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The S1-CW decomposition of
the geometric realization of a cyclic set
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Wojciech Ga j d a (Poznań)

Abstract. We show that the geometric realization of a cyclic set has a natural,
S1-equivariant, cellular decomposition. As an application, we give another proof of a
well-known isomorphism between cyclic homology of a cyclic space and S1-equivariant
Borel homology of its geometric realization.

0. Introduction. It is a rudimentary fact in simplicial topology that
the geometric realization of a simplicial set is a CW complex. In this paper,
we prove a similar result in case of a cyclic set. A cyclic set X∗ is a simplicial
set together with actions of cyclic groups Zn+1 on the sets of n-simplices.
The actions are subject to compatibility relations with the simplicial struc-
ture of X∗ (cf. [4] and [3]). The geometric realization |X∗| of a cyclic set
has a canonical circle action (cf. [3], Proposition 1.4). Let Fix denote the
fixed point set of the action. Our first result is the following.

Theorem 1. The geometric realization of a cyclic set X∗ is an S1-CW
complex.

More precisely, in Section 2 below, we construct a filtration of |X∗|:

(0.1) Fix ⊆ F0 ⊆ F1 ⊆ . . . ⊆ |X∗| =
∞⋃

n=0

Fn,

which is the skeletal filtration of an S1-CW complex in the sense of [13],
p. 9. Our construction is a cyclic version of the cellular decomposition of
the geometric realization of a simplicial set. The space Fn, for n ≥ 1, is
obtained from Fn−1 by attaching S1-equivariant cells S1/Zm × ∆n. The

1991 Mathematics Subject Classification: Primary 55N91; Secondary 55N20, 55N25,
54H15.

Key words and phrases: cyclic set, S1-CW complex, equivariant homology theory.

[91]



92 Z. Fiedorowicz and W. Gajda

0-cells of the CW complex |X∗| consist of fixed points and free S1-orbits.
The last fact makes the filtration (0.1) inconvenient for a purpose we have in
mind: calculation of equivariant homology of |X∗| by spectral sequences. To
remedy the disadvantage, we construct a space |EX∗| which is S1-homotopy
equivalent to |X∗| and has a natural filtration {Gn}n≥0 similar to (0.1) but
for which G0 = X0 × S1.

For any S1-equivariant homology theory hS1

∗ , the filtration {Gn}n≥0, in a
standard manner, yields a spectral sequence which converges to hS1

∗ (|EX∗|)
= hS1

∗ (|X∗|). We first consider the spectral sequence in Borel homology. In
this case, one easily obtains the following known fact.

Theorem 2 ([3], [9]). If X∗ is a cyclic space and R is a commutative
ring with 1, then homology groups H∗(ES1 ×S1 |X∗|, R) and HC∗(R[X∗])
are naturally isomorphic.

Here HC∗(R[X∗]) stands for cyclic homology of the cyclic module R[X∗],
(cf. [8], Chap. 6).

We conclude the paper with remarks on Bredon homology of the geo-
metric realization of a cyclic set. The filtration {Gn}n≥0 leads to a spectral
sequence in S1-equivariant Bredon homology whose E1 term seems to be
accessible.

1. Notation and terminology. In the sequel, we use Section 1 of [3]
as a basic reference for the theory of cyclic spaces. In particular, by a cyclic
space we mean a functor X∗ : Λop → Top, where Λ denotes the cyclic
category of A. Connes. As usual, di and si are the simplicial faces and
degeneracies of X∗, i.e., di = X∗(∂i) and si = X∗(σi) where ∂i : [n−1] → [n]
and σi : [n] → [n−1] are the standard simplicial operators. We assume that
the underlying simplicial space of X∗ is proper, i.e., all degeneracy maps
are cofibrations. We denote by tn : Xn → Xn the value of X∗ at the cyclic
operator τn : [n] → [n] in Λ which generates Zn+1 = AutΛ([n])op. We
denote by sn : Xn−1 → Xn the extra degeneracy map which is by definition
tnns0 = X∗(σ0τ

n
n ). It follows from relations in Λ that s(Xn) =

⋃n
i=0 si(Xn−1)

is a Zn+1-subspace of Xn. Finally, we identify the fixed point set Fix of
the canonical S1-action on |X∗| with the equalizer of the degeneracy maps
s0, s1 : X0 → X1 (cf. [6], p. 145), i.e., we have

(1.1) Fix = {x ∈ X0 : s0x = s1x = t1s0x}.

2. The cellular decomposition

Theorem 1. The geometric realization of a cyclic set X∗ is an S1-CW
complex.
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P r o o f. We will use coends of functors Cop × C → Top, where C is
a subcategory of Λ. Basic properties of these coends are summarized in
Section 1 of [6]. For the geometric realization of X∗ we have

|X∗| =
∫

[n]∈∆

Xn ×∆n =
∫

[n]∈∆

∫
[m]∈Λ

Xm×HomΛ([n], [m])×∆n(2.1)

=
∫

[m]∈Λ

Xm ×
∫

[n]∈∆

HomΛ([n], [m])×∆n

=
∫

[m]∈Λ

Xm × |HomΛ(∗, [m])| =
∫

[m]∈Λ

Xm × (S1 ×∆m).

The cyclic group Zm+1 acts on the m-simplices of the cocyclic space S1×∆m

of the last coend by the formula

(2.2) τm(z, u0, u1, . . . , um) = (ze−2πiu0 , u1, . . . , um, u0),

where (z, u0, u1, . . . , um) ∈ S1×∆m (cf. [3], Proposition 1.4(iii)). Note that
one can use the last coend in (2.1) to define the S1-action on |X∗|. In what
follows, we will also use another action of Zm+1 on S1 ×∆m which is given
by

(2.3) τm(z, u0, u1, . . . , um) = (zwm+1, u1, . . . , um, u0),

where ωm+1 = exp(−2πi/(m + 1)). Let fm : S1 × ∆m → S1 × ∆m be
defined by

(2.4) fm(z, u0, u1, . . . , um) = (zω
l(u)
m+1, u0, u1, . . . , um),

where l(u) = u0 + 2u1 + . . . + (m + 1)um. It is straightforward to check
that fm is an equivariant map from the Zm+1-space (2.2) to the Zm+1-
space (2.3) and that it induces a homeomorphism of Zm+1-orbit spaces. In
order to construct an equivariant, cellular decomposition of |X∗|, we use the
canonical filtration of the coend (2.1) (cf. [6], pp. 146–147). We have∫

[m]∈Λ

Xm × (S1 ×∆m) =
⋃

n≥−1

Fn,

where F−1 = Fix and the spaces Fn, for n ≥ 0, are defined by the pushout
diagrams

Fix×S1 incl.−→ X0 × S1yproj.

y
Fix −→ F0

(2.5)



94 Z. Fiedorowicz and W. Gajda

s(Xn)×Zn+1 (S1 ×∆n) ∪Xn ×Zn+1 (S1 × ∂∆n) τn−→ Fn−1y y
Xn ×Zn+1 (S1 ×∆n) −→ Fn

(2.6)

The attaching map τn in (2.6) is induced by relations in Λ. For a standard,
inductive argument which shows that τn is well defined, we refer the reader to
[7], proof of Lemma 1. Using the maps (2.4), one obtains from (2.6) a similar
pushout square with the Zn+1-action (2.2) replaced by the action (2.3). We
conclude that there exists a filtration

(2.7) Fix ⊆ F0 ⊆ F1 ⊆ . . . ⊆ |X∗| =
∞⋃

n=0

Fn.

The space Fn is obtained from Fn−1 by glueing to it a number of spaces
Zn+1/Zk ×Zn+1 (S1 × ∆n) = S1 ×Zk

∆n (orbit space in the action (2.3)),
one space for any orbit [x] ∈ (Xn\s(Xn))/Zn+1, where Zk = stabZn+1(x).

Attaching maps of the glueing are defined on S1 ×Zk
∂∆n. Note that

passing to the first barycentric subdivision of ∆n, one can obtain Fn from
Fn−1 by attaching to it standard equivariant cells S1/Zm ×∆n. It follows
that |X∗| is an S1-equivariant CW complex whose n-skeleton is Fn.

By (2.5) we have F0 = Fixq(X0\Fix) × S1, i.e., 0-dimensional cells of
the equivariant cell decomposition of |X∗| consist of fixed points and free
S1-orbits. This fact makes the filtration (2.7) inconvenient for computing
equivariant (co)homology of |X∗| by spectral sequences. Our next aim is
to construct a space which is S1-homotopy equivalent to |X∗| and has a
filtration similar to (2.7) but whose 0-th level consists of free orbits. The idea
is to ignore degeneracies in the coend (2.1). Let Λface be the full subcategory
of the cyclic category Λ generated by cofaces ∂i and isomorphisms.

Definition 1. For a cyclic space X∗, define a new cyclic space EX∗ to
be the coend

EX∗ =
∫

[m]∈Λface

Xm ×HomΛ(∗, [m]).

Let q∗ : EX∗ → X∗ be the projection map induced on coends by the
inclusion Λface ⊂ Λ. Then q∗ is a cyclic map and therefore its geometric
realization q = |q∗| is an S1-equivariant map (cf. [3]). Note that

|EX∗| =
∫

[m]∈Λface

Xm × (S1 ×∆m).

Let {Gn}n≥0 be the coend filtration of |EX∗| (cf. [6], pp. 146–147). We
have

(2.9) G0 ⊆ G1 ⊆ . . . ⊆ |EX∗| =
∞⋃

n=0

Gn,
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G0 = X0×S1 and the space Gn, for n ≥ 1, is defined by the pushout square

Xn ×Zn+1 (S1 × ∂∆n) −→ Gn−1y y
Xn ×Zn+1 (S1 ×∆n) −→ Gn

Proposition 1. The S1-map q : |EX∗| → |X∗| is a homotopy equiva-
lence and it induces homotopy equivalences on all fixed point sets.

Proposition 1, Theorem 1 and the equivariant Whitehead theorem (cf.
[13]) give the following.

Corollary 1. If X∗ is a cyclic set , then the map q is an S1-homotopy
equivalence.

P r o o f o f P r o p o s i t i o n 1. Step 1. First we show that q is an ordi-
nary homotopy equivalence. To achieve this we resolve X∗ by the two-sided
bar construction B∗(F, F, X∗) as in [8], proof of Theorem 5.12. Here F de-
notes the monad on the category of simplicial spaces defined by the free
cyclic space functor (cf. [8], Definition 4.3). Recall that B∗(F, F,X∗) is a sim-
plicial cyclic space whose space of n-simplices is the cyclic space Fn+1X∗=
F (. . . F (FX) . . .)∗ and whose simplicial faces and degeneracies are defined
using structure maps of the cyclic, crossed simplicial group C∗ and the cyclic
space X∗. There exists a map of simplicial cyclic spaces ε∗ : B∗(F, F,X∗)→
X∗ whose geometric realization ε : |B∗(F, F, X∗)| → |X∗| is a homotopy
equivalence. One can adapt the proof of the last statement (cf. [14], Theo-
rem 9.10) to show that ε∗ induces an equivalence |EB∗(F, F,X∗)|→|EX∗|.
By commutativity of coends |EB∗(F, F, X∗)|= |n→EFn+1X∗| and we see
that it suffices to show that q is an equivalence for the free cyclic space FX∗.
In this case, however, we have |FX∗|=S1×|X∗| (cf. [8], Theorem 5.3), and
by definition |EFX∗|=S1×‖X∗‖, where ‖X∗‖ is the realization of the sim-
plicial space X∗ without using degeneracies (cf. [16], Appendix A). It is easy
to check that under these identifications q becomes a product of idS1 and
the equivalence ‖X∗‖→|X∗| from [16], Proposition A.1. This proves that q
is an equivalence in the free case and therefore in general.

Step 2. To complete the proof we show that q induces equivalences on all
fixed point sets. Since EX0 = X0, (1.1) implies that |EX∗|S

1
= |X∗|S

1
. To

check that the map qZk : |EX∗|Zk → |X∗|Zk , for k ≥ 2, is an equivalence, we
use edgewise subdivisions of cyclic spaces (cf. [1], Section 1). Let sdk X∗ de-
note the kth subdivision of X∗ and let sdZk

k X∗ be the Λop
k -space whose space

of n-simplices is sdZk

k Xn = XZk

k(n+1)−1. Here Λk denotes a category with the
same morphisms and relations as Λ except for the relation τn+1

n = id which
is replaced in Λk by τ

k(n+1)
n = id (cf. [1], Definition 1.5). There exists a
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natural homeomorphism Dk : |sdk X∗| → |X∗| (cf. [1], Lemma 1.1). Using
relations in Λ and Λk, one can check that Dk induces a homeomorphism
|sdZk

k X∗| → |X∗|Zk which we abusively also denote by Dk. As in the cyclic
case, for a Λop

k -space Y∗, we define a new space EkY∗ to be the coend

EkY∗ =
∫

[m]∈Λk,face

Ym ×HomΛk
(∗, [m]).

Here Λk,face denotes the subcategory of Λk generated by the cofaces ∂i and
isomorphisms. Let qk : |EkY∗| → |Y∗| be the geometric realization of the
projection map induced on coends by the inclusion Λk,face ⊂ Λk. An argu-
ment similar to the one given in the first part of the proof shows that qk is
an equivalence. In Step 1, one has to replace Λ by Λk and F by a monad
given by the free Λop

k -space (cf. [8], Definition 4.3, where for G∗ we take the
crossed simplicial group of the category Λk). A link between the maps qZk

and qk is provided by the commutative diagram

(2.10)

|EX∗|Zk
qZk

−→ |X∗|Zk

↑ Dk

|sdZk

k EX∗|
xDk

‖
|Ek sdZk

k X∗|
qk−→ |sdZk

k X∗|.

The identification on the left side of (2.10) follows from an equality of spaces
of m-simplices

sdZk

k EXm = Ek sdZk

k Xm,

which one checks easily using relations in Λ and Λk. Consequently, qZk is
an equivalence, which finishes the proof.

3. Applications to equivariant homology

Theorem 2. If X∗ is a cyclic space and R is a commutative ring with 1,
then there exists a natural isomorphism

H∗(ES1 ×S1 |X∗|;R) → HC∗(R[X∗]).

P r o o f. In what follows we assume that X∗ is a cyclic set. Our argument
extends to cyclic spaces by a standard use of singular chains (cf. [8], proof
of Theorem 5.9). By Corollary 1, we have

ES1 ×S1 |X∗| ∼= ES1 ×S1 |EX∗| =
∫

[m]∈Λface

Xm × (ES1 ×∆m),

where ES1 ×∆∗ is a cocyclic space obtained from S1 ×∆∗ by applying the
Borel construction ES1 ×S1 (−) degreewise. Let {G′

n}n≥0 be the canonical
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filtration of the last coend, i.e.,∫
[m]∈Λface

Xm × (ES1 ×∆m) =
∞⋃

n=0

G′
n,

where G′
0 = X0 × ES1 and, for n ≥ 1, G′

n is defined by a pushout square

(3.1)
Xn ×Zn+1 (ES1 × ∂∆n) −→ G′

n−1

↓ ↓
Xn ×Zn+1 (ES1 ×∆n) −→ G′

n

Using maps (2.4) from the proof of Theorem 1, we may choose for ES1 in
(3.1) the space EZn+1 with its standard Zn+1-action. As in the case of
pushouts (2.6) this changes the attaching maps. The filtration {G′

n}n≥0

yields a spectral sequence in homology which converges to

H∗(ES1 ×S1 |EX∗|;R) = H∗(ES1 ×S1 |X∗|;R).

The E1 term of the sequence is

(3.2) E1
n,m

= Hn+m(EZn+1 ×Zn+1 (Xn ×∆n), EZn+1 ×Zn+1 (Xn × ∂∆n);R)

∼= Hn+m(Zn+1, C
R
∗ (Xn ×∆n, Xn × ∂∆n)),

where the latter is the hyperhomology of Zn+1 with coefficients in cellular
R-chains of the CW pair (Xn×∆n, Xn×∂∆n). The homotopy invariance
of group hyperhomology (cf. [2], Proposition 5.2) implies that the last group
in (3.2) is isomorphic to the homology group Hm(Zn+1, R[Xn]). The Zn+1-
module structure on the free R-module R[Xn] is induced by the Zn+1-action
on Xn accompanied by the sign (−1)n.

The naturality of the two isomorphisms which we used above to identify
E1

n,m with group homology implies that the spectral sequence of the filtra-
tion {G′

n}n≥0 coincides with the spectral sequence from [8], Theorem 6.9,
which converges to HC∗(R[X∗]).

We conclude the paper with some remarks on the spectral sequences
induced by the coend filtration (2.9) in S1-equivariant Bredon homology
and RO(S1)-graded cohomology.

For the definition and basic properties of the Bredon homology groups
HG
∗ (X, A;M), where G is a topological group, (X, A) is a G-CW pair, and

M : hO(G) → Ab is a functor with values in abelian groups, we refer the
reader to [18] and [5]. Here hO(G) denotes the homotopy category of the
orbit category of G. Recall that on orbits one has

(3.3) HG
∗ (G/H;M) =

{
M(G/H) if ∗ = 0,
0 otherwise,
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and that the Bredon homology HG
∗ (−;M) on the category of finite G-CW

complexes is uniquely determined by its coefficient system M .

Proposition 2. If X∗ is a cyclic set and M : hO(S1) → Ab is a co-
efficient system, then there exists a spectral sequence which converges to
HS1

∗ (|X∗|;M) and whose E1 term is

E1
n,m = H

Zn+1
n+m (Xn ×∆n, Xn × ∂∆n;Mn),

where Mn(−) = M(S1×Zn+1 (−)) is the restriction of M to orbits of Zn+1.

P r o o f. The filtration (2.9) induces a spectral sequence in Bredon homol-
ogy which converges to HS1

∗ (|EX∗|;M) = HS1

∗ (|X|;M) (cf. Proposition 1).
The E1 term of the sequence is

(3.4) E1
n,m = HS1

n+m(X ×Zn+1 (S1 ×∆n), X ×Zn+1 (S1 × ∂∆n);M),

where Zn+1 acts on S1×∆n by the formula (2.3). Since by (3.3) the functors
HS1

∗ (S1×Zn+1 (−);M) and H
Zn+1
∗ (−;Mn) have the same effect on orbits of

Zn+1, the uniqueness of Bredon homology implies that the group (3.4) is
isomorphic to H

Zn+1
n+m (Xn ×∆n, Xn × ∂∆n;Mn).

R e m a r k 1. The spectral sequence from Proposition 2 can be treated
as a cyclic version of a sequence constructed by G. Segal for a simplicial
space in any (co)homology theory (cf. [15], Proposition 5.1). In our case,
however, the first differential

d1
n,m : H

Zn+1
n+m (Xn ×∆n, Xn × ∂∆n;Mn)

→ HZn
n+m−1(Xn−1 ×∆n−1, Xn−1 × ∂∆n−1;Mn−1)

is more difficult to handle than its simplicial counterpart. Its complexity is
caused, in part, by the fact that the Bredon homology groups H

Zn+1
k (∆n,

∂∆n;Mn) have torsion for many k < n. To see this one identifies the Zn+1-
space ∆n/∂∆n with the one-point compactification SVn of the reduced,
regular representation Vn of Zn+1. If M is the constant coefficient system
with value Z, then

H
Zn+1
k (∆n, ∂∆n;Mn) = H̃k(SVn/Zn+1;Z).

Now, one can use Kawasaki’s calculation of the integral (co)homology of
generalized lens spaces (cf. [10]) to find that the homology of the orbit space
SVn/Zn+1 has torsion in half of the dimensions. For more general coefficient
systems one can use the results of S/lomińska on Bredon cohomology of
spheres in representations (cf. [17]).

R e m a r k 2. Let H∗
G(X) (G a compact Lie group) be the RO(G)-graded

cohomology of a based G-space X with coefficients in the Burnside ring
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functor (cf. [12]). For a cyclic set X∗, the coend filtration (2.9) induces a
spectral sequence in the RO(S1)-graded cohomology whose E1 term is of
the form

Hα
Zn+1

(X+
n ∧ SVn) = Hα−Vn

Zn+1
(X+

n ),

where + denotes a disjoint base point and α is a representation of Zn+1.
The spectral sequence reduces calculation of H∗

S1(|X∗|) to RO(Zn+1)-graded
cohomology of the Zn+1-set Xn, which seems to be accessible (cf. [11],
Section 2, where Hα

Zp
(S0) and Hα

Zp
(Z+

p ) are given, for a prime number p).
We will elaborate on the last two remarks in a forthcoming paper.
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