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The S'-CW decomposition of
the geometric realization of a cyclic set
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Wojciech Gajda (Poznan)

Abstract. We show that the geometric realization of a cyclic set has a natural,
5’1—equivauviant7 cellular decomposition. As an application, we give another proof of a
well-known isomorphism between cyclic homology of a cyclic space and St equivariant
Borel homology of its geometric realization.

0. Introduction. It is a rudimentary fact in simplicial topology that
the geometric realization of a simplicial set is a CW complex. In this paper,
we prove a similar result in case of a cyclic set. A cyclic set X, is a simplicial
set together with actions of cyclic groups Z,.1 on the sets of n-simplices.
The actions are subject to compatibility relations with the simplicial struc-
ture of X, (cf. [4] and [3]). The geometric realization |X.| of a cyclic set
has a canonical circle action (cf. [3], Proposition 1.4). Let Fix denote the
fixed point set of the action. Our first result is the following.

THEOREM 1. The geometric realization of a cyclic set X, is an S*-CW
complez.

More precisely, in Section 2 below, we construct a filtration of | X,|:

(0.1) Fix CRCF C...C|X.| =] F,

n=0
which is the skeletal filtration of an S'-CW complex in the sense of [13],
p- 9. Our construction is a cyclic version of the cellular decomposition of
the geometric realization of a simplicial set. The space F),, for n > 1, is
obtained from F,,_; by attaching S!-equivariant cells S'/Z,, x A™. The
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0-cells of the CW complex |X,| consist of fixed points and free S'-orbits.
The last fact makes the filtration (0.1) inconvenient for a purpose we have in
mind: calculation of equivariant homology of | X | by spectral sequences. To
remedy the disadvantage, we construct a space |EX.| which is S1-homotopy
equivalent to |X,.| and has a natural filtration {G,, },,>¢ similar to (0.1) but
for which Gy = Xy x St.

For any S'-equivariant homology theory k% 1, the filtration {G}, },,>0, in a
standard manner, yields a spectral sequence which converges to h? ' (|IEX.])
=nS (|X«|). We first consider the spectral sequence in Borel homology. In
this case, one easily obtains the following known fact.

THEOREM 2 ([3], [9]). If X. is a cyclic space and R is a commutative
ring with 1, then homology groups H.(ES! x g1 |X,|,R) and HC.(R[X.])
are naturally isomorphic.

Here HC, (R[X.]) stands for cyclic homology of the cyclic module R[X,],
(cf. [8], Chap. 6).

We conclude the paper with remarks on Bredon homology of the geo-
metric realization of a cyclic set. The filtration {G), },>0 leads to a spectral
sequence in S'-equivariant Bredon homology whose E! term seems to be
accessible.

1. Notation and terminology. In the sequel, we use Section 1 of [3]
as a basic reference for the theory of cyclic spaces. In particular, by a cyclic
space we mean a functor X, : A°? — Top, where A denotes the cyclic
category of A. Connes. As usual, d; and s; are the simplicial faces and
degeneracies of X, i.e., d; = X.(0;) and s; = X, (0;) where 9; : [n—1] — [n]
and o; : [n] — [n—1] are the standard simplicial operators. We assume that
the underlying simplicial space of X, is proper, i.e., all degeneracy maps
are cofibrations. We denote by t, : X,, — X,, the value of X, at the cyclic
operator 7, : [n] — [n] in A which generates Z,,11 = Auts([n])°P. We
denote by s, : X,,_1 — X,, the extra degeneracy map which is by definition
trsg = X« (oo7y). It follows from relations in A that s(X,,) = ;g 8i(Xn—1)
is a Zpy1-subspace of X,,. Finally, we identify the fixed point set Fix of
the canonical S'-action on |X,| with the equalizer of the degeneracy maps
S0,81 : Xo — X1 (cf. [6], p. 145), i.e., we have

(1.1) Fix = {z € X : soz = sy = t150x}.

2. The cellular decomposition

THEOREM 1. The geometric realization of a cyclic set X, is an S*-CW
complez.
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Proof. We will use coends of functors C°P x C' — Top, where C is
a subcategory of A. Basic properties of these coends are summarized in
Section 1 of [6]. For the geometric realization of X, we have

21) X = [ XoxA"= [ [ X, xHomu([n], [m])x A"

[n]leA [n]€A [m]eA

= [ Xmx [ Homa(n],[m]) x A"
[m]eA [n]leA

= [ Xpx[Homu(s,[m)]= [ Xnx(S'xA™).
[m]eA [m]eA

The cyclic group Z,, 41 acts on the m-simplices of the cocyclic space S x A™
of the last coend by the formula

—277in
, U,

(2.2) T (2, U, Uty « .y Upy) = (2z€ ey Uy U )

where (2, ug, U1, ..., Uy) € St x A™ (cf. [3], Proposition 1.4(iii)). Note that
one can use the last coend in (2.1) to define the S'-action on | X,|. In what

follows, we will also use another action of Z,, 11 on S L' x A™ which is given
by

(23) Tm(Z,’LL[),ul, cee aum) = (Zwm+17u1) ceey UmuUO)a

where wy,11 = exp(—2mi/(m + 1)). Let f,, : St x A™ — S! x A™ be
defined by

(2.4) fm(2z,up, U1y .oy Uy) = (zw,lfﬁ_)l,u(),ul, ey Um),

where [(u) = ug + 2u; + ...+ (m + 1)uy,. It is straightforward to check
that f,, is an equivariant map from the Z,,;1-space (2.2) to the Z,,1-
space (2.3) and that it induces a homeomorphism of Z,,i-orbit spaces. In

order to construct an equivariant, cellular decomposition of | X.|, we use the
canonical filtration of the coend (2.1) (cf. [6], pp. 146-147). We have

f X X (ST x A™) = U F,,
[m]eA

n>—1

where F_; = Fix and the spaces F},, for n > 0, are defined by the pushout
diagrams

. incl.
Fix xSt =5 Xy x 8!

(2.5) [ proi. |

Fix — Fy
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$(Xn) Xz, (S' X A" U X, Xz, (S x94A") I F,y

(2.6) l l
X Xz ., (St x A") — F,

n—+1

The attaching map 7, in (2.6) is induced by relations in A. For a standard,
inductive argument which shows that 7, is well defined, we refer the reader to
[7], proof of Lemma 1. Using the maps (2.4), one obtains from (2.6) a similar
pushout square with the Z,,-action (2.2) replaced by the action (2.3). We
conclude that there exists a filtration

[e.e]
(2.7) Fix CR CF C...C|X,| =[] Fn.
n=0

The space F,, is obtained from F),,_; by glueing to it a number of spaces
Znt1/Zk X z,,, (ST x A™) = S' x4, A™ (orbit space in the action (2.3)),
one space for any orbit [z] € (X,\s(Xy))/Z,+1, where Z = stabg, ().

Attaching maps of the glueing are defined on S* xz,_ OA™. Note that
passing to the first barycentric subdivision of A™, one can obtain F,, from
F,,_1 by attaching to it standard equivariant cells S*/Z,, x A™. It follows
that | X,| is an S'-equivariant CW complex whose n-skeleton is F},. =

By (2.5) we have Iy = FixII(X,\ Fix) x S!, i.e., O-dimensional cells of
the equivariant cell decomposition of |X,| consist of fixed points and free
Sl-orbits. This fact makes the filtration (2.7) inconvenient for computing
equivariant (co)homology of |X,| by spectral sequences. Our next aim is
to construct a space which is S'-homotopy equivalent to |X.| and has a
filtration similar to (2.7) but whose 0-th level consists of free orbits. The idea
is to ignore degeneracies in the coend (2.1). Let Ag,ce be the full subcategory
of the cyclic category A generated by cofaces 0; and isomorphisms.

DEFINITION 1. For a cyclic space X, define a new cyclic space EX, to
be the coend
EX.= [ Xup xHoma(,[m]).
[m]€Asace
Let g, : EX, — X, be the projection map induced on coends by the
inclusion Agce C A. Then g, is a cyclic map and therefore its geometric
realization ¢ = |q,| is an S'-equivariant map (cf. [3]). Note that

EX. = [ Xpx(S'xA™).
[m]€Atace

Let {Gp}n>0 be the coend filtration of |[EX,| (cf. [6], pp. 146-147). We
have

(2.9) GoCGi C...ClEX,|= ]G,

n=0
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Go = X x St and the space G,,, for n > 1, is defined by the pushout square

Xp Xz, (ST x0A™) — Gpy

J

Xn XZn+1 (Sl X An) E— Gn
PROPOSITION 1. The S'-map q : |[EX.| — |X.| is a homotopy equiva-

lence and it induces homotopy equivalences on all fixed point sets.

Proposition 1, Theorem 1 and the equivariant Whitehead theorem (cf.
[13]) give the following.

COROLLARY 1. If X, is a cyclic set, then the map q is an S*-homotopy
equivalence.

Proof of Proposition 1. Step 1. First we show that ¢ is an ordi-
nary homotopy equivalence. To achieve this we resolve X, by the two-sided
bar construction B, (F, F, X,) as in [8], proof of Theorem 5.12. Here F' de-
notes the monad on the category of simplicial spaces defined by the free
cyclic space functor (cf. [8], Definition 4.3). Recall that B, (F, F, X,.) is a sim-
plicial cyclic space whose space of n-simplices is the cyclic space F*"t1 X, =
F(...F(FX)...). and whose simplicial faces and degeneracies are defined
using structure maps of the cyclic, crossed simplicial group C, and the cyclic
space X,. There exists a map of simplicial cyclic spaces ¢, : B.(F, F, X)) —
X, whose geometric realization ¢ : |B.(F,F, X,)| — |X,| is a homotopy
equivalence. One can adapt the proof of the last statement (cf. [14], Theo-
rem 9.10) to show that €, induces an equivalence |[EB,(F, F, X,)|— |EX.|.
By commutativity of coends |EB,(F, F, X,)|=|n— EF""1X,| and we see
that it suffices to show that ¢ is an equivalence for the free cyclic space F'X,.
In this case, however, we have |FX,|=5"x|X,]| (cf. [8], Theorem 5.3), and
by definition |EF X, |= S x|/ X.||, where || X.|| is the realization of the sim-
plicial space X, without using degeneracies (cf. [16], Appendix A). It is easy
to check that under these identifications ¢ becomes a product of idg: and
the equivalence || X || — |X| from [16], Proposition A.1. This proves that g
is an equivalence in the free case and therefore in general.

Step 2. To complete the proof we show that ¢ induces equivalences on all
fixed point sets. Since EXy = Xo, (1.1) implies that |EX, |5’ = |X,|5". To
check that the map ¢%* : |EX,|?* — | X.|?*, for k > 2, is an equivalence, we
use edgewise subdivisions of cyclic spaces (cf. [1], Section 1). Let sdy X, de-

note the kth subdivision of X, and let sdf kX, be the Azp—space whose space
A
k(’§1+1)—1'

same morphisms and relations as A except for the relation 777! = id which
is replaced in A, by 7"t = id (cf. [1], Definition 1.5). There exists a

of n-simplices is Sdf X, =X Here Ay denotes a category with the
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natural homeomorphism Dy, : |sdy X.| — | X.| (cf. [1], Lemma 1.1). Using
relations in A and A, one can check that Dj induces a homeomorphism
|sdZ* X,| — | X.|?* which we abusively also denote by Dj. As in the cyclic
case, for a A}P-space Y;, we define a new space EjY; to be the coend

EY, = [ Y x Homy, (%, [m]).

[m} eAk,face

Here Ay face denotes the subcategory of A; generated by the cofaces 9; and
isomorphisms. Let g : |ExYx| — |Yi| be the geometric realization of the
projection map induced on coends by the inclusion Ay tace C Ax. An argu-
ment similar to the one given in the first part of the proof shows that ¢y is
an equivalence. In Step 1, one has to replace A by A and F by a monad
given by the free A P-space (cf. [8], Definition 4.3, where for G, we take the
crossed simplicial group of the category Ag). A link between the maps ¢Z*
and g is provided by the commutative diagram

BX.|7 x5
T Dy
(2.10) sdZ* EX, | [ 2.

|
|Esd? X,| 2% [sdZ* X, |.

The identification on the left side of (2.10) follows from an equality of spaces
of m-simplices

sd?* EX,, = Epsdf* X,,,
which one checks easily using relations in A and Ay. Consequently, ¢Z* is
an equivalence, which finishes the proof. m

3. Applications to equivariant homology

THEOREM 2. If X, is a cyclic space and R is a commutative ring with 1,
then there exists a natural isomorphism

H,(ES!' x¢1 |X.|;R) — HC,(R[X,]).
Proof. In what follows we assume that X, is a cyclic set. Our argument

extends to cyclic spaces by a standard use of singular chains (cf. [8], proof
of Theorem 5.9). By Corollary 1, we have

ES' xg1 |X.| 2 ES' xg1 [EX.|= [ Xpx(BES'x A™),
[m]eAface

where ES! x A* is a cocyclic space obtained from S' x A* by applying the
Borel construction ES! x g1 (—) degreewise. Let {G},},>0 be the canonical
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filtration of the last coend, i.e.,

[ Xwx(BES'xA™) =] G,
[m]eAface n=0

where G} = X x ES! and, for n > 1, G, is defined by a pushout square

Xp Xz, (ES*x0A™) — G4

(3.1) | |
X, Xz, (EStx A" — G

n+1

Using maps (2.4) from the proof of Theorem 1, we may choose for ES! in
(3.1) the space EZ, 1 with its standard Z,,;1-action. As in the case of
pushouts (2.6) this changes the attaching maps. The filtration {G) },>0
yields a spectral sequence in homology which converges to

H,(ES' xs1 |[EX,|;R) = H.(ES" x5 | X.|; R).
The E' term of the sequence is
(32) Bpm
=Hyym(EZy1 Xz, (Xn X A"),EZ, 11 Xz
>~ o (Zng1, CR(X, x A", X,, x OA™)),

where the latter is the hyperhomology of Z,, 11 with coefficients in cellular
R-chains of the CW pair (X,, x A", X,, x 9A™). The homotopy invariance
of group hyperhomology (cf. [2], Proposition 5.2) implies that the last group
in (3.2) is isomorphic to the homology group H,,(Z,+1, R[Xy]). The Z,41-
module structure on the free R-module R[X,,] is induced by the Z,, -action
on X,, accompanied by the sign (—1)".

The naturality of the two isomorphisms which we used above to identify
Erle with group homology implies that the spectral sequence of the filtra-
tion {G] },>0 coincides with the spectral sequence from [8], Theorem 6.9,
which converges to HC,(R[X.]). m

(X, x DA™); R)

n+1

We conclude the paper with some remarks on the spectral sequences
induced by the coend filtration (2.9) in S'-equivariant Bredon homology
and RO(S')-graded cohomology.

For the definition and basic properties of the Bredon homology groups
HS (X, A; M), where G is a topological group, (X, A) is a G-CW pair, and
M : hO(G) — Ab is a functor with values in abelian groups, we refer the
reader to [18] and [5]. Here hO(G) denotes the homotopy category of the
orbit category of G. Recall that on orbits one has

61 - f M(G/H) it =0,
(3.3) H(G/H; M) = {0 otherwise,
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and that the Bredon homology HY(—; M) on the category of finite G-CW
complexes is uniquely determined by its coefficient system M.

PROPOSITION 2. If X, is a cyclic set and M : hO(S*) — Ab is a co-
eﬁifient system, then there exists a spectral sequence which converges to
H? (|X.|; M) and whose E' term is

n+m

where M, (—) = M(S* X z,., (=)) is the restriction of M to orbits of Z,41.

Bl = HI7H (X, x A", X, x DA™ M,,),

Proof. The filtration (2.9) induces a spectral sequence in Bredon homol-
ogy which converges to HS (|EX.|; M) = Hfl(|X|;M) (cf. Proposition 1).
The E' term of the sequence is

(3.4) B!, = HS, (X Xz, (S X A™), X x5z, (5" x 0A™); M),

n+m
where Z,, 11 acts on S! x A" by the formula (2.3). Since by (3.3) the functors

HS' (8! Xz (—); M) and H*Z"“(—;Mn) have the same effect on orbits of
Zn+1, the uniqueness of Bredon homology implies that the group (3.4) is

isomorphic to HZ7H (X, x A", X,, x A", M,,). =

n+m

Remark 1. The spectral sequence from Proposition 2 can be treated
as a cyclic version of a sequence constructed by G. Segal for a simplicial
space in any (co)homology theory (cf. [15], Proposition 5.1). In our case,
however, the first differential

d717,,m : Hf—ﬁ;bl (XTL X Aann X aAnaMn)
— HZ" (Xn—l X Anil,Xn_l X 8An71;Mn_1)

n+m—1
is more difficult to handle than its simplicial counterpart. Its complexity is
caused, in part, by the fact that the Bredon homology groups H kZ AT,
0A™; M,,) have torsion for many k < n. To see this one identifies the Z,, -
space A"/OA™ with the one-point compactification S¥» of the reduced,
regular representation V,, of Z, 1. If M is the constant coefficient system
with value Z, then

HP™ 0 (A" 0A™ Myy) = Hy(SV" [ Zni1; 7).

Now, one can use Kawasaki’s calculation of the integral (co)homology of
generalized lens spaces (cf. [10]) to find that the homology of the orbit space
SVn /Z, 11 has torsion in half of the dimensions. For more general coefficient
systems one can use the results of S/lominiska on Bredon cohomology of
spheres in representations (cf. [17]).

Remark 2. Let Hj(X) (G a compact Lie group) be the RO(G)-graded
cohomology of a based G-space X with coefficients in the Burnside ring
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functor (cf. [12]). For a cyclic set X, the coend filtration (2.9) induces a
spectral sequence in the RO(S!)-graded cohomology whose E! term is of
the form
Hy (X AS™) =HG (X)),
where 4+ denotes a disjoint base point and « is a representation of Z, 1.
The spectral sequence reduces calculation of H, (| X.|) to RO(Z,,41)-graded
cohomology of the Z,1-set X,,, which seems to be accessible (cf. [11],
Section 2, where HF (S°%) and Hy (Z,5) are given, for a prime number p).
We will elaborate on the last two remarks in a forthcoming paper.
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