Co-H-structures on equivariant Moore spaces

by

Martin Arkowitz (Hanover, N.H.) and Marek Golasiński (Toruń)

Abstract. Let G be a finite group, \mathcal{O}_G the category of canonical orbits of G and $A : \mathcal{O}_G \to \text{Ab}$ a contravariant functor to the category of abelian groups. We investigate the set of G-homotopy classes of comultiplications of a Moore G-space of type (A,n) where $n \geq 2$ and prove that if such a Moore G-space X is a cogroup, then it has a unique comultiplication if $\dim X < 2n - 1$. If $\dim X = 2n - 1$, then the set of comultiplications of X is in one-one correspondence with $\text{Ext}^{n-1}(A,A \otimes A)$. Then the case $G = \mathbb{Z}_p$ leads to an example of infinitely many G-homotopically distinct G-maps $\varphi_i : X \to Y$ such that φ_i^H, $\varphi_j^H : X^H \to Y^H$ are homotopic for all i, j and all subgroups $H \subseteq G$.

1. Introduction. If A is an abelian group and n an integer ≥ 2, then a Moore space of type (A,n) is a space with a single nonvanishing homology group A in dimension n. Moore spaces play a central role in homotopy theory and have been widely studied. In particular, the co-H-structures of a Moore space have been investigated. It is known that for $n > 2$ there is a unique co-H-structure (up to homotopy) on a Moore space, but that for $n = 2$ there may be several distinct co-H-structures (e.g., see [A–G]). In this paper we consider these results within the context of equivariant homotopy theory.

Throughout, G denotes a finite group and all spaces, maps, homotopies and actions are pointed. We work in the category $G\text{-Top}_*$ of G-spaces which have the G-homotopy type of G-CW-complexes [Br]. We denote by \mathcal{O}_G the category of canonical orbits of G whose objects are the left cosets G/H as H ranges over all subgroups of G and whose morphisms are the equivariant maps $G/H \to G/K$ with respect to left translation. An O_G-module is a contravariant functor from \mathcal{O}_G into Ab, the category of abelian groups. For a pair (X,Y) of G-spaces and an integer $n \geq 1$, an O_G-module $H_n(X,Y) : O_G \to \text{Ab}$ can be defined as follows: $H_n(X,Y)(G/H) = H_n(X^H,Y^H)$, where H_n denotes the nth singular homology functor and X^H is the H-fixedpoint subspace of X. Similarly, with $n \geq 3$ ($n \geq 2$ if Y is the base point $*$) we define $\pi_n(X,Y) : O_G \to \text{Ab}$ using the nth homotopy functor π_n. For

Y = *, these \mathcal{O}_G-modules are denoted by $\widetilde{H}_n(X)$ and $\pi_n(X)$, respectively.

Now let $A : \mathcal{O}_G \to \text{Ab}$ be an \mathcal{O}_G-module and $n \geq 2$ an integer. Following Kahn [Ka1], we define a Moore G-space of type (A, n) to be a G-space X such that

1. X^H is 1-connected for all subgroups H of G,
2. $\widetilde{H}_n(X) \cong A$ as \mathcal{O}_G-modules,
3. $\widetilde{H}_i(X) = 0$ for $i \neq n$.

If the H-fixedpoint sets X^H are disregarded when H is a nontrivial subgroup, then we obtain a classical Moore G-space. More precisely, if A is a G-module and $n \geq 2$, then a classical Moore G-space of type (A, n) is a G-space X such that

1. X is 1-connected,
2. $\widetilde{H}_n(X) \cong A$ as G-modules,
3. $\widetilde{H}_i(X) = 0$ for $i \neq n$.

Moore G-spaces have been considered in several papers ([Do1], [Do2], [Ka3], [Ka2]) and shown to be important in equivariant homotopy theory (e.g., the construction of an equivariant homology decomposition [Ka2]). Furthermore, classical Moore spaces have been extensively studied in connection with the Steenrod problem (e.g., [Ca], [Ka3], [Sm]). Unlike the nonequivariant case, Moore G-spaces need not exist for any \mathcal{O}_G-module A, and when they exist, they need not be unique (see Section 2 for known existence and uniqueness results). This is so even for classical Moore G-spaces.

In this paper we extend the results of [A–G] to the equivariant case and investigate the set of G-homotopy classes of comultiplications of a Moore G-space. We begin with some generalities on closed model categories \mathcal{C}. We show that if X is a cogroup object in $\text{Ho}\mathcal{C}$, the associated homotopy category of \mathcal{C}, then the collection of comultiplications of X is in one-one correspondence with the set of morphisms $\text{Ho}\mathcal{C}(X, F)$, where F is the fibre of the canonical morphism $X \vee X \to X \times X$. Next we introduce two closed model structures on $G-\text{Top}_*$, one to be used for Moore G-spaces and the other for classical Moore G-spaces. We then deduce in the next section that a Moore G-space X of type (A, n) which is a cogroup has a unique comultiplication if $\dim X < 2n - 1$. If $\dim X = 2n - 1$, we show that the set of comultiplications of X is in one-one correspondence with $\text{Ext}^{n-1}(A, A \otimes A)$. Analogous results are established for classical Moore G-spaces. We then apply these considerations to the case $G = \mathbb{Z}_{p^k}$. This leads to an example of infinitely many G-homotopically distinct G-maps $\varphi_i : X \to Y$ such that φ_i^H, $\varphi_j^H : X^H \to Y^H$ are homotopic for all i, j and all subgroups $H \subseteq G$.
2. Background. The general reference here for category theory is [Qu].
Let \mathbb{C} be a pointed category with finite products and coproducts. For objects X and Y of \mathbb{C}, morphisms are written $f : X \to Y$ or $f \in \mathbb{C}(X,Y)$. In particular, the zero morphism is $0 : X \to Y$ and the identity morphism is $1_X : X \to X$. Let $X \vee Y$ denote the coproduct of X and Y and $X \times Y$ the product of X and Y. Then for an object X, there is a canonical morphism $j : X \vee X \to X \times X$ determined by two morphisms $(1_X, 0), (0, 1_X) : X \to X \times X$. Let $\Delta = (1_X, 1_X) : X \to X \times X$ be the diagonal morphism. A morphism $\varphi : X \to X \vee X$ such that $j \varphi = \Delta$ is called a comultiplication of X, and X is said to have co-structure φ. If $(1 \vee \varphi) = (\varphi \vee 1) : X \to X \vee X \vee X$ then φ is associative. If there exists a morphism $\eta : X \to X$ such that $\nabla(\eta \vee 1_X) = \nabla(1_X \vee \eta) \varphi = 0 : X \to X$, where $\nabla : X \vee X \to X$ is the folding morphism, we say that η is an inverse. The triple (X, φ, η) is then called a cogroup object in \mathbb{C}. If (X, φ, η) is a cogroup object in \mathbb{C} and Y is any object, then φ and η induce a group structure on the set $\mathbb{C}(X, Y)$ such that for every morphism $g : Y \to Y'$, the induced map $g_* : \mathbb{C}(X, Y) \to \mathbb{C}(X, Y')$ is a homomorphism.

Now let \mathbb{C} be a pointed closed model category. We localize \mathbb{C} with respect to the class of weak equivalences and obtain the homotopy category $\text{Ho}\mathbb{C}$ [Qu]. A co-structure on an object in $\text{Ho}\mathbb{C}$ is called a co-H-structure and a cogroup object in $\text{Ho}\mathbb{C}$ is called a co-H-group. Quillen [Qu] has defined a suspension functor $\Sigma : \text{Ho}\mathbb{C} \to \text{Ho}\mathbb{C}$ such that ΣX is a co-H-group. For any objects X, Y in $\text{Ho}\mathbb{C}$, let us denote $\text{Ho}\mathbb{C}(X, Y) = [X, Y]$. Then if $f : X \to Y$, there exists an object F, called the fibre of f, such that for any object Z, the following sequence is exact [Qu]:

$$\cdots \to [\Sigma Z, X] \overset{f_*}{\to} [\Sigma Z, Y] \to [Z, F] \to [Z, X] \overset{f_*}{\to} [Z, Y].$$

Let X be a co-H-group, $\mathcal{C}(X) \subseteq [X, X \vee X]$ the set of co-H-structures of X and F the fibre of the canonical morphism $j : X \vee X \to X \times X$. Then the set $\mathcal{C}(X)$ is an orbit of the action of the group $[X, F]$ on $[X, X \vee X]$ by (right) translation. So there is, in general, no natural group structure on $\mathcal{C}(X)$. However, if an element of $\mathcal{C}(X)$ is chosen as a base point it is possible to offer a direct interpretation of the group structure of $\mathcal{C}(X)$.

Proposition 2.1. For any co-H-group object X in $\text{Ho}\mathbb{C}$, there is a group isomorphism

$$\mathcal{C}(X) \xrightarrow{\simeq} [X, F].$$

The proof follows from the above long exact sequence applied to j together with the methods of [A–G].

Next let Top_* be the category of pointed topological spaces. We give Top_* the structure of a pointed closed model category by defining weak equivalences, fibrations and cofibrations in Top_* in the usual way [Qu]. Let
G–Top_* be the category with objects pointed G-spaces and morphisms G-maps. We define a closed model category structure \mathbf{I} on G–Top_* as follows:

\textbf{I-1.} A G-map $f : X \to Y$ is a \textit{weak equivalence} if the maps $f^H : X^H \to Y^H$ of H-fixedpoint subspaces are weak equivalences in Top_* for all subgroups $H \subseteq G$.

\textbf{I-2.} A G-map $f : E \to B$ is a \textit{fibration} if $f^H : E^H \to B^H$ are fibrations in Top_* for all subgroups $H \subseteq G$.

\textbf{I-3.} Cofibrations are determined by weak equivalences and fibrations by means of the lifting property [Qu, p. 5.1].

We also define a second closed model category structure \mathbf{II} on G–Top_*:

\textbf{II-1.} A G-map $f : X \to Y$ is a \textit{weak equivalence} if f is a weak equivalence in Top_*.

\textbf{II-2.} A G-map $f : E \to B$ is a \textit{fibration} if f is a fibration in Top_*.

\textbf{II-3.} Cofibrations are determined by weak equivalences and fibrations as above.

One checks that \mathbf{I} and \mathbf{II} satisfy the axioms for a pointed closed model category (cf. [D–D–K]) and thus one obtains homotopy categories

\[\text{Ho}^{\mathbf{I}} G$–$\text{Top}_* \quad \text{and} \quad \text{Ho}^{\mathbf{II}} G$–$\text{Top}_* \]

by localizing with respect to the weak equivalences of \mathbf{I} and \mathbf{II}, respectively.

Finally, we summarize from [Ka$_1$] conditions for the existence and uniqueness of a Moore G-space X of type (A, n), where A is an \mathcal{O}_G-module. We are especially interested in when X is a cogroup in the appropriate category. If $\text{proj dim } A \leq 1$, then a Moore G-space X of type (A, n) exists and any two are G-equivalent (i.e., equivalent objects in $\text{Ho}^{\mathbf{I}} G$–Top_*). We denote X by $M(A, n)$. Thus, for $\text{proj dim } A \leq 1$, $\Sigma M(A, n) \cong M(A, n + 1)$. Therefore, a Moore G-space of type (A, n) with $n \geq 3$ and $\text{proj dim } A \leq 1$ is a co-H-group. This is also true for $n = 2$. For, following Kahn’s methods [Ka$_1$], we can find a G-space K such that

\[\overline{H}_i(K) = \begin{cases} A & \text{for } i = 1, \\ 0 & \text{for } i \neq 1. \end{cases} \]

By uniqueness, $M(A, 2) \cong \Sigma K$. Therefore, $M(A, n)$ is a cogroup object in $\text{Ho}^{\mathbf{I}} G$–Top_* for $n \geq 2$ and $\text{proj dim } A \leq 1$.

If A is a G-module and $\text{proj dim } A < \infty$, then by [Ka$_1$, p. 260] a classical Moore G-space of type (A, n) exists and any two are equivalent (i.e., are equivalent objects in $\text{Ho}^{\mathbf{II}} G$–$\text{Top}_*$). This is seen by assigning an \mathcal{O}_G-module \tilde{A} to A as follows: let $\tilde{A}(G/H) = 0$ for $H \neq E$ and $\tilde{A}(G/E) = A$, where E is the trivial subgroup of G. Then $\text{proj dim } \tilde{A} \leq 1$ and the existence of a classical Moore G-space follows from the previous paragraph. Uniqueness is also established and one concludes as above that a classical Moore G-space
There is a decreasing filtration of the group \(\{ A(n) \} \) for this category in the usual way as the right derived functor of the Hom functor. Using the above results and work of [Un], we conclude that a Moore \(G \)-space of type \((A, n)\) always exists. If, in addition, \(\text{proj dim } A < n \), then all such Moore \(G \)-spaces are equivalent. Thus if \(A \) is a rational \(\mathbb{O}_G \)-module of \(\text{proj dim } < n \), the Moore \(G \)-space of type \((A, n)\) is a cogroup object in \(\text{Ho}^1 G\text{-Top}_* \), \(n \geq 2 \). Similar considerations apply to classical Moore \(G \)-spaces.

3. Comultiplications. In this section we use Proposition 2.1 to determine the set \(C(X) \) of co-H-structures of \(X \), where \(X \) is a Moore \(G \)-space of type \((A, n)\), a co-group and \(\text{dim } X \leq 2n - 1 \). In preparation for this we need some results on Bredon cohomology.

For a given \(\mathbb{O}_G \)-module \(B \), Bredon [Br] and Illman [Il2] construct an equivariant cohomology theory \(H^G_*(-; B) \) defined on the category of pairs of \(G \)-spaces and \(G \)-maps. This cohomology theory satisfies all the Eilenberg–Steenrod axioms for cohomology suitably interpreted for equivariant spaces and maps. The category of \(\mathbb{O}_G \)-modules (i.e., the category whose objects are \(\mathbb{O}_G \)-modules and whose morphisms are natural transformations) contains sufficiently many projectives and injectives [Br]. Thus one can define \(\text{Ext}_G^p \) for this category in the usual way as the right derived functor of the Hom functor.

For a pair \((X, Y)\) of \(G\)-CW-complexes, Bredon [Br] derives a spectral sequence \(\{ E^{p,q}_r \} \) with

\[
E_2^{p,q} = \text{Ext}^p(X,Y; B) \Rightarrow H^{p+q}_G(X,Y; B).
\]

There is a decreasing filtration of the group \(H^{p+q}_G = H_G^{p+q}(X,Y; B), \)

\[
H^{p+q} = F^{-1}H^{p+q} \supseteq F^0H^{p+q} \supseteq \ldots \supseteq F^{p+q}H^{p+q} = 0,
\]

with

\[
F^pH^{p+q}/F^{p+1}H^{p+q} = E_{\infty}^{p,q}.
\]

Let now \(X \) be a Moore \(G \)-space of type \((A, n)\) for an \(\mathbb{O}_G \)-module \(A \) and \(n \geq 2 \). Then the Bredon spectral sequence degenerates, i.e., \(E_2^{p,q} = 0 \) for \(p \geq 0 \) and \(q \neq n \) and \(E_2^{p,n} = \text{Ext}^p(A,B) \). Thus

\[
0 = E_2^{p,q} = E_3^{p,q} = \ldots = E_{\infty}^{p,q} \text{ for } q \neq n \quad \text{and} \quad E_2^{p,n} = E_3^{p,n} = \ldots = E_{\infty}^{p,n}.
\]

Hence \(F_\infty^{p,q} = 0 \) for \(p \neq n \) and so (cf. [Ka1])

\[
H_2^G(X,B) = \text{Ext}^{p-n}(A,B).
\]

For a Moore \(G \)-space \(X \) of type \((A, n)\), let \(F \) denote the fibre of the map \(j : X \vee X \to X \times X \) in the category \(\text{Ho}^1 G\text{-Top}_* \) and let \(X \) be a cogroup in \(\text{Ho}^1 G\text{-Top}_* \). We denote by \([-,-]_G \) the set of morphisms in \(\text{Ho}^1 G\text{-Top}_* \).
THEOREM 3.2. Under the above assumptions, if $\dim X = d \leq 2n - 1$ then the set $\mathcal{C}(X)$ of co-H-structures of X is in one-one correspondence with the group $\text{Ext}^{d-n}(A, \pi_d(F))$.

Proof. Since $H_i(X \times X, X \vee X) = 0$ for $i < 2n$ and $H_{2n}(X \times X, X \vee X) = H_n(X) \otimes H_n(X) = A \otimes A$, by the Hurewicz theorem, $\pi_i(X \times X, X \vee X) = 0$ for $i < 2n$ and $\pi_{2n}(X \times X, X \vee X) = A \otimes A$. Thus $\pi_i(F) = 0$ for $i < 2n - 1$ and $\pi_{2n-1}(F) = A \otimes A$. Let F_d denote the dth term of the Postnikov G-tower of the G-space F ([D–D–K], [Tr1]) and $f_d : F \to F_d$ the canonical map. Then the morphism $\pi_i(F) \to \pi_i(F_d)$ induced by f_d is an isomorphism for $i \leq d$ and epimorphism for $i = d + 1$. Since $\dim X = d$, the equivariant Whitehead theorem ([H1], [Ma]) implies that $(f_d)_* : [X, F]_G \to [X, F_d]_G$ is a bijection. But $F_d \cong K(\pi_d(F), d)$, the Eilenberg–MacLane space of type $(\pi_d(F), d)$, since $d \leq 2n - 1$. Therefore

$$[X, F]_G \cong [X, F_d]_G \cong [X, K(\pi_d(F), d)]_G \cong H^d_G(X, \pi_d(F))$$

and this is $\text{Ext}^{d-n}(A, \pi_d(F))$ by (3.1). The result now follows from Proposition 2.1. \[\square\]

COROLLARY 3.3. If $\dim X < 2n - 1$, then $\mathcal{C}(X)$ has one element. If $\dim X = 2n - 1$, then $\mathcal{C}(X)$ is in one-one correspondence with $\text{Ext}^{n-1}(A, A \otimes A)$.

Now let A be a G-module and X a classical Moore G-space of type (A, n) and a cogroup object in the category $\text{Ho}^H G\text{-Top}_\ast$. Then, by Proposition 2.1, $\mathcal{C}(X)$ is in one-one correspondence with the set $[X, F]_H$ of morphisms in $\text{Ho}^H G\text{-Top}_\ast$ of X to F, where F is the fibre of $j : X \vee X \to X \times X$. From the Hurewicz theorem we deduce that $\pi_i(F) = 0$ for $i < 2n - 1$ and $\pi_{2n-1}(F) \cong A \otimes A$ as G-modules. Suppose that $\dim X = d \leq 2n - 1$ and F_d is the dth term of the Postnikov G-tower of F. Then as above $[X, F]_H$ is in one-one correspondence with $[X, F_d]_H$ and F_d is an Eilenberg–MacLane G-space $K(\pi_d(F), d)$. Let $\tilde{\pi}_d(F)$ be the O_G-module defined by $\tilde{\pi}_d(F)(G/H) = 0$ for $H \neq E$ and $\tilde{\pi}_d(F)(G/E) = \pi_d(F)$, where E is the trivial subgroup of G. Then $[X, F_d]_H \cong [X, K(\tilde{\pi}_d(F), d)]$, where $K(\tilde{\pi}_d(F), d)$ is the Eilenberg–MacLane G-space of type $(\tilde{\pi}_d(F), d)$. Hence by (3.1), $[X, F]_H \cong \text{Ext}^{d-n}_G(A, \pi_d(F))$, where Ext^n_G denotes the nth Ext functor in the category of G-modules. Thus we obtain

COROLLARY 3.4. Let A be a G-module and X a classical Moore G-space of type (A, n) and a cogroup object in $\text{Ho}^H G\text{-Top}_\ast$. If $\dim X < 2n - 1$, then $\mathcal{C}(X)$ has one element. If $\dim X = 2n - 1$, then $\mathcal{C}(X)$ is in one-one correspondence with $\text{Ext}^{n-1}_G(A, A \otimes A)$.

Remark 3.5. Corollary 3.2 (and 3.3) can also be proved by using a spectral sequence derived from an exact couple based on dual Puppe sequences.
obtained from the fibrations \(K(\pi_q, q) \to F_q \to F_{q-1} \) (cf. [M–T, Chap. 14]). In addition, this method shows, under the hypothesis of Corollary 3.3, that if \(\dim X > 2n - 1 \) and \(\text{Ext}^{n-1}(A, A \otimes A) \neq 0 \), then \(\mathcal{C}(X) \) has more than one element.

4. An example. Let \(\mathbb{Z}_{p^k} \) be the group of integers mod \(p^k \), where \(p \) is a prime, and let us denote \(\mathbb{O}_{\mathbb{Z}_{p^k}} \) by \(\mathbb{O}(\mathbb{Z}_{p^k}) \). Any \(\mathbb{O}(\mathbb{Z}_{p^k}) \)-module \(A \) determines a sequence

\[
A_0 \overset{m_1}{\to} A_1 \overset{m_2}{\to} \cdots \overset{m_i}{\to} A_k
\]

where \(A_i = A(\mathbb{Z}_{p^k}/\mathbb{Z}_{p^{k-i}}) \) and \(m_i = A(\pi_i) \), where \(\pi_i : \mathbb{Z}_{p^k}/\mathbb{Z}_{p^{k-i}} \to \mathbb{Z}_{p^k}/\mathbb{Z}_{p^{k-1}} \) are injections.

We restrict our considerations to rational \(\mathbb{O}(\mathbb{Z}_{p^k}) \)-modules, where all \(A_i \) are \(\mathbb{Q} \)-vector spaces and all \(m_i \) are linear maps. Triantafillou [Tr] shows that for any such \(\mathbb{O}(\mathbb{Z}_{p^k}) \)-module \(A \), \(\text{proj} \dim A \leq 1 \). Furthermore, \(A \) is projective if and only if all \(m_i \) are injections.

We define a rational \(\mathbb{O}(\mathbb{Z}_{p^k}) \)-module \(A \) to be null if all \(m_i = 0 \). With such a null \(\mathbb{O}(\mathbb{Z}_{p^k}) \)-module we associate the commutative diagram

\[
\begin{array}{cccccccc}
A_0 & \overset{0}{\to} & A_1 & \overset{0}{\to} & A_2 & \overset{0}{\to} & \cdots & \overset{0}{\to} & A_k \\
\| & & \uparrow m_1 & & \uparrow m_2 & & \cdots & & \uparrow m_k \\
A_0 & \overset{i_0}{\to} & A_0 \oplus A_1 & \overset{i_{0,1}}{\to} & A_0 \oplus A_1 \oplus A_2 & \overset{i_{0,1,2}}{\to} & \cdots & \overset{i_{0,1,\ldots,k-1}}{\to} & A_0 \oplus \cdots \oplus A_k \\
\| & & \uparrow i_0 & & \uparrow i_{0,1} & & \cdots & & \uparrow i_{0,1,\ldots,k-1} \\
0 & \to & A_0 & \overset{i_n}{\to} & A_0 \oplus A_1 & \overset{i_{n,1}}{\to} & \cdots & \overset{i_{n,1,\ldots,k-2}}{\to} & A_0 \oplus \cdots \oplus A_{k-1}
\end{array}
\]

where the arrows represent canonical projections and injections. Here the second horizontal line gives a rational \(\mathbb{O}(\mathbb{Z}_{p^k}) \)-module \(P_0 \) and the third horizontal line gives a rational \(\mathbb{O}(\mathbb{Z}_{p^k}) \)-module \(P_1 \) such that

\[
P_0(\mathbb{Z}_{p^k}/\mathbb{Z}_{p^{k-i}}) = A_0 \oplus \cdots \oplus A_i = P_1(\mathbb{Z}_{p^k}/\mathbb{Z}_{p^{k-1}}).
\]

Since all the maps in \(P_0 \) and \(P_1 \) are injective, \(P_0 \) and \(P_1 \) are projective \(\mathbb{O}(\mathbb{Z}_{p^k}) \)-modules. Therefore, we have a projective resolution

\[
0 \to P_1 \overset{d}{\to} P_0 \overset{\epsilon}{\to} A \to 0.
\]

If \(B \) is another null \(\mathbb{O}(\mathbb{Z}_{p^k}) \)-module, then the induced map

\[
d^* : \text{Hom}(P_0, B) \to \text{Hom}(P_1, B)
\]

is zero. Hence

\[
\text{Ext}^1(A, B) = \text{Hom}(P_1, B)/ \text{Im} d^* = \text{Hom}(P_1, B) = \bigoplus_{i=0}^{n-1} \text{Hom}(A_i, B_{i+1}).
\]

Thus we have proved
Proposition 4.1. If A and B are null $\mathbb{O}(\mathbb{Z}_{p^k})$-modules then

$$\text{Ext}^1(A, B) = \bigoplus_{i=0}^{k-1} \text{Hom}(A_i, B_{i+1}).$$

This leads to the following example.

Example 4.2. For the group $G = \mathbb{Z}_{p^k}$, there are G-spaces X and Y and G-maps $\varphi_i : X \to Y$, $i = 1, 2, \ldots$, such that φ_i and φ_j are not G-homotopic for all $i \neq j$ and $\varphi_i^H, \varphi_j^H : X^H \to Y^H$ are homotopic for all i, j and all subgroups H of G.

For this example we let A be a null $\mathbb{O}(\mathbb{Z}_{p^k})$-module such that $\text{Hom}(A_i, A_{i+1} \otimes A_{i+1}) \neq 0$ for some $i \in \{0, 1, \ldots, k-1\}$, for example, $A_i = A_{i+1} = \mathbb{Q}$. Since $\text{proj dim } A \leq 1$, there is a Moore G-space X of type $(A, 2)$ which is a co-H-group (see Section 2). Kahn [Ka1, p. 259] has shown how to construct X such that $\dim X = 3$. By Corollary 3.3, $C(X)$ is in one-one correspondence with $\text{Ext}^1(A, A \otimes A)$. By Proposition 4.1, this latter group is isomorphic to $\bigoplus_{i=1}^{n-1} \text{Hom}(A_i, A_{i+1} \otimes A_{i+1}) \neq 0$. Thus $C(X)$ is an infinite set and so there are infinitely many co-H-structures $\varphi_i : X \to X \vee X = Y$ in $\text{Ho}^1 G \text{-Top}_*$. However, for any subgroup H, X^H is the nonequivariant Moore space of type $(A(G/H), 2)$ and each φ_i^H is a comultiplication of X^H. But by [A–G] the comultiplications of X^H are in one-one correspondence with $\text{Ext}(A(G/H), A(G/H) \otimes A(G/H))$. This group is trivial since $A(G/H)$ is a \mathbb{Q}-vector space. Thus for each subgroup H of G, φ_i^H is homotopic to φ_j^H for all $i, j = 1, 2, \ldots$.

Finally, we close with a problem suggested by [A–G]. Given an action of a finite group G on \mathbb{Z}_m, the integers mod m. Suppose there is a classical Moore G-space X of type $(\mathbb{Z}_m, 2)$ which is a co-H-group.

Problem 4.3. Describe the set $C(X)$ of all comultiplications of X.

References

Co-H-structures on equivariant Moore spaces

