Undetermined sets of point-open games

by

Janusz Pawlikowski (Wrocław)

Abstract. We show that a set of reals is undetermined in Galvin’s point-open game iff it is uncountable and has property C'', which answers a question of Gruenhage.

Let X be a topological space. The point-open game $G(X)$ of Galvin [G] is played as follows. Black chooses a point $x_0 \in X$, then White chooses an open set $U_0 \ni x_0$, then Black chooses a point $x_1 \in X$, then White chooses an open set $U_1 \ni x_1$, etc. Black wins the play $(x_0, U_0, x_1, U_1, \ldots)$ iff $X = \bigcup_n U_n$.

Galvin [G] showed that the Continuum Hypothesis yields a Lusin set X which is undetermined (i.e. for which the game $G(X)$ is undetermined). (A Lusin set is an uncountable set of reals which has countable intersection with every meager set.)

Recently Reclaw [R] showed that every Lusin set is undetermined. Motivated by Reclaw’s result we prove the following.

Theorem. Let X be a topological space in which every point is $G_δ$. Then $G(X)$ is undetermined iff X is uncountable and has property C''.

Property C'' was introduced by Rothberger (see [M]). A topological space X has property C'' if for every sequence U_n ($n \in \omega$) of open covers of X there exist $U_n \in U_n$ such that $X = \bigcup_n U_n$. It is known (see [M] or [FM]) that every Lusin set has property C''.

Clearly, a space with property C'' must be Lindelöf. Martin’s Axiom implies that every Lindelöf space of size less than 2^{\aleph_0} has property C'' and that there are sets of reals of size 2^{\aleph_0} with property C'' (see [M]). Thus, Martin’s Axiom yields undetermined sets of reals of size 2^{\aleph_0} (Theorem 4 of [G]).

On the other hand, in Laver’s [L] model for Borel’s conjecture all metric spaces with property C'' are countable (see Note 1). Thus, consistently, all metric spaces are determined.

1991 Mathematics Subject Classification: 03E15, 54G15.

Supported by KBN grant PB 2 1017 91 01.
The connection between property C'' and point-open games is made transparent by the following dual game $G^*(X)$, due also to Galvin [G]. Now W chooses an open cover U_0 of X, then B chooses a set $U_0 \in U_0$, then W chooses an open cover U_1 of X, then B chooses a set $U_1 \in U_1$, etc. As before, B wins if $X = \bigcup_n U_n$.

Galvin [G] showed that the games $G(X)$ and $G^*(X)$ are equivalent in the sense that $W \uparrow G(X)$ (has a winning strategy) iff $W \uparrow G^*(X)$; similarly for B. In particular, $G(X)$ is determined iff $G^*(X)$ is.

Let $G^*(X)$ and $G^{*\sigma}(X)$ be games that are played as $G(X)$ and $G^*(X)$ are, but in which B wins if $X = \bigcap_n \bigcup_{m>\tau} U_m$. These games are again equivalent (see [G], Theorem 1). Clearly, $|X| \leq \aleph_0 \Rightarrow B \uparrow G^{*\sigma}(X) \Rightarrow B \uparrow G^*(X)$, and it is not hard to see that if each point of X is G_δ, then $B \uparrow G^*(X) \Rightarrow |X| \leq \aleph_0$ (see [G], Theorem 2). Also, $X \not\in C'' \Rightarrow W \uparrow G^*(X) \Rightarrow W \uparrow G^{*\sigma}(X)$ (for the first implication W plays covers that witness $X \not\in C''$).

We shall prove that $W \uparrow G^{*\sigma}(X) \Rightarrow X \not\in C''$.

First let us play one more game. The game $M^*(X)$ is defined as $G^*(X)$ is but B chooses finite subsets $V_n \subseteq U_n$. He wins if $\bigcup_n \bigcup V_n = X$. The σ is introduced as before.

The game is motivated by property M of Menger (see [FM]). A topological space has property M if for every sequence \mathcal{U}_n $(n \in \omega)$ of open covers of X there exist finite $\mathcal{V}_n \subseteq \mathcal{U}_n$ such that $\bigcup_n \bigcup \mathcal{V}_n = X$. Clearly, property C'' implies property M.

Lemma 1. Suppose that X has property M. Then W has no winning strategy in $M^{*\sigma}(X)$.

Proof. X is clearly Lindelöf. Without loss of generality, we can assume that W plays increasing sequences from which B chooses single sets. Then a strategy for W can be identified with a family $\{U_\sigma : \sigma \in <\omega \}$ such that for every σ, $\{U_\sigma^{-i} : i < \omega\}$ is an increasing open cover of X. We seek $s \in <\omega$ such that $\forall x \in X \exists^\infty n x \in U_{s[n]}$.

For integers $j > 0$ and $k, m \geq 0$ let

$$V_k(m, j) = \bigcap_{\tau \in ^m j} U_{\tau \sim k}.$$

Note that $\{V_k(m, j) : k \in \omega\}$ is an increasing open cover of X: given $x \in X$, find $k_\tau (\tau \in ^m j)$ with $x \in U_{\tau \sim k_\tau}$, and let $k = \max \tau k_\tau$; then $x \in V_k(m, j)$.

For integers $j > 0$, $k \geq j$ and $m, n \geq 0$ let

$$W_k^n(m, j) = \bigcup_{j = k_0 \leq k_1 \leq \ldots \leq k_{n+1} = k} \bigcap_{i = 0}^n V_{k_{i+1}}(m + i, k_i).$$

Again $\{W_k^n(m, j) : k \geq j\}$ is an increasing open cover of X: given $x \in X$, find $k_1 \geq k_0$ with $x \in V_{k_1}(m, k_0)$, next $k_2 \geq k_1$ with $x \in V_{k_2}(m + 1, k_1)$,
Lemma 5.1. \(G \) to \(\sigma \) next choose \(\{ \text{a family} \} \). So, \(G \) strategy in \(\{ \text{etc.} \} \). Let \(s \in ^\omega \omega \) be strictly increasing such that \(\forall m, j \forall \omega x \geq t_{m, j}(n) \). Then
\[\forall x \in X \forall m, j \exists n x \in W^n_{s(m + n)}(m, j). \]

Claim. \(\forall x \in X \exists \omega x \in U_{s[n]} \).

Proof. Suppose not. Fix \(x \) and \(m \) with \(\forall n x \notin U_{s[m + n]} \). By the choice of \(s \) there is \(n \) with \(x \in W^n_{s(m + n)}(m, s(m)) \). So, there are integers
\[s(m) = k_0 \leq k_1 \leq \ldots \leq k_{n + 1} = s(m + n) \]
such that
\[x \in \bigcap_{i=0}^{n} V_{k_{i+1}}(m + i, k_i). \]
Now, \(s[m] \in m k_0, x \in V_{k_0}(m, k_0) \) and \(x \notin U_{s[m] - s(m)} \) yield \(k_1 > s(m) \). Next, \(s[m + 1] \in (m + 1) k_1, x \in V_{k_2}(m + 1, k_1) \) and \(x \notin U_{s[m + 1] - s(m + 1)} \) yield \(k_2 > s(m + 1) \). Proceeding in this way we get \(k_{n + 1} > s(m + n) \), which is a contradiction. \(\blacksquare \)

It follows that if \(W \) plays according to \(\{ U_{\sigma} : \sigma \in \omega \} \) and \(B \) according to \(s \), then \(B \) wins. \(\blacksquare \)

Now we prove that if \(X \in C'' \) then \(B \) can spoil each strategy of \(W \) in \(G^\sigma(X) \). The idea of diagonalization used in the proof is taken from [FM], Lemma 5.1.

Lemma 2. Suppose that \(X \) has property \(C'' \). Then \(W \) has no winning strategy in \(G^\sigma(X) \).

Proof. Again \(X \) is Lindelöf and we can identify a strategy for \(W \) with a family \(\{ U_{\sigma} : \sigma \in \omega \} \) of open sets such that \(\forall \sigma X = \bigcup_i U_{\sigma \sim i} \). We seek \(s \in ^\omega \omega \) such that \(\forall x \in X \exists \omega n x \in U_{s[n]} \).

For integers \(j > 0, m \geq 0 \) and for \(\sigma : j^m \to \omega \) let
\[U_{\sigma}(m, j) = \bigcup_{\tau \in j^m} \bigcup_{0 < i \leq j^m} U_{\tau_{\sim \sigma} \sim i}. \]

Claim 1. \(\forall m, j U_{\sigma}(m, j) \)'s form an open cover of \(X \).

Proof. Fix \(m \) and \(j \). Let \(x \in X \) be given. Let \(\langle \tau_k : k < j^m \rangle \) be an enumeration of \(m^j \). Define \(\sigma \) by induction: choose \(\sigma(0) \) so that \(x \in U_{\tau_0 \sim \sigma(0)} \), next choose \(\sigma(1) \) so that \(x \in U_{\tau_1 \sim \sigma(0) \sim \sigma(1)} \), etc.
Claim 2. There are increasing sequences \(\langle j_n : n < \omega \rangle \), \(\langle m_n : n < \omega \rangle \) of integers such that
\[
\forall x \in X \exists n \exists \sigma : (m_{n+1} - m_n) \mapsto j_{n+1} \ x \in U_\sigma(m_n,j_n).
\]

Proof. Let \(j_0 = 1, m_0 = 0 \). We start a game. At the \(n \)th round, \(j_n \) and \(m_n \) are given and \(W \) plays an open cover
\[
U_\sigma(m_n,j_n) \ (\sigma : j_n^{m_n} \mapsto \omega).
\]

\(B \) responds with an integer \(j_{n+1} \geq j_n \), but really thinks about \(\bigcup \{U_\sigma(m_n,j_n) : \max \sigma(i) < j_{n+1}\} \). Then he declares \(m_{n+1} = m_n + j_{n+1}^{m_n} \).

We view this as the \(M^\sigma(X) \) game played by \(W \) according to a fixed strategy. Since \(C'' \Rightarrow M \), by Lemma 1, \(B \) can spoil this strategy. \(\blacksquare \)

For \(k_1 < \ldots < k_n < \omega \) and \(\sigma_i : (m_{k_i+1} - m_{k_i}) \mapsto j_{k_i+1} \) define
\[
W(k_1,\ldots,k_n;\sigma_1,\ldots,\sigma_n) = \bigcap_{i=1}^n U_{\sigma_i}(m_{k_i},j_{k_i}).
\]

By Claim 2 we see that for every \(n \), \(W(k_1,\ldots,k_n;\sigma_1,\ldots,\sigma_n) \)'s form an open cover of \(X \). Since \(X \in C'' \), there are \(\sigma^n_1, k^n_1 (n = 1,2,\ldots ; i = 1,\ldots,n) \) such that
\[
\forall x \in X \exists n \ x \in W(k^n_1,\ldots,k^n_n;\sigma^n_1,\ldots,\sigma^n_n).
\]

Let \(l_n \in \{k^n_1,\ldots,k^n_n\} \setminus \{k^n_1-1,\ldots,k^n_n-1\} \) and let \(\tau_n \) be the \(\sigma^n_i \) corresponding to \(l_n \). Then \(\tau_n \)'s are distinct and, by the definition of \(W \)'s, we get
\[
\forall x \in X \exists n \ x \in U_{\tau_n}(m_{l_n},j_{l_n}).
\]

Now define \(s \in \omega^\omega \) by
\[
s(m_{l_n} + i) = \tau_n(i),
\]
for \(n \in \omega \) and \(i \in \text{dom}(\tau_n) \), and put 0 elsewhere.

Claim 3. \(\forall x \in X \exists n \ x \in U_{s|n} \).

Proof. If \(x \in U_{\tau_n}(m_{l_n},j_{l_n}) \) then, since \(s|m_{l_n} : m_{l_n} \mapsto j_{l_n} \), we get
\[
x \in \bigcup \{U_{s|m_{l_n} \mapsto \tau_n} : 0 < i \leq m_{l_n+1} - m_{l_n}\}.
\]

But \(s|m_{l_n} \mapsto \tau_n|j \mapsto s(m_{l_n} + i) \). \(\blacksquare \)

It follows that if \(W \) plays according to \(\{U_\sigma : \sigma \in \omega^\omega\} \) and \(B \) plays according to \(s \), then \(B \) wins. \(\blacksquare \)

Call an open cover \(\mathcal{U} \) of \(X \) strong if for each \(U \in \mathcal{U} \), the family \(\{V \in \mathcal{U} : U \subseteq V\} \) covers \(X \). Galvin showed that for a regular space \(X \), \(W \upharpoonright G(X) \) iff no strong open cover contains an increasing subcover \(\{U_n : n \in \omega\} \) ([GT], Theorem 4). Combining Galvin's theorem with ours we can give a characterization of regular \(C'' \) spaces. By a covering tree we mean a family
are equivalent.

\[\bigcup_{n} U_n = X \] contains at least two sets from \(W \) so that \(U \) easily refine the covers \(\bigcap_{n} \bigcup_{n>m} U_n = X \).

\[\forall T \] \(T \) finitely additive open cover with no countable subcover violates \((c) \). Also, \(\tau \) \(\Xi \) has a clopen base, and \(X \) being Lindelöf regular, is completely regular.

Now, let \(U_n \) \(n \in \omega \) be a sequence of open covers of \(X \). Since \(X \) is Lindelöf and zerodimensional, we can assume that each \(U_n \) is countable and consists of pairwise disjoint clopens (see [K], §26).

Let \(U_n = \{ U^n_i : i < \omega \} \) (some \(U^n_i \)'s may be empty). Define \(f : X \mapsto \omega^\omega \) by

\[f(x)(n) = i \iff x \in U^n_i \] where \(f \) is zero-dimensional (has a clopen base). Indeed, there is no continuous \(f \) from \(X \) onto \([0,1]\) (otherwise \(\{ f^{-1}[V] : V \subseteq [0,1] \text{ open with } |V| \text{ uncountable} \} \) violates \((c) \)).

We shall show \((c)\Rightarrow(a)\). Assume \((c)\). First, \(X \) is Lindelöf. Otherwise any finitely additive open cover with no countable subcover violates \((c)\). Also, \(X \) is zerodimensional (has a clopen base).

Indeed, there is no continuous function \(f \) from \(X \) onto \([0,1]\) (otherwise \(\{ f^{-1}[V] : V \subseteq [0,1] \text{ open} \} \) violates \((c)\)). For completely regular spaces this means having a clopen base, and \(X \), being Lindelöf regular, is completely regular.

Let \(V = \bigcup \{ U^n_i : |f[U^n_i]| \leq \aleph_0 \} \). Then \(|f[V]| \leq \aleph_0 \) and since \(\forall x \in X \) \(x \in \bigcap_n U^n_{f(x)(n)} \), it is not hard to see that there exist \(t_{2n+1} \in \omega \) \(n \in \omega \) with \(V \subseteq \bigcap_n U^n_{t_{2n+1}}. \) Suppose that \(X \setminus V \neq \emptyset \) (otherwise we are done). We can easily refine the covers \(U_{2n} \) (with the help of \(U'_{2m} \)'s, \(m \geq n \)) to covers \(W_n \) so that \(W_{n+1} \) is a refinement of \(W_n \) and each \(W \) in \(W_n \) which meets \(X \setminus V \) contains at least two sets from \(W_{n+1} \) which meet \(X \setminus V \).

Let \(V_{\sigma} = V \cup \bigcup_{n < |\sigma|} W^n_{\sigma(n)} \) for \(\sigma \in <\omega \) such that each \(W^n_{\sigma(n)} \) meets \(X \setminus V \). Then \(V_{\sigma} \) constitute a strong open cover of \(X \). Also, if \(V_{\sigma} \subseteq V_{\tau} \) then \(\sigma \subseteq \tau \) (because no \(W^n_k \) which meets \(X \setminus V \) can be covered by finitely many sets taken from different \(W_m \) \(m > n \)).

It follows that from an increasing sequence of \(V_{\sigma} \)'s covering \(X \), which exists by \((c)\), we get \(s \in \omega \) with \(X \setminus V \subseteq \bigcup_n W^n_{s(n)} \). Since there are \(t_{2n} \) \(n \in \omega \) with \(W^n_{s(n)} \subseteq U^n_{t_{2n}} \), we get \(X \subseteq \bigcup_n U^n_{t_{2n}} \).

Rothberger also considered property \(C' \), which is defined as \(C'' \) is but the covers \(U_n \) are finite. We can define a game corresponding to \(C' \) by
introducing to G^* the requirement that the covers played by W are finite. Then an analogue of Lemma 2 is true (see the proof of (a)\Rightarrow(b) below). We also have the following. (A tree is **finitely branching** if the set of immediate successors of any node is finite.)

Proposition 2. Let X be a regular topological space. Then the following are equivalent.

(a) X has property C'.

(b) In every finitely branching covering tree there exists a branch $\langle U_n : n \in \omega \rangle$ with $\bigcup_n U_n = X$ (equivalently, with $\bigcap_m \bigcup_{n>m} U_n = X$).

(c) In every strong open cover U such that for each $U \in U$, a finite subfamily of $\{V \in U : U \subseteq V\}$ covers X, there exists an increasing subcover $\{U_n : n \in \omega\}$.

Proof. We sketch (a)\Rightarrow(b); (b)\Rightarrow(c)\Rightarrow(a) are proved as in Proposition 1.

Suppose that $X \in C'$. Let T be a finitely branching covering tree. For each $n \in \omega$, let V_n be a common finite refinement of all covers $U_\sigma \overset{def}{=} \{U : \sigma \upharpoonright U \in T\}$ ($\sigma \in T$ and $|\sigma| = n$). Such a refinement exists because there are only finitely many covers to refine. Since $X \in C'$ there is a sequence $V_n \in V_n$ such that $X = \bigcap_m \bigcup_{n>m} V_n$. Define a branch $\langle U_n : n \in \omega \rangle$ of T by $U_n =$ any $U \supseteq V_n$ such that $\langle U_0, \ldots, U_{n-1}, U \rangle \in T$.

Note. 1. It is folklore that every metric space $X \in C''$ is homeomorphic to a subspace of \mathbb{R} (the reals). Such an X is zero-dimensional (it cannot be continuously mapped onto $[0, 1]$ as C'' is preserved by continuous images and $[0, 1] \not\in C''$; [K], §40). Being Lindelöf, X is separable, and so homeomorphic to a subset of $^\omega \omega$. Since every C'' set of reals has strong measure zero, Borel's conjecture implies that every C'' metric space is countable.

2. In the spirit of [R], $X \subseteq \mathbb{R}$ with property C'' can be characterized by any of the following (see [P]):

(a) for any F_σ (equivalently, closed) $A \subseteq \mathbb{R}^2$ with all vertical sections $A_x (x \in X)$ meager, $\bigcup_{x \in X} A_x \not\in \mathbb{R}$;

(b) for any closed $A \subseteq \mathbb{R}^2$ with all vertical sections $A_x (x \in X)$ null, $\bigcup_{x \in X} A_x \not\in \mathbb{R}$.

Also, $X \subseteq \mathbb{R}$ has strong measure zero iff any of the following holds:

(a) for any F_σ (equivalently, closed) $A \subseteq \mathbb{R}^2$ with all vertical sections $A_x (x \in \mathbb{R})$ meager, $\bigcup_{x \in X} A_x \not\in \mathbb{R}$ ([AR]);

(b) for any closed $A \subseteq \mathbb{R}^2$ with all vertical sections $A_x (x \in \mathbb{R})$ null, $\bigcup_{x \in X} A_x \not\in \mathbb{R}$ ([P]);

(c) for any closed null $D \subseteq \mathbb{R}$, $X + D$ is null ([P]).
3. There exists (in ZFC) an uncountable C'' space in which every point is $G_{δ}$. Todorčević [T] has an example of a zerodimensional first countable Hausdorff space of size $ℵ_1$ whose every continuous image into any second countable space (in particular, into $ω^ω$) is countable.

Question. In Propositions 1 and 2, can one remove the assumption that X is regular (it is used in (c)$⇒$(a))?

Acknowledgements. Thanks to Irek Reclaw for inspiring correspondence and for communicating Gruenhage’s question.

References

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF WROCLAW
PL. GRUNWALDZKI 2/4
50-384 WROCLAW, POLAND
E-mail: PAWLIKOW@PLWRUW11.BITNET

Received 27 April 1993;
in revised form 8 October 1993