X \to X$ is the folding morphism, we say that η is an *inverse*. The triple (X, φ, η) is then called a *cogroup object* in \mathbb{C} . If (X, φ, η) is a cogroup object in \mathbb{C} and Y is any object, then φ and η induce a group structure on the set $\mathbb{C}(X,Y)$ such that for every morphism $g: Y \to Y'$, the induced map $g_*: \mathbb{C}(X,Y) \to \mathbb{C}(X,Y')$ is a homomorphism.

Now let \mathbb{C} be a pointed closed model category. We localize \mathbb{C} with respect to the class of weak equivalences and obtain the homotopy category Ho \mathbb{C} [Qu]. A co-structure on an object in Ho \mathbb{C} is called a *co-H-structure* and a cogroup object in Ho \mathbb{C} is called a *co-H-group*. Quillen [Qu] has defined a suspension functor $\Sigma \operatorname{Ho} \mathbb{C} \to \operatorname{Ho} \mathbb{C}$ such that ΣX is a co-H-group. For any objects X, Y in Ho \mathbb{C} , let us denote $\operatorname{Ho} \mathbb{C}(X, Y)$ by [X, Y]. Then if $f: X \to$ Y, there exists an object F, called the *fibre* of f, such that for any object Z, the following sequence is exact [Qu]:

$$\ldots \to [\Sigma Z, X] \xrightarrow{f_*} [\Sigma Z, Y] \to [Z, F] \to [Z, X] \xrightarrow{f_*} [Z, Y]$$

Let X be a co-H-group, $\mathcal{C}(X) \subseteq [X, X \lor X]$ the set of co-H-structures of X and F the fibre of the canonical morphism $j: X \lor X \to X \times X$. Then the set $\mathcal{C}(X)$ is an orbit of the action of the group [X, F] on $[X, X \lor X]$ by (right) translation. So there is, in general, no natural group structure on $\mathcal{C}(X)$. However, if an element of $\mathcal{C}(X)$ is chosen as a base point it is possible to offer a direct interpretation of the group structure of $\mathcal{C}(X)$.

PROPOSITION 2.1. For any co-H-group object X in Ho \mathbb{C} , there is a group isomorphism

$$\mathcal{C}(X) \xrightarrow{\simeq} [X, F].$$

The proof follows from the above long exact sequence applied to j together with the methods of [A–G].

Next let $\mathbb{T}op_*$ be the category of pointed topological spaces. We give $\mathbb{T}op_*$ the structure of a pointed closed model category by defining weak equivalences, fibrations and cofibrations in $\mathbb{T}op_*$ in the usual way [Qu]. Let

G-Top_{*} be the category with objects pointed G-spaces and morphisms G-maps. We define a closed model category structure I on G-Top_{*} as follows:

I-1. A *G*-map $f: X \to Y$ is a weak equivalence if the maps $f^H: X^H \to Y^H$ of *H*-fixed point subspaces are weak equivalences in $\mathbb{T}op_*$ for all subgroups $H \subseteq G$.

I-2. A *G*-map $f : E \to B$ is a fibration if $f^H : E^H \to B^H$ are fibrations in $\mathbb{T}op_*$ for all subgroups $H \subseteq G$.

I-3. Cofibrations are determined by weak equivalences and fibrations by means of the lifting property [Qu, p. 5.1].

We also define a second closed model category structure II on G-Top_{*}:

II-1. A *G*-map $f : X \to Y$ is a *weak equivalence* if f is a weak equivalence in $\mathbb{T}op_*$.

II-2. A *G*-map $f: E \to B$ is a *fibration* if f is a fibration in $\mathbb{T}op_*$.

II-3. *Cofibrations* are determined by weak equivalences and fibrations as above.

One checks that \mathbf{I} and \mathbf{II} satisfy the axioms for a pointed closed model category (cf. [D-D-K]) and thus one obtains homotopy categories

 $\operatorname{Ho}^{\mathbf{I}} G$ - Top_{*} and $\operatorname{Ho}^{\mathbf{II}} G$ - Top_{*}

by localizing with respect to the weak equivalences of I and II, respectively.

Finally, we summarize from $[Ka_1]$ conditions for the existence and uniqueness of a Moore *G*-space *X* of type (\boldsymbol{A}, n) , where \boldsymbol{A} is an \mathbb{O}_G -module. We are especially interested in when *X* is a cogroup in the appropriate category. If proj dim $\boldsymbol{A} \leq 1$, then a Moore *G*-space *X* of type (\boldsymbol{A}, n) exists and any two are *G*-equivalent (i.e., equivalent objects in Ho^I *G*-Top_{*}). We denote *X* by $M(\boldsymbol{A}, n)$. Thus, for proj dim $\boldsymbol{A} \leq 1$, $\Sigma M(\boldsymbol{A}, n) \cong M(\boldsymbol{A}, n+1)$. Therefore, a Moore *G*-space of type (\boldsymbol{A}, n) with $n \geq 3$ and proj dim $\boldsymbol{A} \leq 1$ is a co-H-group. This is also true for n = 2. For, following Kahn's methods [Ka₁], we can find a *G*-space *K* such that

$$\widetilde{\boldsymbol{H}}_{i}(K) = \begin{cases} \boldsymbol{A} & \text{for } i = 1, \\ 0 & \text{for } i \neq 1. \end{cases}$$

By uniqueness, $M(\mathbf{A}, 2) \cong \Sigma K$. Therefore, $M(\mathbf{A}, n)$ is a cogroup object in Ho^I G-Top_{*} for $n \geq 2$ and proj dim $\mathbf{A} \leq 1$.

If A is a G-module and proj dim $A < \infty$, then by [Ka₁, p. 260] a classical Moore G-space of type (A, n) exists and any two are equivalent (i.e., are equivalent objects in Ho^{II} G-Top_{*}). This is seen by assigning an \mathbb{O}_{G} -module \widetilde{A} to A as follows: let $\widetilde{A}(G/H) = 0$ for $H \neq E$ and $\widetilde{A}(G/E) = A$, where E is the trivial subgroup of G. Then proj dim $\widetilde{A} \leq 1$ and the existence of a classical Moore G-space follows from the previous paragraph. Uniqueness is also established and one concludes as above that a classical Moore G-space of type (A, n) with projdim $A < \infty$ and $n \ge 2$ is a cogroup object in Ho^{II} G-Top_{*}.

We next assume that A is a rational \mathbb{O}_{G} -module, that is, an \mathbb{O}_{G} -module such that each A(G/H) is a vector space over the field \mathbb{Q} of rational numbers. Using the above results and work of [Un], we conclude that a Moore Gspace of type (A, n) always exists. If, in addition, proj dim A < n, then all such Moore G-spaces are equivalent. Thus if A is a rational \mathbb{O}_{G} -module of proj dim < n, the Moore G-space of type (A, n) is a cogroup object in Ho^I G- $\mathbb{T}op_*, n \geq 2$. Similar considerations apply to classical Moore G-spaces.

3. Comultiplications. In this section we use Proposition 2.1 to determine the set $\mathcal{C}(X)$ of co-H-structures of X, where X is a Moore G-space of type (\mathbf{A}, n) , a co-group and dim $X \leq 2n - 1$. In preparation for this we need some results on Bredon cohomology.

For a given \mathbb{O}_{G} -module \boldsymbol{B} , Bredon [Br] and Illman [Il₂] construct an equivariant cohomology theory $H^*_{G}(-, \boldsymbol{B})$ defined on the category of pairs of G-spaces and G-maps. This cohomology theory satisfies all the Eilenberg– Steenrod axioms for cohomology suitably interpreted for equivariant spaces and maps. The category of \mathbb{O}_{G} -modules (i.e., the category whose objects are \mathbb{O}_{G} -modules and whose morphisms are natural transformations) contains sufficiently many projectives and injectives [Br]. Thus one can define Ext^p for this category in the usual way as the right derived functor of the Hom functor.

For a pair (X, Y) of *G-CW*-complexes, Bredon [Br] derives a spectral sequence $\{E_r^{p,q}\}$ with

$$E_2^{p,q} = \operatorname{Ext}^p(\boldsymbol{H}_q(X,Y),\boldsymbol{B}) \Rightarrow H_G^{p+q}(X,Y;\boldsymbol{B})$$

There is a decreasing filtration of the group $H^{p+q} = H_G^{p+q}(X, Y; \boldsymbol{B}),$

 $H^{p+q} = F^{-1}H^{p+q} \supseteq F^0H^{p+q} \supseteq \ldots \supseteq F^{p+q}H^{p+q} = 0,$

with

$$F^p H^{p+q} / F^{p+1} H^{p+q} = E^{p,q}_{\infty}.$$

Let now X be a Moore G-space of type (\mathbf{A}, n) for an \mathbb{O}_{G} -module \mathbf{A} and $n \geq 2$. Then the Bredon spectral sequence degenerates, i.e., $E_{2}^{p,q} = 0$ for $p \geq 0$ and $q \neq n$ and $E_{2}^{p,n} = \operatorname{Ext}^{p}(\mathbf{A}, \mathbf{B})$. Thus $0 = E_{2}^{p,q} = E_{3}^{p,q} = \ldots = E_{\infty}^{p,q}$ for $q \neq n$ and $E_{2}^{p,n} = E_{3}^{p,n} = \ldots = E_{\infty}^{p,n}$.

Hence $F^{p-q}H^p/F^{p-q+1}H^p = E_{\infty}^{p-q,q} = 0$ for $q \neq n$ and so (cf. [Ka₁])

(3.1)
$$H^p_G(X, \boldsymbol{B}) = \operatorname{Ext}^{p-n}(\boldsymbol{A}, \boldsymbol{B})$$

For a Moore *G*-space *X* of type (A, n), let *F* denote the fibre of the map $j: X \vee X \to X \times X$ in the category Ho^I *G*-Top_{*} and let *X* be a cogroup in Ho^I *G*-Top_{*}. We denote by $[-, -]_G$ the set of morphisms in Ho^I *G*-Top_{*}.

THEOREM 3.2. Under the above assumptions, if dim $X = d \leq 2n - 1$ then the set $\mathcal{C}(X)$ of co-H-structures of X is in one-one correspondence with the group $\operatorname{Ext}^{d-n}(\mathbf{A}, \pi_d(F))$.

Proof. Since $H_i(X \times X, X \vee X) = 0$ for i < 2n and $H_{2n}(X \times X, X \vee X) = H_n(X) \otimes H_n(X) = A \otimes A$, by the Hurewicz theorem, $\pi_i(X \times X, X \vee X) = 0$ for i < 2n and $\pi_{2n}(X \times X, X \vee X) = A \otimes A$. Thus $\pi_i(F) = 0$ for i < 2n - 1 and $\pi_{2n-1}(F) = A \otimes A$. Let F_d denote the *d*th term of the Postnikov *G*-tower of the *G*-space *F* ([D–D–K], [Tr₁]) and $f_d : F \to F_d$ the canonical map. Then the morphism $\pi_i(F) \to \pi_i(F_d)$ induced by f_d is an isomorphism for $i \leq d$ and epimorphism for i = d + 1. Since dim X = d, the equivariant Whitehead theorem ([Il₁], [Ma]) implies that $(f_d)_* : [X, F]_G \to [X, F_d]_G$ is a bijection. But $F_d \cong K(\pi_d(F), d)$, the Eilenberg–MacLane space of type $(\pi_d(F), d)$, since $d \leq 2n - 1$. Therefore

$$[X,F]_G \cong [X,F_d]_G \cong [X,K(\pi_d(F),d)]_G \cong H^d_G(X,\pi_d(F))$$

and this is $\operatorname{Ext}^{d-n}(A, \pi_d(F))$ by (3.1). The result now follows from Proposition 2.1. \blacksquare

COROLLARY 3.3. If dim X < 2n - 1, then $\mathcal{C}(X)$ has one element. If dim X = 2n - 1, then $\mathcal{C}(X)$ is in one-one correspondence with $\operatorname{Ext}^{n-1}(A, A \otimes A)$.

Now let A be a G-module and X a classical Moore G-space of type (A, n)and a cogroup object in the category Ho^{II} G-Top_{*}. Then, by Proposition 2.1, $\mathcal{C}(X)$ is in one-one correspondence with the set $[X, F]_{II}$ of morphisms in Ho^{II} G-Top_{*} of X to F, where F is the fibre of $j : X \vee X \to X \times X$. From the Hurewicz theorem we deduce that $\pi_i(F) = 0$ for i < 2n - 1 and $\pi_{2n-1}(F) \cong A \otimes A$ as G-modules. Suppose that dim $X = d \leq 2n - 1$ and F_d is the dth term of the Postnikov G-tower of F. Then as above $[X, F]_{II}$ is in one-one correspondence with $[X, F_d]_{II}$ and F_d is an Eilenberg–MacLane Gspace $K(\pi_d(F), d)$. Let $\tilde{\pi}_d(F)$ be the \mathbb{O}_G -module defined by $\tilde{\pi}_d(F)(G/H)$ = 0 for $H \neq E$ and $\tilde{\pi}_d(F)(G/E) = \pi_d(F)$, where E is the trivial subgroup of G. Then $[X, F_d]_{II} \cong [X, K(\tilde{\pi}_d(F), d)]$, where $K(\tilde{\pi}_d(F), d)$ is the Eilenberg–MacLane G-space of type $(\tilde{\pi}_d(F), d)$. Hence by (3.1), $[X, F]_{II} \cong$ $\operatorname{Ext}_G^{d-n}(A, \pi_d(F))$, where Ext_G^p denotes the pth Ext functor in the category of G-modules. Thus we obtain

COROLLARY 3.4. Let A be a G-module and X a classical Moore G-space of type (A, n) and a cogroup object in Ho^{II} G-Top_{*}. If dim X < 2n - 1, then $\mathcal{C}(X)$ has one element. If dim X = 2n - 1, then $\mathcal{C}(X)$ is in one-one correspondence with $\operatorname{Ext}_{G}^{n-1}(A, A \otimes A)$.

R e m a r k 3.5. Corollary 3.2 (and 3.3) can also be proved by using a spectral sequence derived from an exact couple based on dual Puppe sequences obtained from the fibrations $K(\pi_q, q) \to F_q \to F_{q-1}$ (cf. [M–T, Chap. 14]). In addition, this method shows, under the hypothesis of Corollary 3.3, that if dim X > 2n - 1 and $\operatorname{Ext}^{n-1}(A, A \otimes A) \neq 0$, then $\mathcal{C}(X)$ has more than one element.

4. An example. Let \mathbb{Z}_{p^k} be the group of integers $\operatorname{mod} p^k$, where p is a prime, and let us denote $\mathbb{O}_{\mathbb{Z}_{p^k}}$ by $\mathbb{O}(\mathbb{Z}_{p^k})$. Any $\mathbb{O}(\mathbb{Z}_{p^k})$ -module A determines a sequence

$$A_0 \xrightarrow{m_1} A_1 \xrightarrow{m_2} \ldots \xrightarrow{m_k} A_k$$

where $A_i = \mathbf{A}(\mathbb{Z}_{p^k}/\mathbb{Z}_{p^{k-i}})$ and $m_i = \mathbf{A}(\pi_i)$, where $\pi_i : \mathbb{Z}_{p^k}/\mathbb{Z}_{p^{k-i}} \to \mathbb{Z}_{p^k}/\mathbb{Z}_{p^{k-i+1}}$ are projections.

We restrict our considerations to rational $\mathbb{O}(\mathbb{Z}_{p^k})$ -modules, where all A_i are \mathbb{Q} -vector spaces and all m_i are linear maps. Triantafillou [Tr] shows that for any such $\mathbb{O}(\mathbb{Z}_{p^k})$ -module A, proj dim $A \leq 1$. Furthermore, A is projective if and only if all m_i are injections.

We define a rational $\mathbb{O}(\mathbb{Z}_{p^k})$ -module A to be *null* if all $m_i = 0$. With such a null $\mathbb{O}(\mathbb{Z}_{p^k})$ -module we associate the commutative diagram

A_0	$\xrightarrow{0}$	A_1	$\xrightarrow{0}$	A_2	$\xrightarrow{0}$	 $\xrightarrow{0}$	A_k
		$\uparrow p_1$		$\uparrow p_2$			$\uparrow p_k$
A_0	$\xrightarrow{i_0}$	$A_0 \oplus A_1$	$\stackrel{i_{0,1}}{\rightarrow}$	$A_0 \oplus A_1 \oplus A_2$	$\stackrel{i_{0,1,2}}{\rightarrow}$	 $\xrightarrow{i_{0,1,,k-1}}$	$A_0 \oplus \ldots \oplus A_k$
Ŷ		$\uparrow i_0$		$\uparrow i_{0,1}$			$\uparrow i_{0,1,\dots,k-1}$
0	\rightarrow	A_0	$\stackrel{i_0}{\rightarrow}$	$A_0 \oplus A_1$	$\stackrel{i_{0,1}}{\rightarrow}$	 $\xrightarrow{i_{0,1,\ldots,k-2}}$	$A_0 \oplus \ldots \oplus A_{k-1}$

where the arrows represent canonical projections and injections. Here the second horizontal line gives a rational $\mathbb{O}(\mathbb{Z}_{p^k})$ -module P_0 and the third horizontal line gives a rational $\mathbb{O}(\mathbb{Z}_{p^k})$ -module P_1 such that

$$\boldsymbol{P}_0(\mathbb{Z}_{p^k}/\mathbb{Z}_{p^{k-i}}) = A_0 \oplus \ldots \oplus A_i = \boldsymbol{P}_1(\mathbb{Z}_{p^k}/\mathbb{Z}_{p^{k-i+1}}).$$

Since all the maps in P_0 and P_1 are injective, P_0 and P_1 are projective $\mathbb{O}(\mathbb{Z}_{p^k})$ -modules. Therefore, we have a projective resolution

$$0 \to \boldsymbol{P}_1 \xrightarrow{d} \boldsymbol{P}_0 \xrightarrow{\varepsilon} \boldsymbol{A} \to 0.$$

If **B** is another null $\mathbb{O}(\mathbb{Z}_{p^k})$ -module, then the induced map

$$d^* : \operatorname{Hom}(\boldsymbol{P}_0, \boldsymbol{B}) \to \operatorname{Hom}(\boldsymbol{P}_1, \boldsymbol{B})$$

is zero. Hence

$$\operatorname{Ext}^{1}(\boldsymbol{A},\boldsymbol{B}) = \operatorname{Hom}(\boldsymbol{P}_{1},\boldsymbol{B}) / \operatorname{Im} d^{*} = \operatorname{Hom}(\boldsymbol{P}_{1},\boldsymbol{B}) = \bigoplus_{i=0}^{n-1} \operatorname{Hom}(A_{i},B_{i+1})$$

Thus we have proved

PROPOSITION 4.1. If **A** and **B** are null $\mathbb{O}(\mathbb{Z}_{p^k})$ -modules then

$$\operatorname{Ext}^{1}(\boldsymbol{A}, \boldsymbol{B}) = \bigoplus_{i=0}^{k-1} \operatorname{Hom}(A_{i}, B_{i+1})$$

This leads to the following example.

EXAMPLE 4.2. For the group $G = \mathbb{Z}_{p^k}$, there are *G*-spaces *X* and *Y* and *G*-maps $\varphi_i : X \to Y, i = 1, 2, ...$, such that φ_i and φ_j are not *G*-homotopic for all $i \neq j$ and $\varphi_i^H, \varphi_j^H : X^H \to Y^H$ are homotopic for all i, j and all subgroups *H* of *G*.

For this example we let A be a null $\mathbb{O}(\mathbb{Z}_{p^k})$ -module such that $\operatorname{Hom}(A_i, A_{i+1} \otimes A_{i+1}) \neq 0$ for some $i \in \{0, 1, \ldots, k-1\}$, for example, $A_i = A_{i+1} = \mathbb{Q}$. Since proj dim $A \leq 1$, there is a Moore G-space X of type (A, 2) which is a co-H-group (see Section 2). Kahn [Ka₁, p. 259] has shown how to construct X such that dim X = 3. By Corollary 3.3, $\mathcal{C}(X)$ is in one-one correspondence with $\operatorname{Ext}^1(A, A \otimes A)$. By Proposition 4.1, this latter group is isomorphic to $\bigoplus_{i=1}^{n-1} \operatorname{Hom}(A_i, A_{i+1} \otimes A_{i+1}) \neq 0$. Thus $\mathcal{C}(X)$ is an infinite set and so there are infinitely many co-H-structures $\varphi_i : X \to X \lor X = Y$ in $\operatorname{Ho}^{\mathbf{I}} G$ -Top_{*}. However, for any subgroup H, X^H is the nonequivariant Moore space of type (A(G/H), 2) and each φ_i^H is a comultiplication of X^H . But by [A-G] the comultiplications of X^H are in one-one correspondence with $\operatorname{Ext}(A(G/H), A(G/H) \otimes A(G/H))$. This group is trivial since A(G/H) is a \mathbb{Q} -vector space. Thus for each subgroup H of G, φ_i^H is homotopic to φ_j^H for all $i, j = 1, 2, \ldots$

Finally, we close with a problem suggested by [A–G]. Given an action of a finite group G on \mathbb{Z}_m , the integers mod m. Suppose there is a classical Moore G-space X of type ($\mathbb{Z}_m, 2$) which is a co-H-group.

PROBLEM 4.3. Describe the set $\mathcal{C}(X)$ of all comultiplications of X.

References

- [A-G] M. Arkowitz and M. Golasiński, Co-H-structures on Moore spaces of type (A,2), Canad. J. Math., to appear.
 - [Br] G. E. Bredon, Equivariant Cohomology Theories, Lecture Notes in Math. 34, Springer, 1967.
 - [Ca] G. Carlsson, A counterexample to a conjecture of Steenrod, Invent. Math. 64 (1981), 171–174.
 - [Co] S. R. Costenoble and S. Waner, A nonexistence result for Moore G-spectra, Proc. Amer. Math. Soc. 113 (1991), 265–274.
- [Do1] R. Doman, Non-G-equivalent Moore G-spaces of the same type, ibid. 103 (1988), 1317–1321.
- [Do2] —, Moore G-spaces which are not co-Hopf G-spaces, Canad. Math. Bull. 32 (1989), 365–368.

- [D-D-K] E. Dror, Dwyer and D. M. Kan, Equivariant maps which are self homotopy equivalences, Proc. Amer. Math. Soc. 80 (1980), 670-672.
 - [El] A. D. Elmendorf, Systems of fixed point sets, Trans. Amer. Math. Soc. 277 (1983), 275–284.
 - [II1] S. Illman, Equivariant algebraic topology, Ph.D. Thesis, Princeton University, Princeton, N.J., 1972.
 - [Il₂] —, Equivariant singular homology and cohomology I, Mem. Amer. Math. Soc. 156 (1975).
 - [Ka1] P. J. Kahn, Rational Moore G-spaces, Trans. Amer. Math. Soc. 298 (1986), 245–271.
 - [Ka₂] —, Equivariant homology decompositions, ibid., 273–287.
 - [Ka₃] —, Steenrod's problem and k-invariants of certain classifying spaces, in: Algebraic K-Theory, Lecture Notes in Math. 967, Springer, 1982, 195–214.
 - [Ma] T. Matumoto, On G-CW complexes and a theorem of J. H. C. Whitehead, J. Fac. Sci. Univ. Tokyo 18 (1971), 363–374.
 - [M-T] R. E. Mosher and M. C. Tangora, Cohomology Operations and Applications in Homotopy Theory, Harper & Row, New York, 1968.
 - [Qu] D. G. Quillen, Homotopical Algebra, Lecture Notes in Math. 43, Springer, 1967.
 - [Sm] J. R. Smith, Equivariant Moore spaces II—The low dimensional case, J. Pure Appl. Algebra 36 (1985), 187–204.
 - [Tr] G. V. Triantafillou, Rationalization of Hopf G-spaces, Math. Z. 182 (1983), 485–500.
 - [Un] H. Unsöld, Topological minimal algebras and Sullivan-de Rham equivalence, Astérisque 113-114 (1984), 337-343.

DEPARTMENT OF MATHEMATICS DARTMOUTH COLLEGE HANOVER, NEW HAMPSHIRE 03755 U.S.A. FACULTY OF MATHEMATICS AND INFORMATICS NICHOLAS COPERNICUS UNIVERSITY CHOPINA 12/18 87-100 TORUŃ, POLAND

Received 27 July 1993; in revised form 21 January 1994