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Recursive expansions

by

C. J. A s h (Clayton, Vic.) and J. F. K n i g h t (Notre Dame, Ind.)

Abstract. Let A be a recursive structure, and let ψ be a recursive infinitary Π2
sentence involving a new relation symbol. The main result of the paper gives syntactical
conditions which are necessary and sufficient for every recursive copy of A to have a
recursive expansion to a model of ψ, provided A satisfies certain decidability conditions.
The decidability conditions involve a notion of rank. The main result is applied to prove
some earlier results of Metakides–Nerode and Goncharov. In these applications, the ranks
turn out to be low, but there are examples in which the rank takes arbitrary recursive
ordinal values.

0. Introduction.Let A be a recursive L-structure. Let ψ be a recursive
infinitary Π2 sentence in the language L ∪ {P}, where P is a new relation
symbol. (Roughly speaking, a recursive infinitary formula is an infinitary
formula with recursive disjunctions and conjunctions.) We consider in this
paper the question of whether every recursive structure B ∼= A has an expan-
sion to a recursive model of ψ. We look for an answer involving syntactical
conditions on the structure A.

In [AK], we considered the related question of whether every (not neces-
sarily recursive) B ∼= A has an expansion to a model of ψ which is recursive
relative to B. We established syntactical conditions necessary and sufficient
for this. The conditions in [AK] assert the existence of a formally Σ0

1 ex-
pansion family for ψ on A. Here we shall give a slightly different definition,
of a recursive expansion family for ψ on A. The two notions are equiva-
lent, in the sense that the existence of one easily implies the existence of
the other. If there is a recursive expansion family for ψ on A, then by the
result of [AK], every recursive B ∼= A has a recursive expansion satisfying ψ.
We show here that if there is no such family and if, in addition, A satisfies
certain decidability conditions, then there exists a recursive B ∼= A with no
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recursive expansion satisfying ψ. Thus, for A sufficiently decidable, we have
the solution to our problem. For every recursive structure B ∼= A to have an
expansion to a recursive model of ψ, a necessary and sufficient condition is
the existence of a recursive expansion family for ψ on A.

The decidability conditions on A cannot be omitted. In [AKS], there is
an example of a recursive structure A and a recursive infinitary Π2 sentence
ψ such that for all recursive B ∼= A, B has recursive expansion satisfying
ψ, but for some non-recursive B ∼= A, B has no expansion to a model of ψ
which is recursive relative to B. The decidability conditions involve a kind
of rank, which depends on A and ψ. If some object in a certain class fails to
have ordinal rank, then under appropriate decidability conditions, we obtain
a recursive expansion family. If all objects in the class have ordinal rank,
then there is a recursive ordinal bound, and under some decidability condi-
tions, there is a recursive B ∼= A with no recursive expansion satisfying ψ.
The structure B is obtained by a finite injury priority construction. There is
a connection between rank and number of injuries to a given requirement.
In particular, if the ranks are bounded by some finite n, then a given re-
quirement receives attention at most n times after the last injury involving
higher priority requirements, as the rank is reduced step by step to 0.

In §1, we define rank and prove the result described above. We also give
special result for the case where the ranks are bounded by 1. In §2, we give
two applications of the special result. The first is a result of Metakides and
Nerode [MN], saying that there is a recursive algebraically closed field having
infinite transcendence degree but with no infinite recursive algebraically
independent set. The second application is a weak version of a result of
Goncharov [G], on “recursively categorical” structures. In §3, we construct
some rather complicated examples in which the ranks are arbitrary recursive
ordinals. The remainder of the present section contains some definitions.

Let L be a recursive language, and let A be an L-structure with uni-
verse ω. Let P be an r-placed relation symbol. A P -formula is a consistent
formula %(x) which is either > (logically valid) or a finite conjunction of for-
mulas of the forms P (xi1 , . . . , xir ) or ¬P (xi1 , . . . , xir ). A P -sentence %(a)
on A is the result of replacing each variable in a P -formula %(x) by a con-
stant naming an element of A. Let ψ be a recursive infinitary Π2 sentence
of the language L ∪ {P}. Then ψ has the form

∧∧
i ∀xi

∨∨
j ∃yij δij(xi,yij),

whereδij(xi,yij) is open. We can re-arrange ψ so that each δij(xi,yij) is
a conjunction of atomic formulas and negations of atomic formulas, and
only variables, not more complicated terms, occur in the conjuncts which
involve P . Then δij(xi,yij) = αij(xi,yij) & %ij(xi,yij), where αij(xi,yij) is
an open L-formula and %ij(xi,yij) is a P -formula. Let σ(a) be a P -sentence
on A, and let b ⊆ a. We say that σ(a) decides P on b if for each r-tuple d
in b, either σ(a) ` P (d) or σ(a) ` ¬P (d). (This means that for each r-tuple
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d from b, either P (d) or ¬P (d) is a conjunct in σ(a).) Suppose I is a finite
subset of ω. We say that σ(a) gives evidence for ψ on I and b if for all
i ∈ I and c in b, there exist j ∈ ω and d in a such that A ² αij(c,d) and
σ(a) ` %ij(c,d). An expansion family for ψ on A, with parameters c ∈ A, is
a set Fof pairs (ϕ(c,x), %(x)) such that ϕ(c,x) is an existential L-formula,
%(x) is a P -formula, and the following conditions hold:

(1) if (ϕ(c,x), %(x)) ∈ F, then there exists a ∈ A such that A ² ϕ(c,a),
(2) if (ϕ(c,x), %(x)) ∈ F and A ² ϕ(c,a), then for any finite I ⊆ ω and
a1 ⊇ a, there exist (ϕ′(c,x), %′(x)) ∈ F and a2 ⊇ a1 such that A ² ϕ′(c,a2),
%′(a2) ` %(a), and %′(a2) decides P on a1 and gives evidence for ψ on I
and a1.

A recursive expansion family for ψ on A is an expansion family F which
is r.e.

As we mentioned above, the formally Σ0
1 expansion families of [AK] are

equivalent to these recursive expansion families, in the sense that a family
of one kind can easily be converted into one of the other kind.

1. Ranks and expansions. Throughout this section,A is an L-structure
with universe ω and ψ is a recursive infinitary Π2 sentence of the language
L ∪ {P}, as described in §0. Let RM be the set of all P -sentences on A for
which there is no relation P on A such that (A, P ) ² %(a) &ψ. We say that
R is a set suitable for rank 0 if R ⊆ RM and for any P -sentences %, %′ on
A, if %′ ` % and % ∈ R, then %′ ∈ R. The set RM is suitable for rank 0. So is
the set R0 which consists of all P -sentences on A such that for some finite
I ⊆ ω and a1 ⊇ a, there is no P -sentence %′(a2) such that %′(a2) ` %(a) and
%′(a2) decides P on a1 and gives evidence for ψ on I and a1.

Let R be a set suitable for rank 0. Let c be a finite sequence of elements
of A and let %(a) be a P -sentence on A. The R-rank of %(a) over c, denoted
by R(%(a)|c), is defined as follows:

(1) R(%(a)|c) = 0 if %(a) ∈ R,
(2) R(%(a)|c) = α, for α > 0, if for all β < α, R(%(a)|c) 6= β, and

there exist finite a1 ⊇ a and I ⊆ ω such that for any P -sentence %′(a2) on
A such that %′(a2) ` %(a) and %′(a2) decides P on a1 and gives evidence
for ψ on I and a1, and for all existential L-formulas ϕ(c,x) such that A ²
ϕ(c,a2), there exists a′2 such that A ² ϕ(c,a′2) and R(%′(a′2)|c) < α. We say
thata1 and I witness the rank (more precisely, they witness the fact that
R(%(a)|c) ≤ α).

We write R(%(a)|c) =∞ if there is no ordinal α such that R(%(a)|c) = α.
The lemma below gives relations between ranks obtained from different

sets suitable for rank 0.
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Lemma 1.1. Suppose R1 ⊆ R2, where both sets are suitable for rank 0.

(a) If R1(%(a)|c) ≤ α, then R2(%(a)|c) ≤ α.
(b) If R2(%(a)|c) =∞, then R1(%(a)|c) =∞.

The proof of (a) is an easy induction on α, and (b) follows from (a).
The next lemma gives some basic properties of ranks.

Lemma 1.2. Let R be a set suitable for rank 0.

(a) If % and %′ are P -sentences on A and %′ ` %, then R(%′|c) ≤ R(%|c),
if the ranks are ordinals; and if R(%′|c) =∞, then R(%|c) =∞.

(b) If c′ ⊇ c and % is a P -sentence on A, then R(%|c) ≤ R(%|c′), if the
ranks are ordinals; and if R(%|c) =∞, then R(%|c′) =∞.

(c) If R(%|c) = α, then for each β < α, there exists %′ such that %′ ` %
and R(%′|c) = β.

(d) If % is a P -sentence on A, then the following are equivalent :

(i) there is some finite c ∈ A such that R(%|c) = 0,
(ii) R(%|∅) = 0,

(iii) for all c ∈ A, R(%|c) = 0.

The proofs of all of these statements are easy. It is for (a) that we need
the fact that if %′ ` % and % ∈ R, then %′ ∈ R.

It is obvious that for the given structure A and sentence ψ, and any set
R suitable for rank 0, exactly one of the following holds.

C a s e A. There exist c and % such that R(%|c) =∞.
C a s e B. For all c and %, R(%|c) has ordinal value.

The next lemma says that the existence of an expansion family puts us
in Case A.

Lemma 1.3. Let R be a set suitable for rank 0. If F is an expansion
family for ψ on A, with parameters c, then for (ϕ(c,x), %(x)) ∈ F and all
a such that A ² ϕ(c,a), R(%(a)|c) =∞.

P r o o f. Suppose not. Let α be the least ordinal such that for some
(ϕ(c,x), %(x)) ∈ F, there exists a such that A ² ϕ(c,a) and R(%(a)|c) = α.
The expansion family allows us to construct P such that (A, P ) ² ψ& %(a),
so α > 0. Then there exist I ⊆ ω and a1 witnessing the fact that R(%(a)|c)
= α. By the definition of expansion family, there exist (ϕ′(c,x′), %′(x′)) ∈ F
and a2 such that A ² ϕ′(c,a2), %′(a2) ` %(a), and %′(a2) decides P on a1

and gives evidence for ψ on I and a1. By the definition of rank and the choice
of I1 and a1, there exists a′2 such that A ² ϕ′(c,a′2) and R(%′(a2)|c) < α, a
contradiction.

The next lemma says that if our set suitable for rank 0 includes R0 and
we are in Case A, then there exists an expansion family.
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Lemma 1.4. Let R be a set suitable for rank 0, where R0 ⊆ R. Suppose
that for some c and %0(a0), R(%0(a0)|c) = ∞. Let F be the set of pairs
(ϕ(c,x), %(x)) such that ϕ(c,x) is an existential L-formula, %(x) is a P -
formula, there exists a such that A ² ϕ(c,a) and %(a) ` %0(a0), and for all
a′ such that A ² ϕ(c,a′), R(%(a′)|c) = ∞. Then F is an expansion family
for ψ on A.

P r o o f. The fact that F is an expansion family follows easily from the
statement below.

Claim. If R(%(a)|c) = ∞, then for all finite I ⊆ ω and a1, there exist
an existential L-formula ϕ(c,x) and a P -sentence %′(a2) such that A ²
ϕ(c,a2), %′(a2) ` %(a), %′(a2) decides P on a1 and gives evidence for ψ on
I and a1, and for all a′2 such that A ² ϕ(c,a′2), R(%′(a′2)|c) =∞.

P r o o f o f c l a i m. Suppose the statement fails, and take I and a1

witnessing the failure. Let C be the set of triples (a2, %
′(x), ϕ(c,x)) such

that ϕ(c,x) is an existential L-formula and %′(x) is a P -formula such that
A ² ϕ(c,a2),%′(a2) ` %(a), and %′(a2) decides P on a1 and gives evidence for
ψ on Iand a1. Since R0 ⊆ R and R(%(a)|c) =∞, we have %(a) 6∈ R, so %(a)
6∈ R0. Therefore, C 6= ∅. By our assumptions, for each (a2, %

′(x), ϕ(c,x)) ∈
C, there exists a′2 such that A ² ϕ(c,a′2) and R(%′(a′2)|c) is an ordinal. Let
β(a2, %

′(x), ϕ(c,x)) be the least such ordinal. Let α be least such that for
all (a2, %

′(x), ϕ(c,x)) ∈ C, β(a2, %
′(a2), ϕ) < α. Since C 6= ∅, α > 0. Then

I and a1 witness that R(%(a)|c) ≤ α, a contradiction.

Lemma 1.5. Let R be a set suitable for rank 0, where R0 ⊆ R. Then the
following are equivalent :

(1) there exists an expansion family F for ψ on A, with parameters c,
(2) R(>|c) =∞,
(3) there exists %(a) such that R(%(a)|c) =∞.

P r o o f. Lemma 1.2 gives (2)⇔(3). Lemma 1.3 gives (1)⇒(2), and Lemma
1.4 gives (3)⇒(1).

R e m a r k. It follows from Lemma 1.5 that if there exists a set R ⊇ R0

suitable for rank 0 such that R-rank takes only ordinal values, then the same
is true for all sets R ⊇ R0 suitable for rank 0.

Lemma 1.6. Let R ⊇ R0 be a set suitable for rank 0, and suppose R-
rank takes only ordinal values. If A is recursive, then there is a recursive
ordinal bounding the values. In general , there is an ordinal bound in the least
admissible set over A.

P r o o f. We suppose that A is recursive. By the remark above, R0-rank
takes only ordinal values. Then by Lemma 1.1(a), it is enough to show that
there is a recursive ordinal bounding the values for R0-rank. If A is the
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least admissible set, then A is an element of A. By Lemma 1.2(c), the set of
ordinals R0(%|c) is closed downwards, so it is an ordinal, say β. We suppose
β ≥ ωCK

1 , hoping for a contradiction.

C a s e 1: Suppose β = ωCK
1 . Let C be the set of pairs (%, c) such that %

is a P -sentence on A and c is a finite sequence from A. We consider some
formulas in the language of set theory. There exist Σ1 and Π1 formulas,
both elements of A, with parameter A, saying (in the structure (A,∈)) that
(%, c) ∈ C and R0(%|c) = γ. (It is here that we need R0; the existence of
these formulas would not be clear for RM .) By Σ1 replacement, there is a
set B ∈ A such that for all (%, c) ∈ C, R0(%|c) ∈ B. Then B contains all
recursive ordinals, a contradiction.

C a s e 2: Suppose β > ωCK
1 . There exist %0 and c such that R0(%0|c) =

ωCK
1 . Let I and a1 witness the rank. Let C be the set of triples (%(u),a2,
ϕ(c,u)) such that %(u) is a P -formula, %(a2) ` %0, %(a2) decides P on
a1 and gives evidence for ψ on I and a1, and ϕ(c,u) is an existential L-
formula such that A ² ϕ(c,a2). There is a Σ1 formula defining (in (A,∈))
the function F on C where F (%(u),a2, ϕ(c,u)) is the first β such that for
some a′2 ∈ A, A ² ϕ(c,a′2) and R0(%(a′2)) = β. (Here again we need R0.)
By Σ1 replacement, there exists B ∈ A such that B contains all elements of
ran(F ). However, ran(F ) is cofinal in ωCK

1 , a contradiction.

Lemma 1.7. Let R be a set suitable for rank 0. Suppose that R-rank
takes only ordinal values, and α (a recursive ordinal) is the supremum of
the values. Suppose further that

(1) the relation R(%|c) = β is r.e. uniformly in β for β < α,
(2) given %, c such that R(%|c) ≤ β, where 0 < β ≤ α, we can find I

anda1 witnessing the rank.

Then there is a recursive B ∼= A such that for all recursive P , (B, P ) 2 ψ.

P r o o f. Let B be an infinite recursive set of constants, to be used for
the universe of B (we could take B = ω). We determine B from a function
F such that B ∼=F A. The construction proceeds in stages. At stage s, we
will have determined a finite function fs (tentatively part of F ), and we will
have enumerated a finite part δs of D(B) such that fs makes δs true in A.
For each e ∈ ω, we have a requirement

Re : if ϕe = χP , then (B, P ) ² ¬ψ.
We describe the strategy for meeting requirement Re. Let g0 be the

part of fs being protected for higher priority requirements at the stage s
when we start on Re. Say g0 maps b0 to a0. On the assumption that ϕe
may be the characteristic function of a relation P , let %0 be the P -sentence
carrying the information which ϕe has given about P up to stage s. Suppose
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R(%0|a0) = α0. If α0 = 0, there is nothing to do. Suppose α0 > 0, and let I1
and a1 witness the rank. Extend fs to f ′s, adding a1 to the range, and let g1

be the restriction of f ′s such that g1 maps some b1 onto a1. Now, protect g1,
working on requirements of lower priority, until a stage t (if any) at which
we have produced ft and δt such that ft ⊇ g1, ft takes some b2 to a2 ⊇ a1,
the constants mentioned in δt are all in b2, and ft makes δt true in A, and
ϕe has produced %1(b2) such that %1(a2) decides P on a1 and gives evidence
for ψ on I1 anda1. By the definition of rank, there exists a′2 ⊇ a0 such that
A ² δt(a′2) and R(%1(a′2)|c) = α1 for some α1 < α0. Let g2 map b2 to a′2.

We have succeeded in reducing the rank. If α1 > 0, then let g2, b2, a′2,
and %1(a′2) play the role of g0, b0, c, and %0 above. The process continues
until either ϕe fails to force our next move or we have g2n mapping b2n

toa′2n such that R(%n(a′2n)|c) = 0. This takes care of requirement Re. It
is clear that we can meet all of the requirements to produce the desired F
and B.

We shall gather our various lemmas into a single theorem. In order to
keep the statement relatively short, we state the decidability conditions first.

Decidability conditions

C a s e A. Suppose that R(%|c) takes only ordinal values, and α is the
supremum of the values. Suppose further that

(a) the relation R(%|c) = β is r.e. uniformly in β, for β < α, and
(b) given %, c, and 0 < β ≤ α such that R(%|c) ≤ β, we can find I and

a1 witnessing the rank.

C a s e B. Suppose that for some %0(a0) and c, R(%(a0)|c) =∞. Let F be
the set of pairs (ϕ(c,x), %(x)) such that ϕ(c,x) is an existential L-formula,
%(x) is a P -formula, there exists a such that A ² ϕ(c,a) and %(a) ` %0(a0),
and for all a′ such that A ² ϕ(c,a′), R(%(a′)|c) = ∞, and suppose that F
is r.e.

Theorem 1.8. Suppose A is a recursive L-structure and ψ is a recursive
infinitary Π2 sentence in the language L∪{P}. Let R be suitable for rank 0,
where R0 ⊆ R. Then under the decidability conditions above, the following
are equivalent :

(1) for all recursive B ∼= A, there is a recursive P such that (B, P ) ² ψ,
(2) there is a recursive expansion family for ψ on A.

P r o o f. Showing that (2)⇒(1) does not require the decidability condi-
tions. The proof is in [AK]. We prove (1)⇒(2) in the two cases. In Case A,
there is no expansion family, by Lemma 1.5, so we have ¬(2). By Lemma
1.6, there is a recursive bound on the ranks. By Lemma 1.7, under the de-
cidability conditions, there is a recursive B ∼= A with no recursive P such
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that (B, P ) ² ψ, so we have ¬(1). In Case B, Lemma 1.4 yields a specific ex-
pansion family F, and the decidability conditions say that this is a recursive
expansion family.

R e m a r k. In the proof of Theorem 1.8, the assumption that R0 ⊆ R
was only needed in Case B.

The result below is obtained by interpreting Theorem 1.8 in Case A,
where 1 is a bound on the rank. We drop the assumption R0 ⊆ R.

Theorem 1.9. Suppose A is a recursive L-structure and ψ is a recursive
infinitary Π2 sentence in the language L∪{P}. Let R be an r.e. set suitable
for rank 0. Suppose that for all c in A and all P -sentences % on A, we can
find finite I ⊆ ω and a1 in A such that if %′(a2) ` % and %′(a2) decides
P on a1 and gives evidence for ψ on I and a1, then for any existential
L-formula ϕ such that A ² ϕ(c,a2), there exists a′2 such that A ² ϕ(c,a′2)
and %′(a2) ∈ R. Then there exists a recursive B ∼= A with no recursive P
such that (B, P ) ² ψ.

In [V], there are some results related to Theorem 1.9, giving conditions
under which a given recursive structure A has a recursive copy B with no
∆0
α relation P such that (B, P ) ² ψ.

2. Familiar examples. As a first example, we obtain the following
result of Metakides and Nerode [MN].

Theorem 2.1 (Metakides–Nerode). There is a recursive algebraically
closed field of infinite transcendence degree in which no infinite algebraically
independent set is r.e. (The field can be taken to have any desired charac-
teristic.)

P r o o f. Let L be the language of fields, and let A be a recursive field of
infinite transcendence degree (with the desired characteristic). We produce
a recursive B ∼= A such that no infinite independent subset of B is recursive.
Since every infinite r.e. set has an infinite recursive subset, B is the field
we want. Let ψ say of a unary relation symbol P that it is an infinite
algebraically independent set. We can take ψ to be the conjunction of a
recursive infinitaryΠ1 sentence saying that P is independent, and a recursive
infinitary Π2 sentence saying that P is infinite. The idea is to use the fact
that if A ² ϕ(c,b), where ϕ(c,x) is existential (or not), then there is some
b′ in the algebraic closure of c such that A ² ϕ(c,b′).

We shall apply Theorem 1.9, taking R to be RM . Note that %(a) ∈ RM
iff%(a) puts into P elements which are dependent. Since the set of polynomial
equations showing algebraic dependence is r.e., so is RM . Let c ∈ A. Let
N be the number of elements in c. Choose a finite I ⊆ ω such that for any
P -sentence %(a) deciding P on c and giving evidence for ψ on I and c, a
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has at least N + 1 elements d for which %(a) ` P (d). For any L-formula
ϕ(c,x) such that A ² ϕ(c,a), there exists b such that A ² ϕ(c,b) and
b has at most N independent elements (we can choose b in the algebraic
closure of c). Then %(b) ∈ RM . We are now in a position to apply Theorem
1.9, and we obtain the desired B.

As a second example, we obtain a weak version of a result of Goncharov
[G] on “recursive categoricity”. A recursive structure A is said to be recur-
sively categorical if for all recursive B ∼= A, there is a recursive isomorphism
f from A onto B. For a given A, let A∗ = (A1 ∪ A2,A1,A2), where A1

and A2 are copies of A, with disjoint universes A1, A2, respectively, and
there are recursive isomorphisms from A onto A1, A2. There is a recursive
infinitary Π2 sentence ψ saying of a new binary relation symbol P that it
is an isomorphism from A1 onto A2. Note that A is recursively categorical
iff for every recursive B∗ ∼= A∗, there is a recursive relation P such that
(B∗, P ) ² ψ.

Theorem 2.2. Let A be a structure for which the existential diagram is
recursive. Suppose that for each c in A, we can find a such that for any
existential formula ϕ(c,x) such that A ² ϕ(c,a), there exists a′ such that
A ² ϕ(c,a′) and there is an existential formula θ such that A ² θ(c,a) ↔
¬θ(c,a′). Then A is not recursively categorical.

P r o o f. Let A∗ and ψ be as above, and suppose that there are recursive
isomorphisms from A onto A1 and A2. We apply Theorem 1.9, taking R to
be R0. For any c in A∗, any P -sentence % on A∗, and any finite I ⊆ ω and
a in A∗, we can decide, using the existential diagram of A, whether there
exists %′ such that %′ ` %, and %′ decides P on a and gives evidence for ψ
on I and a. From this, it follows that R0 is r.e.

Given c ∈ A∗, we show how to find some finite I ⊆ ω and a in A∗ such
that if %(a′) decides P on a and gives evidence for ψ on I and a, then for
any existential formula ϕ(c,x) such that A∗ ² ϕ(c,a′), there exists a′′ such
that A∗ ² ϕ(c,a′′) and R0(%(a′′)|c) = 0. Let c1, c2 be the parts of c in A1,
A2, respectively. Take a in A1 such that for any existential formula ϕ1 such
that A1 ² ϕ1(c1,a), there exists b1 such that A1 ² ϕ1(c1,b1) but for some
existential formula θ(c1,x), A1 ² θ(c1,a)↔ ¬θ(c1,b1). Take I such that if
%(a′) gives evidence for ψ on a, then % puts c1a into the domain of P . Let
a′ = a′1a

′
2, where %(a′) gives evidence for ψ on a, and a′1, a′2 are the parts

of a′ in A1, A2 (a′1 ⊇ a). Let da2 be the part of c2a′2 which, according to %,
is the P -image of c1a.

It may be that for some existential formula θ, A1 ² θ(c1,a) iff A2 2
θ(d,a2). In this case, %(a′) ∈ R0. Suppose that the existential formulas
satisfied by c1a in A1 match those satisfied by da2 in A2. Let ϕ(c,x) be an
existential formula such that A∗ ² ϕ(c,a′). There are existential formulas
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ϕ1(c1,x1), ϕ2(c2,x2) such that Ai ² ϕi(ci,a′i) and for b′ = b′1b
′
2 such that

Ai ² ϕi(ci,b′i), we have A∗ ² ϕ(c,b′). Take b′1 such that A1 ² ϕ1(c1,b′1)
and if b is the part of b′1 corresponding to a, the existential formulas satisfied
by c1a and c1b1 in A1 do not match. If a′′ = b′1a

′
2, then %(a′′) ∈ R0.

We are in a position to apply Theorem 1.9. We obtain a recursive B∗ ∼=
A∗ with no recursive P such that (B∗, P ) ² ψ. Therefore,A is not recursively
categorical.

3. Examples of arbitrarily large recursive rank. In this section, we
shall show that for arbitrarily large recursive ordinals α, there exist examples
A and ψ such that A is a recursive structure and ψ is a recursive infinitary
Π2 sentence for which RM (>|∅) = α. In each case, the structure A will be
a tree, isomorphic to a subtree of ω<ω, with added unary predicates, and
ψ will say of a new unary predicate P that it is a path. The tree structure
will be given by a predecessor function p, where for the node a at level 0,
p(a) = a. Subtrees are closed under the predecessor function. For each node
a, let l(a) denote the level of a. Our trees grow downwards, so when we say
that c lies below b, we mean that for some n, pn(c) = b. (We allow n = 0
and c = b.)

There are different possibilities for the sentence ψ saying that P is a
path, and the choice of sentence may influence the rank. We shall take ψ to
be the sentence

∧∧
n ψn, for

ψ0 = ∀x1 ∀x2 [δ0(x1) & δ1(x1, x2)],

where
δ0(x1) = P (x1)→ P (p(x1)) and

δ1(x1, x2) = P (x1) &P (x2) & p(x1) = p(x2)→ x1 = x2,

and

ψn = ∃x δn(x), where

δn(x) = P (x) & p(n−2)(x) 6= p(n−1)(x) & p(n−1)(x) = p(n)(x).

In dealing with labeled trees T , it will be convenient to have ranks as-
signed to the nodes. We shall prove that the new ranks agree with RM -ranks,
and then use the new ranks.

Here is the definition of rank for nodes a in a tree T . We write R(a) for
the rank of a.

(1) R(a) = 0 if there is no path through a,
(2) for α > 0, R(a) = α if

(a) R(a) 6= β for any β < α, and
(b) there is a level N such that N ≥ l(a) and for all b below a at

level N , for each finite subtree of T containing b, there is an
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isomorphic subtree such that if b′ is the element corresponding
to b, then R(b′) < α. We say that N witnesses the rank (more
precisely, N witnesses that R(a) ≤ α).

We say that the tree T has rank α if the top element has rank α.

Lemma 3.1. Let A be a labeled tree, let a be a finite sequence from A,
and let a be an element of a such that l(a) is maximal for elements of the
subtree generated by a. Suppose %(a) is a P -sentence on A saying that a and
the elements generated by it are in P (and not putting any other elements
into P ). Then R(a) ≤ α iff RM (%(a)|∅) ≤ α.

P r o o f. For α = 0, the statement is clear. Let α > 0, and suppose the
statement holds for all β < α. We show that if R(a) ≤ α, witnessed by
N , then RM (%(a)|∅) ≤ α, witnessed by I = {0, . . . , N} and the subtree
a1 generated by a. Suppose %′(a2) ` %(a), where %′(a2) decides P on a1

and gives evidence for ψ on I and a1, and A ² ϕ(a2), where ϕ is exis-
tential. Let b be an element of a2 at level N below a, say b is first in the
sequence a2. Then A ² ∃uϕ(b,u). There is a finite subtree b containing
a2 and any additional witnesses needed to make ∃uϕ(b,u) true in A. By
hypothesis, there is a subtree b′ isomorphic to b such that if b′ is the ele-
ment of b′ corresponding to b, then R(b′) < α. Let a′2 be the sequence in
b′ corresponding to a2. We have A ² ϕ(a′2). Let b∗ be the subtree gen-
erated by b′ and let %∗(b∗) say that the elements of b∗ are all in P . By
the induction hypothesis, we have RM (%∗(b∗)|∅) ≤ R(b′), and by Lemma
1.2, RM (%′(a′2)|∅) ≤ R(%∗(b∗)|∅), so R(%′(a′2)|∅) < α. Therefore, I and a1

witness that RM (%(a)|∅) ≤ α.
Now, suppose RM (%(a)|∅) ≤ α, witnessed by I = {0, . . . , N} and a1.

We may assume that N ≥ l(a). We show that R(a) ≤ α, witnessed by
N . Let b lie below a at level N , and let b be a subtree containing a1 and
b such that l(b) is maximal in b. Let %′(b) ` %(a), where %′(b) decides
P on a1, putting into P just the elements p(n)(b). Let ϕ(b) be an open
formula describing the subtree b. By hypothesis, there exists b′ such that
A ² ϕ(b′) and RM (%′(b′)|∅) < α. Then b′ is a subtree isomorphic to b.
By the induction hypothesis, if b′ is the element corresponding to b, then
R(b′) ≤ RM (%′(b′)|∅). Therefore, N witnesses that R(a) ≤ α.

The next result says that for each recursive ordinal α, there is a recursive
labeled tree T such that if a is the top node and %(a) is the P -sentence on
T putting just a into P , then RM (%(a)|∅) = α.

Theorem 3.2. For each recursive ordinal α, there is a recursive labeled
tree T with rank α.

P r o o f. The proof will have the following organization. Lemma 3.3 be-
low says that from a tree with certain abstract features, we can derive a
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tree having rank α. We then concentrate on producing a tree having the
abstract features called for in the lemma, and such that the derived tree is
recursive.

Lemma 3.3. Let P be a tree, isomorphic to a subtree of ω<ω, with each
node carrying a label of the form β for β ≤ α or (β, γ) for γ < β ≤ α.
Suppose that the tree satisfies the following conditions:

(1) for any node a with label 0 or ( , 0), the subtree consisting of all
nodes under a has only finitely many levels,

(2) if 0 < β < α, then for any node a with label β or ( , β), a has
successors with labels β or ( , β),

(3) if 0 < β < α, then for any node a with label β or ( , β), there is
a level N ≥ l(a) such that for all b at level N below a, if b has label β or
( , β), then for all n, there is some b′ such that p(b′) = p(b), b′ has label γ
or ( , γ) for some γ < β, and the first n levels under b are copied under b′

in such a way that labels δ stay δ if δ ≤ γ and change to (δ, γ) if γ < δ,
and labels ( , δ) stay ( , δ) if δ ≤ γ and become ( , γ) if δ > γ,

(4) if 0 < γ < α, then there exists n such that if δ < γ, then under a
node with label δ or ( , δ) there can be no chain of ≥ n nodes with labels
β or (β, ) for β > γ,

(5) the top node has label α.

Let T be obtained from P by dropping the labels in favor of unary rela-
tions Uβ for β ≤ α, where a ∈ Uβ in T iff a had label β or (β, ) in P .
Then T has rank α.

P r o o f. First, we show that for each a with label β or ( , β), R(a) ≤ β.
The proof is by induction on β. For β = 0, the statement follows from (1).
Let β > 0, and suppose the statement holds for γ ≤ β. If a has label β or
( , β), then by (3) and the induction hypothesis, R(a) ≤ β. Next, we show
that for each a with label β or ( , β), R(a) 6= γ for any γ < β. For γ = 0,
if a has label β or ( , β) for β > 0, then by (2), R(a) 6= 0. Suppose γ > 0
and the statement holds for δ < γ. Let a have label β or ( , β), and suppose
R(a) = γ, where γ < β, hoping for a contradiction. Say N witnesses the
rank. By (2), there is some b below a at level N such that b has label β
or ( , β). By (4), we have n such that a node b′ with label δ or ( , δ) for
δ < γ cannot have under it a chain of ≥ n elements with labels of the form
ν or (ν, ) for ν > γ. Applying (2) again, we get a chain of n nodes from
b down to some c, all with labels of the form β or (β′, β) for β′ > β. Since
N witnesses that R(a) = γ, there is a copy of this chain, say from b′ to c′,
where R(b′) = δ < γ. The labels on the copied chain are of the form (β, )
or (β′, ) for β′ > β. However, by the induction hypothesis, the label on b′

cannot be (β, ) or (β′, ). We have shown that the rank of a node in T is
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β if the label is β or ( , β). By (5), the label on the top node of P is α, so
T has rank α. This completes the proof of the lemma.

Now, to prove Theorem 3.2, it is enough to produce P satisfying the five
conditions in Lemma 3.3, such that the derived tree T is recursive. For each
β, let Tβ be a tree such that the top node has label β, and for any γ < β
and any node a with label γ, a has infinitely many successors with label δ
for each δ ≤ γ, and every successor of a has one of the labels δ ≤ γ. We shall
arrive at the desired tree P through an infinite sequence of approximations
Ps, for s ∈ ω.

Each node a ∈ Ps is identified with a task. At stage s, if we are working
on task a ∈ Ps, we break the task down into infinitely many sub-tasks,
identified with triples (a, b, n), where a, b ∈ Ps and n ∈ ω. If, at stage t, we
are working on a sub-task (a, b, n), then we will normally extend the tree,
giving Pt+1 infinitely many nodes which were not in Pt. These new nodes
give rise to new tasks.

We pause here to describe a scheme for making sure that all of the tasks
receive attention. Fix a recursive list of the elements of ω<ω, such that ∅
appears first, and σ appears before any successor σn. We shall attach the
tasks to elements of ω<ω, and visit the nodes of ω<ω in order, attending
to the associated tasks as needed. In carrying out certain tasks, we make
it unnecessary to do certain others. To start off, we list the elements of P0

(representing tasks) so that the top node appears first and no node appears
before its predecessor, and we assign these in order to the elements n at level
1 of ω<ω. When we attend to the task associated with σ ∈ ω<ω, thereby
creating new tasks, we shall form a list of the new tasks and attach these to
the elements σn ∈ ω<ω, in order. Thus, although we never have the full list
of tasks, our partial list always gives at least the next task to work on.

At stage s, having attended to finitely many tasks, we determine a tree
Ps, a list Ls of tasks still needing attention, and a set Ns of notes restraining
certain choices of levels and elements. We also determine a finite part of the
diagram of the final structure, but we shall put off the description of this.
We now describe Ps, Ts, and Ns. Let P0 = Tα, let L0 be the list (of elements
of P0) described above, and let N0 = ∅. Suppose we are at stage s+1, having
determined Ps, Ls, and Ns at stage s. We work on the first task from Ls.

C a s e 1: Suppose the task is represented by a, where a ∈ Ps. The node
a will have a label of the form β or ( , β) in Ps. If β = 0, there is nothing
to do. We let Ps+1 = Ps, Ls+1 = Ls − {a}, and Ns+1 = Ns. Now, suppose
β > 0. We choose a level L(a), where L(a) ≥ l(a) and L(a) is also below
any levels mentioned in Ns. The levels mentioned in Ns are those chosen
before and those with elements labeled by pairs. We record in Ns+1 the
fact that L(a) has now been chosen. In Ns, we have notes about elements
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as well as about levels, and we put into Ns+1 a note that we have worked
on a. For each node b under a at level L(a) such that b has label β, we shall
have sub-tasks (a, b, n) for all n ∈ ω. We put these into a list and attach
them to the elements of ω<ω which are successors of the one to which a was
attached. For any b′ between a and b, the task associated with b′ is made
unnecessary. Then Ls+1 consists of the remaining elements of Ls, plus the
new tasks (a, b, n). We let Ps+1 = Ps.

C a s e 2: Suppose the task is represented by a triple (a, b, n), where a, b ∈
Ps, n ∈ ω. If the label on a is β or ( , β), then b will have label β. Let τn
consist of the first n levels under b in Ps. We shall choose a node b′ such
that p(b) = p(b′) and b′ has label δ = g(β, n), where g(β, n) is a recursive
function to be described below. We first fix a recursive list of pairs (β, n) for
0 < β ≤ α, n ∈ ω. Then g(β, n) is defined as follows:

(1) if β = δ + 1, then for all n, g(β, n) = δ,
(2) if β is a limit ordinal, the notation we have in mind for β picks out

an increasing sequence (βk)k∈ω with limit β. Then g(β, n) = βk for the first
k such that k ≥ n and we do not have βk ≤ g(%,m) ≤ β for any pair (%,m)
that comes before (β, n) on the list.

The following lemma is not difficult to prove. It has been used (without
being explicitly stated) in [AJK].

Lemma 3.4. If 0 < γ < α, there are only finitely many pairs (β, n) such
that g(β, n) < γ < β.

Let us return to the task (a, b, n). We choose b′ such that b′ has label
δ = g(β, n), p(b′) = p(b), and b′ is not one of the elements that Ns tells us to
avoid. (These will include the nodes previously chosen, those corresponding
to tasks previously worked on, and certain other nodes related to an enu-
meration of the diagram of our final structure.) Having chosen b′, we record
the choice in Ns+1.

We copy τn under b′, changing some of the labels. We change the label
δ on b′ to (β, δ). If c in τn corresponds to c′ in the copy, then

(1) a label % on c becomes (%, δ) on c′ if % > δ, and stays % if % ≤ δ
(necessarily, %, δ ≤ β),

(2) (%, σ) on c becomes (%, δ) if σ ≥ δ, and stays (%, σ) if σ ≤ δ (neces-
sarily, %, σ ≤ β).

Now, we may add further nodes under the copy τ ′n of τn. Let c′ be
terminal in τ ′n. If c′ has label ( , δ) or δ, then we hang under c′ a copy of
Tδ, with c′ at the top. Note that if δ = 0, this means adding nothing.

We have said how to form the tree Ps+1, and what to record in Ns+1.
There are new tasks corresponding to the new nodes. We make a list of
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these, making sure as always that no node appears before its predecessor
if that is new, and we attach the new tasks to elements of ω<ω which are
successors of the element associated with (a, b, n). Let Ls+1 be the list of
tasks, with (a, b, n) removed and the new nodes added.

Let Pω be the “limit” of the labeled trees Ps. The tree Pω is the union
of the trees Ps, and the label on any node in Pω is the last one it took in
a Ps. (Note that the label on a node is changed at most once, so there is a
last label.) We put unary relations Uβ on Pω to form T as described above.

We must make T recursive. At any stage, we will have enumerated only
a finite part of the diagram. We must not change the label on a node a, say
from γ to (β, γ), after we have put a sentence Uγ(a) into the diagram of T .
The only time we change the label on a is when we choose a or some node
above it as a place to put a copy. If at stage s, we add a sentence to the
diagram mentioning some element for the first time, then we put into Ns a
note not to choose this element or any above it as a place to put a copy. It
is clear that in this way, we make the structure T recursive.

Lemma 3.5. Suppose a, b ∈ Pω, where b lies below a. If a has label β,
then b has label β′ or (β′, ) where β′ ≤ β. If a has label (β, γ), then b has
label γ′, where γ′ ≤ γ, or (β′, γ′), where β′ ≤ β and γ′ ≤ γ.

P r o o f. It is enough to show by induction on s that the statements hold
in Ps. The statement holds for P0. Suppose it holds for Ps. The only change
from Ps to Ps+1 comes when we copy some τn from under a node b with
label β to a location under some b′ with label γ < β, and then develop the
copy τ ′n. The changes in labels and the labels on the new part of the tree
below τ ′n keep the statement true.

We must show that the ranks behave as they should. To do this, it is
enough to verify the properties from Lemma 3.3.

Property (1). If a has label 0 or ( , 0), then there are only finitely
many levels with nodes below a.

This is true in P0 and in each Ps. If it fails in Pω, then there must be
some s such that a maximal chain in Ps of length ≥ 2 is extended in Ps+1.
Say the chain from a to b has labels 0 or ( , 0), where b is terminal in Ps. We
could only extend the chain by putting a copy under b. However, we cannot
choose b, since p(b) has a label 0 or ( , 0), so the node c with p(c) = p(b)
also has label 0 or ( , 0), and there was no task involving such a c.

Property (2). If 0 < β < α, then for any node a with label β or ( , β),
a has successors with labels β or ( , β).

This is true in P0 and all Ps. Any node with a label of the form β or
( , β) for β > 0 has successors with labels of the form β or ( , β).
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Property (3). If 0 < β < α, then for any node a with label β or ( , β),
there is a level N ≥ l(a) such that for all b at level N below a, if b has label
β or ( , β), then for all n, there is some b′ such that p(b′) = p(b), b′ has
label γ or ( , γ) for some γ < β, and the first n levels under b are copied
and put under b′ in such a way that labels δ stay δ if δ ≤ γ and change to
(δ, γ) if γ < δ, and labels ( , δ) stay ( , δ) if δ ≤ γ and become ( , γ) if
δ > γ.

We acted on certain nodes to make this true and crossed off those for
which it was unnecessary.

Property (4). For each γ such that 0 < γ < α, there exists N such
that if δ < γ, then under a node with label δ or ( , δ) there can be no chain
of ≥ N nodes with labels β or (β, ) for β > γ.

The function g was defined so that there are only finitely many pairs
(β, n) such that γ < β and g(β, n) < γ. Take N greater than any n in these
pairs. Suppose that for some node a with label δ or ( , δ), there is a chain
of length ≥ N below a in which all nodes have labels β or (β, ), for β > γ.
Suppose s is first such that Ps includes such a chain. If a has label δ or
( , δ), then no node below a can have label β, but copying could give rise
to nodes with labels (β, ). Pairs only occur in copied sections of the tree,
or at the tops of such.

Say at stage s, we copied some σ from under a node e, extended the copy
to form σ′, and put σ′ under e′, and suppose b is in the copy σ′ (possibly
b = e′). Then p(e) = p(e′), and e′ lies at or above a. The full chain between b
and c must have been in σ′, since if some d between b and c were terminal in
σ′, then in Ps+1, the tree under d would be a copy of Tδ′ for some δ′ ≤ δ, and
later developments would leave d with a label % ≤ δ or (%′, %) for %′, % ≤ δ.
Now, σ consists of ≥ N levels. Since g(β, n) ≥ γ for n ≥ N , we could not
have chosen the node e′ unless it had label γ′ ≥ γ. Let a∗, b∗, c∗ be the nodes
in σ corresponding to a, b, c in σ′. Since γ′ > δ, a∗ must have label ( , δ).
The labels on the chain between b∗ and c∗ must be the same as for the chain
from b to c. In modifying the labels when we pass from σ to σ′, we could not
give b a label (β, δ′) for δ′ < γ unless b∗ had a label β or (β, δ′) in σ. This
contradicts the assumption that s is the first stage at which we introduced
a chain of ≥ N elements with labels β or (β, ) under a node with a label
(β, δ) for δ < γ.

Property (5). The top node has label α.

We made this true in P0 and never changed the label.

We have now shown the existence of a tree with the features called for
in Lemma 3.3, such that the derived tree T is recursive. This completes the
proof of Theorem 3.2.
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