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Abstract. The horseshoe or bucket handle continuum, defined as the inverse limit of
the tent map, is one of the standard examples in continua theory as well as in dynamical
systems. It is not arcwise connected. Its arcwise components coincide with composants,
and with unstable manifolds in the dynamical setting. Knaster asked whether these com-
posants are all homeomorphic, with the obvious exception of the zero composant. Partial
results were obtained by Bellamy (1979), Dębski and Tymchatyn (1987), and Aarts and
Fokkink (1991). We answer Knaster’s question in the affirmative. The main tool is a very
simple type of symbolic dynamics for the horseshoe and related continua.

1. Introduction. The “bucket handle” K = K2 was constructed in 1922
as a union of half-circles with endpoints in Cantor’s middle third set C. Ku-
ratowski ([10], cf. [11]) attributed this idea to Knaster (while Knaster in the
same volume 3 of Fundamenta Mathematicae gives credit to Kuratowski for
the corresponding construction of K3). A topologically equivalent definition
of K had already been given in 1911 by Z. Janiszewski in his Paris thesis
(see [9]). In connection with dynamical systems, the space K and related
spaces have become known in the sixties as the “horseshoe”—the attractor
K =

⋂
fn(Q) of a suitably chosen nonlinear map f : Q → Q from the

square to itself (Fig. 1). The action of f seems obvious when you imagine
how a very strong man would form a horseshoe from a rectangular iron plate
(cf. [6], 13.3). However, it is not an easy matter to define f on Q. The origi-
nal paper by Smale [14] considers only the middle part of Q where K has the
product structure of a Cantor set by an interval, and the term “horseshoe”
has often been used in a wider sense. Only in 1985, did Misiurewicz [12] give
detailed constructions of diffeomorphisms f in three-dimensional manifolds
and homeomorphisms in the plane which yield K as an attractor. Szczechla
[15] constructed a diffeomorphism f in the plane with K as attractor which
is C∞ at all but a finite number of points. In the present paper, we shall
take “horseshoe”, rather than “bucket handle”, as a name for K.
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Fig. 1

Technically, it is most convenient to define K2 as the inverse limit of the
tent map g : [0, 1] → [0, 1], g(x) = 2x for x ≤ 1/2 and g(x) = 2(1 − x)
for x ≥ 1/2 [8, 13, 16]. For a continuous map h : X → X the inverse limit
(X̂, ĥ) is defined as the subset of the product space XN given by

X̂ = {(. . . x3x2x1) | h(xi) = xi−1 for i ≥ 2}
with the map

ĥ(. . . x3x2x1) = (. . . x2x1h(x1)) .

The bucket handle is not arcwise connected since from one point of C we
can only reach countably many points by finite unions of half-circles. Thus
there are uncountably many arcwise components of K which coincide with
composants (see [11]), and also with unstable manifolds in the dynamical
setting. We shall use the term “composant”. There is one special composant
which contains the point zero of C which is an endpoint of the composant.
All the other composants contain only cutpoints, their topology is coarser
than that of the real line.

In the fifties (or even earlier), Knaster asked in his seminar whether all
non-zero composants of K are homeomorphic. This question first appeared
in print in 1979 when Bellamy [4] analyzed the way the composants are
permuted by the shift map ĥ. (This will become clear at the end of Sec. 2.)
The subsequent papers of Dębski and Tymchatyn, Aarts and Fokkink [5, 7, 1]
stated, among other things, that homeomorphisms of K will not permute
more composants than iterates of the shift, and that there are continuous
bijections between the composants.

The purpose of this note is to give an affirmative answer to Knaster’s
question. We shall confine ourselves to K2 although most arguments apply
to more general spaces.

Theorem. All non-zero composants of K2 are homeomorphic.

The corresponding assertion for the solenoid, a quite related space, is
trivial since we know it is a group. The problem for K2 is the lack of a good
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analytical description. We shall start by introducing coordinates for K2 in
a rather simple way. Before going into details, let me thank the referee for
a number of useful comments.

2. Coordinates for the horseshoe. It is well known that [0, 1] is
the quotient space of the Cantor set C = {0, 1}N by the equivalence relation
which identifies the sequences w01 and w10 for each 0-1-word w = w1 . . . wn,
and no others. These are the binary numbers. 0 denotes a periodic sequence,
and {0, 1}∗ will denote the set of all 0-1-words including the empty word.
We need another representation of [0, 1] as a quotient of C which comes
from kneading theory.

Proposition 1. [0, 1] = C/∼ , where b, c ∈ C are equivalent if either
b = c, or b = w010 and c = w110 for some 0-1-word w, or b = w110 and
c = w010.

This is the representation of points x ∈ [0, 1] by their itineraries with
respect to the tent map, x Ã i0i1i2 . . . , with ik = 0 if gk(x) ∈ [0, 1/2] and
ik = 1 if gk(x) ∈ [1/2, 1]. Thus the point 0 as a fixed point of g has itinerary
0, and the point 1 with g(1) = 0 has itinerary 10. Each point in [0, 1] has
one itinerary, except for 1/2 which has the two itineraries 010 and 110, and
the preimages of 1/2 under the maps gn, which have two itineraries w010
and w110. It is easy to see that each 0-1-sequence appears as itinerary of a
unique point x ∈ [0, 1], and that the corresponding map from C onto [0, 1]
is continuous, which proves the proposition (cf. [2]).

An equivalence relation ∼ on C = {0, 1}N was called (strongly) shift-
invariant in [2] if i1i2i3 . . . ∼ j1j2j3 . . . implies i2i3 . . . ∼ j2j3 . . . as well as
i0i1i2 . . . ∼ i0j1j2 . . . for i0 ∈ {0, 1}. In the terminology of dynamical sys-
tems, this means that the projection π : C → X = C/∼ is a semiconjugacy
from the shift map σ(i1i2i3 . . .) = i2i3 . . . on C to a map h : X → X. In
other words, πσ = hπ. We write (X,h) = (C, σ)/∼.

In our example, (X,h) = ([0, 1], g). We could say that the tent map is
obtained from the shift σ on C by identification according to the formula

010 ∼ 110 .

A single structural formula for a dynamical system! It will turn out
that this formula describes even the structure of K completely. Let D =
{0, 1}Z denote the space of two-sided 0-1-sequences with the shift map
σ(. . . x2x1x0x−1 . . .) = . . . x1x0x−1x−2 . . . , the zero coordinate being un-
derlined.

Proposition 2. If ∼ is a shift-invariant equivalence relation with (X,h)
= (C, σ)/∼ , then the inverse limit is a corresponding quotient of the two-
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sided shift :

(X̂, ĥ) = (D,σ)/≈
where (sn)n∈Z ≈ (tn)n∈Z if there is m with sn = tn for n ≥ m and
sm−1sm−2 . . . ∼ tm−1tm−2 . . .

For the proof, note that we can always choose m ≥ 0. For each m ≥ 0,
the space

Xm = {sm−1sm−2 . . . | sk ∈ {0, 1} for k ∈ Z, k < m}/∼
with the shift map σ(sm−1sm−2 . . .) = sm−2sm−3 . . . is conjugate to (X,h).
Thus the inverse sequences

. . .→ Xm
σ−→Xm−1

σ−→ . . .→ X1
σ−→X0 and . . .→ X

h−→X h−→ . . .→ X

are identical in the category of dynamical systems. So their limits must
coincide. The elements of limXm = {(. . . xm . . . x0) | σ(xm) = xm−1} can
be written as (sn)n∈Z. A sequence (tn)n∈Z represents the same point as
(sn)n∈Z iff for some m ≥ 0, both sm−1sm−2 . . . and tm−1tm−2 . . . represent
the same point in Xm.

This proposition implies Theorem 3.1 of Holte [8] for the important case
when the fn and gn are equal. The one-dimensional maps considered there
are those which can be described by a finite number m of “structural for-
mulas” with eventually periodic sequences. The space of symbol sequences
is then a Markov subshift on m symbols instead of {0, 1}∞.

Now we know that K is the quotient of the two-sided shift with respect
to the structural formula 010 ∼ 110, and we look for the composants. It is
convenient to think of K as a union of intervals, and to concentrate on the
“integer” identification points . . . sm+1sm010 ∼ . . . sm+1sm110 with m > 0,
where intervals are linked together. The “fractional” identification points
inside the intervals will play no role hereafter. If two points (xk)k∈Z and
(yk)k∈Z can be connected by an arc, there are only finitely many integer
identification points in-between, so x and y have a common left tail: there
is m with xk = yk for all k > m. On the other hand, by the remark on
Xm, any two points with common left tail are contained in an arc in K.
Consequently, we have

Proposition 3. Each left-infinite sequence s = . . . s3s2s1 describes one
composant in K: the set of two-sided sequences which have a left tail com-
mon with s. Two sequences s, t describe the same composant iff they have a
common tail.

Now it is easy to formulate Bellamy’s results in [4] on the action of
the shift on composants: The zero composant given by . . . 000 = 0 and
the composant given by 1 are fixed, the composants given by (eventually)
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periodic s are periodic under the shift, and all other composants will have
an infinite orbit.

3. On the structure of a composant. Now let us fix a sequence
s = . . . s3s2s1 which does not start with 0, and denote the corresponding
composant of K by I. It will be convenient to consider I as a copy of the real
line, consisting of unit length intervals I0

v , v = vm . . . v1 ∈ {0, 1}∗, defined by

I0
v = {(xk)k∈Z | xk = sk for k > m, xk = vk for k = 1, . . . ,m} .

To avoid ambiguity, we can require vm 6= sm, but sometimes it is more
intuitive to describe neighbouring intervals by words v of the same length.
Figure 2 shows both versions, where the short-hand notation refers to s =
. . . 0100.

1110 1111 1101 1100 0100 0101 0111 0110 0010 0011

I0
1110 I0

1111 I0
1101 I0

1100 I0 I0
1 I0

11 I0
10 I0

010 I0
011

111. 110. 010. 011. 001.

I1
111 I1

110 I1 I1
11 I1

01

11.. 01.. 00..

I2
11 I2 I2

0

Fig. 2

Similarly, we can assemble the line I from those larger intervals Inv of
length 2n which are obtained by neglecting the digits xn, . . . , x1:

Inv = {(xk)k∈Z | xk = sk for k > m+ n, xn+k = vk for k = 1, . . . ,m} .
The incidence of neighbouring words follows from the identification rule

for the endpoints . . . v0 and . . . v10 of Inv . Words with neighbouring intervals
have the form vm . . . v20 and vm . . . v21, or vm . . . v301 and vm . . . v311, or
vm . . . vk+2010k and vm . . . vk+2110k for some k ≥ 1. Thus, the “up and
down” of the horseshoe is now formalized by saying that the digit v1 changes
periodically as

0-1-1-0,
v2v1 follows the pattern

00-01-11-10–10-11-01-00,

and v3v2v1 repeat as follows:

000-001-011-010-110-111-101-100–100-101-111-110-010-011-001-000.

It is not hard to prove the following more general
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Fact 1. For every word u = um . . . u1 and every n, the intervals of type
Inwu, w ∈ {0, 1}∗, appear with period 2m+1 in the sequence of all Inv . Among
2m+1 consecutive intervals Inv there are exactly two of type Inwu, and they
have different orientation.

Let us say that Inv has positive orientation if the point . . . sm+n+1vm . . .
. . . v1000 . . . (which corresponds to 0 in the unit interval) is the left endpoint
of Inv .

Fact 2. For fixed s = . . . s3s2s1, the intervals I0, I1, I2, . . . form a nested
sequence. In is the left half of In+1 if In has positive orientation, right if
negative. Moreover , (orientation of In+1) = (−1)sn+1(orientation of In).
Thus, if sn+2 = 1, then In is one of the middle quarters of In+2. Conse-
quently , if 0 is not a left tail of s, the union of all In is the line I.

Our proof makes use of these partitions of the “line” I, and of the
“translations” ϕnv which map In onto Inv (the ϕnv may also be “reflections”
x 7→ −x + c, in some cases). We shall apply the Euclidean metric—which
is determined by the division of I into the I0

v and into smaller binary
subintervals—to define linear mappings between intervals of I. However,
we keep in mind that the topology of I coincides with the usual topology of
the line only on compact intervals. There are “unbounded” sequences on I
which converge. In the following, we describe some kind of neighbourhood
systems of points in I.

Those intervals I0
v which come near to our origin interval I0, in terms of

the topology of I, will be called “return intervals”. To be more precise, let
us fix a sequence of integers 0 = n1 < n2 < n3 < . . . With respect to this
sequence, Inkv is called a return interval if the last dk = nk+1 − nk symbols
of v agree with the corresponding letters of s:

vdk . . . v1 = snk+1 . . . snk+1 .

Inkv is a close return interval if even the last dk +dk+1 = nk+2−nk symbols
of v coincide with the corresponding symbols in s.

Since the convergence on I is coordinatewise convergence of sequences,
up to identification of some special points, we can now describe which se-
quences x(p) in I will converge to a given x. There is an n with x ∈ int In.
For each nk > n, the x(p) must eventually belong to return intervals Ink

v(p) ,
and the position of x(p) in these intervals must stabilize:

lim
p→∞

(ϕnk
v(p))

−1(x(p)) = x in Ink .

This condition is necessary and sufficient. It suffices to require the stabilizing
condition only for one nk. It is also possible to replace “return intervals” by
“close return intervals”.



Composants of the horseshoe 237

4. How to construct a homeomorphism. We shall construct a hom-
eomorphism f from an arbitrary composant I characterized by s to the
particular composant J with characteristic sequence 1 = . . . 111. All defini-
tions and statements above apply to s = 1, and we shall write Jnw, ψnw for
s = 1 and Inv , ϕnv for the arbitrarily chosen s.

Since s does not start with 0, it is easy to choose a sequence 0 = n1 <
n2 < . . . with

(i) dk = nk+1 − nk ≥ 10 + k for k ≥ 1,
(ii) snksnk−1 is either 01 or 11 for k ≥ 2.

The one-to-one map f : I → J which we will construct has the following
properties with respect to the chosen sequence, for all k:

(a) f maps Ink continuously onto Jnk .
(b) f maps each close return interval Inkv onto a return interval Jnkw in

the same way as Ink is mapped onto Jnk—that is, fϕnkv (z) = ψnkw f(z) for
z ∈ Ink .

(c) f−1 maps each close return interval Jnkw onto a return interval Inkv
in the same way as it maps Jnk onto Ink .

Let us first show that (a), (b) imply that f : I → J is continuous—then
f−1 must also be continuous by (a) and (c). Suppose x(p) converges to x in
I, where x is an interior point of Inl . For k ≥ l, there is pk such that all x(p)

with p > pk belong to close return intervals Ink
v(p) , and z(p) = (ϕnk

v(p))−1(x(p))
converges to x. By (b), all f(x(p)) belong to return intervals Jnk

w(p) . Since f is
continuous on Ink , the sequence f(z(p)) converges to f(x) in Jnk . From the
equation in (b) it follows that f(z(p)) = (ψnk

w(p))−1f(x(p)). We have shown
that f(x(p)) converges in J to f(x), so f is continuous.

Now we shall inductively construct f on the intervals Ink so that (a)–(c)
hold true. We fix one of the two linear mappings from In1 onto Jn1 . Next,
we extend f to a homeomorphism from In2 onto Jn2 , in such a way that
the two intervals of In2 \ In1 are mapped linearly onto the two respective
intervals of Jn2 \ Jn1 . We have to show that this is possible.

For each n, Jn divides into four intervals Jn−2
w , and Jn−2 is one of the

middle quarters. Thus Jn2 \ Jn1 does really consist of two intervals, the
length of which is at least one quarter and at most three quarters of Jn2 .
By (ii), the same holds for In2 . Thus f : In2 → Jn2 is defined as a piecewise
linear bijection, and f and f−1 are Lipschitz maps with Lipschitz constant 3.

Let us proceed by induction. Intervals of the form Inkv , Jnkw will be said
to have order k. Suppose f : Ink → Jnk is already defined and satisfies
(a)–(c). We have to define f on the remaining two intervals of Ink+1 so that
(a)–(c) are valid.
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5. Counting return intervals. We have to place the close return inter-
vals, so let us count them. By definition, each interval of order m+1 contains
2dm intervals of order m, exactly one return interval of order m and exactly
one close return interval of order m − 1. Thus for one close return interval
of order m− 1 we have 2dm return intervals of order m− 1. The density of
close return intervals is so much lower than that of return intervals, that it
should not be difficult to satisfy (b) and (c), even if the image interval is
three times shorter than the domain.

The difficulty is that Ink+1 contains close return intervals of all orders
from 1 up to k−2 (for order k−1 we only have Ink−1). When we first choose
the images of the large close return intervals of order k− 2, we are left with
almost 2dk intervals in Ink+1 and uniquely corresponding intervals in Jnk+1

on which f has still to be defined. The length ratio of domain and image
interval could be considerably larger than 3, and after some further steps it
could happen that one of the remaining image intervals is so short that it
does not contain return intervals. We show how to avoid this situation.

Lemma. Let Ĩ be a union of c consecutive intervals of order m in I,
and J̃ a union of d consecutive intervals of order m in J , and let the length
ratio of these two line segments be q = max{c/d, d/c} < 4. Assume that
between a return interval of order m and an endpoint in Ĩ and J̃ there are
at least 2dm−2 intervals of order m. Finally , let an orientation on Ĩ and J̃
be given which says which is the “left” endpoint , and let an orientation for
each interval of order m− 1 in Ĩ and J̃ be specified , in an alternating way
so that two neighbouring intervals always have different orientation.

Then there are partitions of Ĩ and J̃ into finitely many subintervals and
a correspondence between the first , second, . . . , k-th elements (counted from
the left) of these partitions such that

(1) Each close return interval of order m − 1 in Ĩ or J̃ is a partition
element , and corresponds to a return interval of order m − 1 in the other
partition which has the same orientation.

(2) The other partition elements are unions of consecutive intervals of
order m − 1. Between an endpoint of the partition interval and the next
return interval of order m − 1 inside that partition interval , there are at
least 2dm−1−2 other intervals. The length ratio of two corresponding partition
elements is at most q + 2−m.

This lemma allows us to construct f on Ink+1 . We first apply it with
m = k − 1 and q = 3, taking as Ĩ each of the two parts Ink+1 \ Ink which
are unions of intervals of order k = m + 1. Since a return interval of order
m is in one of the middle quarters of the larger interval of order m + 1
(in the same way as Inm is contained in Inm+1), there are at least 2dm/4
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intervals of order m between such a return interval and an endpoint of Ĩ.
The points Ĩ ∩ Ink and J̃ ∩ Jnk have to be on the same side (both left or
both right), and intervals of order m − 1 = k − 2 on I and J are oriented
in an alternating way so that the already constructed f : Ink−2 → Jnk−2 is
orientation-preserving.

The lemma gives a correspondence of the close return intervals of order
k−2 to return intervals on the other side. Since the orientation is preserved,
we can simply transfer the definition of f : Ink−2 → Jnk−2 to each pair of
such intervals. So far, (a)–(c) are satisfied.

By (2), we can again apply the lemma to each pair of the remaining
intervals, with m = k − 3 and q = 3 + 2−(k−2). As a result, we get rid of
return intervals of order k − 3, and, by induction, of all return intervals of
orders down to 1. By geometric series, q stays below 4. f is defined on Ink+1 ,
and by induction on all I, in such a way that (a)–(c) hold. Thus f : I → J
will be a homeomorphism, and f, f−1 will be Lipschitz with respect to the
Euclidean metric, with constant 4.

It remains to show the lemma. Taking left endpoints as zero and intervals
of order m as units of measurement, we define a linear scale on Ĩ and J̃ .
Let a1, . . . , an and b1, . . . , bp be the coordinates of left endpoints of the close
return intervals of order m− 1 in Ĩ and J̃ , respectively. Assume c > d, and
let b′i = biq and a′i = ai/q be the points corresponding to bi and ai under
the unique linear orientation-preserving correspondence between Ĩ and J̃ .
The idea of the proof is to shift the b′i and a′i to nearby left endpoints of
return intervals.

Note that ai+1 − ai ≥ 2dm−2 since two close return intervals of order
m−1 are contained in different return intervals of order m, which are in the
middle quarters of two different intervals of order m + 1. The assumption
of the lemma says this remains true if the endpoints of Ĩ are denoted by
a0, an+1. Similarly, b′i+1 − b′i ≥ bi+1 − bi ≥ 2dm−2. Consider the ai, the b′i
and the endpoints of Ĩ as vertices of a partition P of Ĩ. Then at least one of
any two neighbouring intervals of P is larger than 2dm−3. For the partition
Q of J̃ induced by the bi and a′i, at least one of two neighbouring intervals
is larger than 2dm−3/q.

Now we shift each b′i in Ĩ to the left or to the right to the next left
endpoint of a return interval of order m− 1 which has the same orientation
as the close return interval given by bi. Since every interval of order m
contains one return interval of order m − 1, our shift does not exceed two
units to either side. In choosing left and right we take care of shifting the
border points of short intervals (that is, intervals of length ≤ 2dm−3) to the
inside. In J̃ , we shift the a′i at most two units to the left or right, to a left
endpoint of some return interval of order m− 1 and of the same orientation
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as the close return interval next to ai. Here we require that both border
points of intervals of length smaller than 2dm−3/q are shifted to the outside.

This procedure results in partitions P ′,Q′ of Ĩ and J̃ with the same
number of elements, where the first, second, . . . , kth intervals from the left
correspond to each other in an obvious manner. All pairs of correspond-
ing intervals in these partitions, except the first, have at their left corner a
close return interval in Ĩ and a return interval in J̃ , or conversely. Consider-
ing these left parts as separate partition elements, we obtain the partitions
described in the lemma.

We conclude with proving the last two assertions of (2). Take a return
interval of order m−1 in one of the partition sets of type (2). It is contained
in one of the middle quarters of the corresponding interval of order m, which
contains 2dm−1 intervals of order m−1. We only have to prove that the larger
interval is also in the partition set. For the leftmost and rightmost partition
sets this follows from the first assumption, and for the other partition sets
from the fact that two return intervals of order m−1 are in different intervals
of order m.

For pairs of intervals which have been termed “short”, the length ratio
has become smaller than q. For the other pairs of intervals, the maximum
relative increase of the I-part by the shift procedure is 4/2dm−3, and the
strongest possible relative decrease of the J-part is 4q/2dm−3. With dm ≥
10 +m we get, for each m ≥ 1,

q′ ≤ q · 1 + 25−dm

1− 27−dm ≤ q ·
1 + 2−5−m

1− 2−3−m = q +
5q

4(23+m − 1)
≤ q + 2−m .
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