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Knot manifolds with isomorphic spines

by

Alberto C a v i c c h i o l i (Modena) and
Friedrich H e g e n b a r t h (Milano)

Abstract. We study the relation between the concept of spine and the representation
of orientable bordered 3-manifolds by Heegaard diagrams. As a consequence, we show that
composing invertible non-amphicheiral knots yields examples of topologically different
knot manifolds with isomorphic spines. These results are related to some questions listed
in [9], [11] and recover the main theorem of [10] as a corollary. Finally, an application
concerning knot manifolds of composite knots with h prime factors completes the paper.

1. Introduction and notation. Throughout the paper we shall work
in the piecewise linear (PL) category (see for example [13] and [22]). For
standard definitions and results about knot theory we refer to [1], [8] and
[12]. As general references about the topology of 3-manifolds see [7] and [17].

Let K be an oriented tame (smooth or PL) knot in the right-hand
oriented 3-sphere S3. Let V = V (K) denote a tubular neighborhood of
K and (µ, λ) a standard meridian-longitude pair (preferred framing) of V
in S3. We always assume that the longitude λ is oriented parallel to K
and the meridian µ is oriented so that its linking number with K is +1.
The closed complement of V in S3 is called the knot manifold of K, writ-
ten M = M(K). The fundamental group of M is, by definition, the knot
group of K, here denoted by G = G(K). The triple (G,µ, λ), where the
loops µ, λ are identified with their homotopy classes in G, is called the
peripheral system of K. The inverse of K, denoted by K−1, is the same
knot with its orientation reversed. The mirror-image of K, denoted by
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K∗, is the image of K under a reflection of K in a plane. Two knots
K1 and K2 are said to be equivalent if there exists a homeomorphism
f : S3 → S3 such that f(K1) = K2. If f preserves orientations, then
we say that the knots are (ambient) isotopic and use the sign of equal-
ity.

We have the following basic results, proved in [4], [5], [6], [18] and [20].

Theorem 1. Let Ki, i = 1, 2, be an oriented tame knot in the oriented
3-sphere, (Gi, µi, λi) the peripheral system and Mi the knot manifold of Ki.

(1) K1 is isotopic to K2 if and only if there is an isomorphism of triples

(G1, µ1, λ1) ' (G2, µ2, λ2).

(2) K1 and K2 are equivalent (resp. isotopic) if and only if M1 is homeo-
morphic to M2 (resp. by an orientation preserving homeomorphism).

By Theorem 1 knots are defined as purely algebraic objects by means of
peripheral systems. For instance, given a knot K = (G,µ, λ), we have K−1 =
(G,µ−1, λ−1), K∗ = (G,µ, λ−1) and K−1 ∗ = (G,µ−1, λ). We observe that
K, K−1, K∗ and K−1 ∗ are equivalent knots but they may not be isotopic.
Thus, a knot K is called invertible if K = K−1, i.e. (G,µ, λ) is isomorphic to
(G,µ−1, λ−1). A knot K is said to be amphicheiral if K = K∗, i.e. (G,µ, λ)
is isomorphic to (G,µ, λ−1).

The notion of composition (also named product) of knots is well defined
on the oriented isotopy type of a knot. Thus the (oriented) connected sum
of two knots Ki = (Gi, µi, λi), i = 1, 2, is defined to be

K1#K2 = (G1 ∗
µ1=µ2

G2, µ1, λ1λ2)

where the symbol ∗µ1=µ2 denotes the amalgamated free product. A knot is
called composite if it is a composition of two non-trivial knots; a non-trivial
knot which is not composite is said to be prime.

The following results are well known (see [1], [5], [14], [15] and [19]).

Theorem 2. (1) (The unique prime decomposition theorem) Any non-
trivial knot in the 3-sphere is a finite product of prime knots and the isotopy
types of the factors are uniquely determined up to permutation.

(2) (The Whitten rigidity theorem) Prime knots in the 3-sphere with iso-
morphic groups have homeomorphic knot manifolds, i.e. they are equivalent.

(3) If two knots have isomorphic groups, then either both knots are prime
or both are composite.

Now let M be a compact connected (triangulated) 3-manifold with non-
void boundary ∂M . A compact 2-polyhedron P is called a spine of M if
there exists an embedding f : P → intM such that M\f(P ) is homeomor-
phic to ∂M × [0, 1[. It is known that composing certain torus knots, via
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connected sums, yields examples of topologically different knot manifolds
which have a common spine (see [2], [10], [11]). These facts suggest studying
the following problem, which is related to some questions listed in [9] and
[11]. Consider two tame knots K1, K2 in the 3-sphere S3 and let M1, M2

be the knot manifolds of K1, K2 respectively. Then we study the condi-
tions on which M1, M2 possess a common spine but are not homeomorphic.
Obviously, the considered knots must be composite by the Whitten rigidity
theorem. Our main result states that any Wirtinger presentation of a knot
group corresponds, in a natural way, to a spine of the knot manifold. This
implies the main theorem of [10] as a corollary. Then we give examples of
non-homeomorphic knot manifolds with isomorphic spines, by composing
prime knots which are not necessarily toroidal as in [10], [11]. Finally, an
application for composite knots with h (h ≥ 1) prime factors completes the
paper.

2. Spines of bordered manifolds. Let η be a group presentation with
n generators x1, . . . , xn and m relators r1, . . . , rm, n ≥ m. Let Pη denote
the canonical 2-polyhedron associated with η. Then Pη is a 2-dimensional
cell complex with one vertex v and n oriented 1-cells (resp. m 2-cells) cor-
responding to generators (resp. relators) of η. We shall always label each
1-cell of Pη by the corresponding generator xi of η. Let c1, . . . , cm be dis-
joint 2-cells. Then there is an attaching map ϕj : ∂cj →

∨
i xi which sends

∂cj to the word rj of η, for each j = 1, . . . ,m. Here the symbol
∨
i xi rep-

resents the wedge of the oriented loops xi.

Thus we have

Pη =
(∨

i

xi

)
∪ϕ
(⋃

j

cj

)

where ϕ is the union of the maps ϕj .

Let now M be a compact connected orientable (PL) 3-manifold with
non-void boundary ∂M . In this section, we give a simple geometric criterion
to recognize when the polyhedron Pη is a spine of M . For this, we briefly
recall some definitions relating to the representation of bordered 3-manifolds
by Heegaard diagrams (see for example [17]). A Heegaard diagram of genus
n is a pair (H, γ), where H is an (orientable) cube with n handles and γ is
a set of disjoint simple closed curves γj , j = 1, . . . ,m, on ∂H, n ≥ m. The
diagram determines a unique (up to homeomorphism) compact (orientable)
3-manifold M with non-void boundary ∂M . Indeed, for each j = 1, . . . ,m,
let Bj be a 2-cell and Nj an annular neighborhood of γj in ∂H. Then M
is obtained from H by glueing the plates Bj × I (I = [0, 1]) to Nj via
homeomorphisms ψj : ∂Bj × I → Nj .
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Thus we have

M = H ∪ψ
⋃

j

(Bj × I)

where ψ is the union of the attaching maps ψj . It is well known that any
compact orientable bordered 3-manifold can be constructed in this way (see
for example [17]).

Now we prove the following result.

Theorem 3. Let η be a group presentation with n generators and m
relators (n ≥ m) and let Pη be the canonical 2-polyhedron associated with
η. Then Pη is a spine of a compact orientable 3-manifold M with non-
void boundary ∂M if and only if η arises from a Heegaard diagram of M .
Furthermore, if M has h boundary components, then the genus of ∂M
equals n−m+ h− 1.

P r o o f. Necessity is a consequence of Theorem 7 of [2]. We sketch the
proof of this result to make the reading clear. Let U , Vi be regular neigh-
borhoods of v, xi in Pη respectively and denote the points of xi ∩ ∂U
by ei and ei. Let eki , eki be the points of ∂Vi which lie in regular neigh-
borhoods of ei, ei in ∂U respectively, k = 1, . . . , α(i), i = 1, . . . , n. Fur-
ther, we can suppose that eki and eki are joined by an arc in ∂Vi\U . Then
we set Ei = {eki : k = 1, . . . , α(i)}, Ei = {eki : k = 1, . . . , α(i)} and
E =

⋃n
i=1(Ei ∪ Ei). A simple curve near each ∂cj intersects ∂U in a set

of simple arcs βr with endpoints in E. Interchanging the endpoints of these
arcs defines an involution A = A(η) of E. Let B = B(η) be the involutory
permutation of E defined by B(eki ) = eki . An arbitrary numbering of the
elements of E around each vertex ei (resp. ei) determines a permutation
C = C(η) of E, whose orbit sets are Ei, Ei, i = 1, . . . , n. Theorem 7 of
[2] states that Pη is a spine of a compact orientable 3-manifold M with h
boundary components if and only if the following conditions hold:

(1) the number of orbits of the permutation group generated by AC and
BC equals h;

(2) |A|−|C|+2 = |AC|, |θ| being the number of cycles of a permutation
θ : E → E.

As a consequence, the genus of ∂M is proved to be n−m+h−1. Furthermore,
M is prime if and only if the permutations A and C generate a transitive
group. As remarked in [2], the permutations A and C yields a Heegaard
diagram (H, γ) of M from which one can read off the presentation η of the
fundamental group Π1(M). Indeed, the unbarred cycles of C represent the
holes of H and the set of arcs βr, joining A-correspondent points of E, fit
the curves γj of the diagram (for details see [2]). This completes the proof
of necessity.
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Conversely, suppose that η = 〈x1, . . . , xn : r1, . . . , rm〉 arises from a
Heegaard diagram (H, γ) of a bordered orientable 3-manifold M . Then x1,
. . . , xn are the oriented loops of a wedge on which H collapses, i.e. they
generate the free group Π1(H) ' ∗nZ. The relator rj is precisely the element
of Π1(H) corresponding to the curve γj = ψj(∂Bj× 1

2 ) for each j = 1, . . . ,m.
Because each plate Bj × I collapses onto Bj × 1

2 , it follows that M collapses
onto the subpolyhedron

Q = H ∪ψ
⋃

j

(Bj × 1
2 )

where ψ also denotes the union of the restrictions ψj : ∂Bj × 1
2 → ∂H.

Because H collapses onto the wedge
∨
i xi by moves outside the open at-

tached 2-cells, the polyhedron Q (and hence M) collapses onto Pη. This
proves that Pη is a spine of M . In this process, we may deform a triangu-
lation of Q over itself so as to contract a maximal tree in its 1-skeleton to a
single vertex, v say. This deformation can be extended to one of Q over itself
with the resulting space being homeomorphic to Q. Thus the proof is
complete.

Example. In Fig. 1 we draw a regular projection of the 2-bridge knot
b(7, 3) = 52 (see [1], Appendix D).

Fig. 1. The 2-bridge knot b(7, 3) = 52

It is well known that 52 is an invertible non-amphicheiral knot with signa-
ture σ(52) = 2. Furthermore, the knot 52 is not toroidal since its Alexander
polynomial is 2t2−3t+2. In Fig. 2 we show a Heegaard diagram of the knot
manifold M of 52, constructed by the algorithm given in [2]. This diagram
induces the presentation

η = 〈x, y : xyxy−1x−1yxy−1x−1y−1xyx−1y−1〉
of the fundamental group Π1(M). Thus Theorem 3 implies that the canon-
ical 2-polyhedron Pη is a spine of the knot manifold M .
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Fig. 2. A Heegaard diagram (full outside) of the knot manifold of the knot 52

3. Knot manifolds. Now we prove the results announced in Section 1.

Theorem 4. Let K be an oriented tame knot in the oriented 3-sphere.
Suppose that η is a Wirtinger presentation of the knot group of K. Then
the canonical 2-polyhedron Pη is a spine of the knot manifold of K.

P r o o f. By Theorem 3 we have to show that any Wirtinger presentation
η of the knot group arises from a Heegaard diagram of the knot manifold. For
convenience, we first assume that the knot K is embedded in the euclidean
3-space R3, where S3 = R3 ∪ {∞}. Following [12], we recall the procedure
for writing a Wirtinger presentation η of the knot group of K. Let α1, . . . ,
αn denote the oriented arcs of a regular projection of the knot, also named
K, in the plane z = 0. As usual, each αi is assumed connected to αi−1 and
αi+1 (indices mod n) by undercrossing arcs βi and βi+1. We also assume
that the orientations of the arcs αi are compatible with the order of their
subscripts and that βi lies in the plane z = −ε for some ε > 0.

If V is a tubular neighborhood of K in R3, then we dissect the knot
complement R3\ intV into pieces X, Y1, . . . , Yn, Z as shown in [12]. Let Σ
denote the upper semispace of R3 having the plane z = −ε as origin. Then
X is defined to be the closure of the complement of V in Σ. Let xi be an
oriented loop in X passing under αi in a right-left direction and with base
point v ≡ (0, 0, 1). Obviously X collapses onto the wedge

∨
i xi, hence the

compact orientable 3-manifold X̃ = X ∪ {∞} is a cube with n handles. At
each undercrossing of K, we consider a solid rectangular box Ri, whose top
lies on the plane z = −ε and surrounds βi.

Let Yi denote the 3-cell obtained from Ri by removing a small regular
neighborhood (in Ri) of βi. The cells Yi may be taken to be disjoint from
one another. Let γi ⊂ Yi ∩ X be an oriented loop whose homotopy class
generates the free group Π1(Yi ∩X) ' Z. Now the cell Yi is homeomorphic
to a plate Bi× I, whose rim ∂Bi× 1

2 maps onto the curve γi. Moreover, the
intersection Yi ∩X is an annular neighborhood of γi in ∂Yi.
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Finally, let Z denote the closure of everything below the union X ∪⋃n
i=1 Yi and set Z̃ = Z ∪ {∞}. Now the space X̃ ∪ Z̃ ∪⋃ni=1 Yi is precisely

the knot manifold M of K ⊂ S3. Because Z̃ ∪ Yn is a closed 3-cell which
intersects ∂M in a closed 2-cell, M is (PL) homeomorphic to X̃ ∪⋃n−1

j=1 Yj .

Thus M is obtained from the cube with handles X̃ by glueing the plates Yj
along annular neighborhoods of their rims γj , for j = 1, . . . , n− 1. When γj
is included in X̃, it becomes the Wirtinger word

rj = xξkxj+1x
−ξ
k x−1

j ,

where ξ = ±1 and αk is the arc passing over the gap from αj to αj+1 (k = j
or j+ 1 is possible). If γ is the set of all the curves γj , j = 1, . . . , n− 1, then
the pair (X̃, γ) is a Heegaard diagram (of genus n) of M . Obviously, this
diagram induces the Wirtinger presentation η of the knot group Π1(M).
Thus the proof is complete.

The following result implies the main theorem of [10] as a corollary.

Proposition 5. Let K1 ⊂ S3 be an invertible non-amphicheiral knot and
let K2 ⊂ S3 be an arbitrary knot. Then the knot manifolds of K1#K2 and
K∗1 #K2 admit a common spine. If K2 is non-amphicheiral , then the knot
manifolds are not homeomorphic.

P r o o f. By Theorem 4, it suffices to prove that the composite knots
K1#K2 and K∗1 #K2 have the same Wirtinger presented group. If Ki =
(Gi, µi, λi), i = 1, 2, then we have

K1#K2 = (G1 ∗
µ1=µ2

G2, µ1, λ1λ2), K∗1 #K2 = (G1 ∗
µ−1

1 =µ2

G2, µ2, λ1λ2).

Because K1 is invertible, the knot group G1 admits an automorphism ϕ
such that ϕ(µ1) = µ−1

1 and ϕ(λ1) = λ−1
1 . Thus the groups of the composite

knots are isomorphic. We observe that the peripheral systems may not be
isomorphic. Now let

η1 = 〈x1, . . . , xn : r1, . . . , rn−1〉, η2 = 〈y1, . . . , ym : s1, . . . , sm−1〉
be Wirtinger presentations of G1 and G2 respectively, where µ1 = xn and
µ2 = ym. Then the amalgamated free product

G1 ∗
µ1=µ2

G2 ' G1 ∗
µ−1

1 =µ2

G2

is presented by

〈x1, . . . , xn, y1, . . . , ym−1 : r1, . . . , rn−1, s
′
1, . . . , s

′
m−1〉,

where s′j is the word obtained from sj by replacing the generator ym (if it
occurs) with xn.
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Suppose now that K2 is non-amphicheiral. Because K1 is non-amphichei-
ral, the unique prime decomposition theorem implies that K1#K2 and
K∗1 #K2 are not isotopic. Hence there is no orientation preserving home-
omorphism between the knot manifolds of these knots. On the other hand,
any orientation reversing homeomorphism induces an orientation preserving
one between the knot manifolds of K1#K2 and (K∗1 #K2)∗ = K1#K∗2 . This
contradicts the fact that K1#K2 and K1#K∗2 are not isotopic whenever K2

is non-amphicheiral. Thus we have proved that the knot manifolds of the
statement are topologically different.

As a direct consequence of Proposition 5, we have the following result.

Corollary 6. Let K ⊂ S3 be an invertible non-amphicheiral knot in
the oriented 3-sphere. Then the knot manifolds of K#K and K∗#K are
not homeomorphic but they do possess a common spine.

Example. Corollary 6 applies for K = 52. In Fig. 3 we show regular
projections of the composite knots 52#52 and 5∗2#52.

Fig. 3. The composite knots 52#52 and 5∗2#52

Figures 4 and 5 show Heegaard diagrams of the knot manifolds of 52#52

and 5∗2#52 respectively. Both the diagrams induce the presentation

η = 〈x, y, z : xyxy−1x−1yxy−1x−1y−1xyx−1y−1,

yzyz−1y−1zyz−1y−1z−1yzy−1z−1〉
of the knot group. We observe that a Wirtinger presentation is not very
economical with respect to the genus of the Heegaard diagrams. Thus to
produce the examples we have used extended Nielsen transformations on
group presentations. These moves yield simplified presentations which also
arise from Heegaard diagrams of the same manifold (for details see [3], [16]
and [21]).

Proposition 7. Let K1 and K2 be oriented tame knots in the oriented
3-sphere. Then the knot manifolds of K1#K2 and K1#K−1∗

2 (resp. K1#K∗2
and K1#K−1

2 ) admit a common spine. If the signature σ(Ki) of Ki is not
null , i = 1, 2, then the knot manifolds are not homeomorphic.
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Fig. 4. A Heegaard diagram of the knot manifold of the knot 52#52

Fig. 5. A Heegaard diagram of the knot manifold of the knot 5∗2#52

P r o o f. The knot groups of the first (resp. second) pair of knots admit
a common Wirtinger presentation. Indeed, we have the following relations:

K1#K2 = (G1 ∗
µ1=µ2

G2, µ1, λ1λ2),

K1#K−1∗
2 = (G1 ∗

µ1=µ2
G2, µ1, λ1λ

−1
2 ),

K1#K∗2 = (G1 ∗
µ1=µ−1

2

G2, µ1, λ1λ2),

K1#K−1
2 = (G1 ∗

µ1=µ−1
2

G2, µ1, λ1λ
−1
2 ).

If σ(K2) 6= 0, then K1#K2 and K1#K−1∗
2 (resp. K1#K∗2 and K1#K−1

2 )
are not isotopic since they have different signatures (use the additivity of σ
and the properties σ(K) = σ(K−1), σ(K∗) = −σ(K)).

If σ(K1) 6= 0, thenK1#K2 and (K1#K−1∗
2 )∗ = K∗1 #K−1

2 (resp.K1#K∗2
and (K1#K−1

2 )∗ = K∗1 #K−1∗
2 ) are not isotopic by the same reasons as
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above. Thus we have proved that the composite knots, in the statement,
are not equivalent, i.e. their knot manifolds are topologically different. This
completes the proof.

Now we close the paper with a result about spines of knot manifolds
of composite knots with h prime factors. It is a direct consequence of our
Proposition 5 and of theorems proved in [14], [15].

Proposition 8. Let K be an oriented composite knot with h (h ≥ 1)
prime factors, in the oriented 3-sphere. Let η denote a Wirtinger presenta-
tion of the knot group of K. Then the canonical 2-polyhedron Pη is a spine
of at most 2h−1 topologically different knot manifolds. This bound is actually
attained by composing invertible non-amphicheiral distinct knots.
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