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On strong liftings for projective limits

by

N. D. Mache r a s (Piraeus) and W. St r au s s (Stuttgart)

Abstract. We discuss the permanence of strong liftings under the formation of pro-
jective limits. The results are based on an appropriate consistency condition of the liftings
with the projective system called “self-consistency”, which is fulfilled in many situations.
In addition, we study the relationship of self-consistency and completion regularity as well
as projective limits of lifting topologies.

Introduction. Only recently in [19] the general theory of inductive
limits of (topological) measure spaces was developed by N. D. Macheras
and at the same time the permanence of strong lifting was established for
inductive limits. For much longer time the projective limit of measure spaces
is in common use (see e.g. Bochner [4], Choksi [5], Musia l [25], Rao [29])
but there seems to be no discussion of the permanence of strong liftings for
general projective limits. Only for finite or countable products there exist
permanence results in the forthcoming paper [22].

As in [22] our main concern in this paper is with conditions of compat-
ibility of the liftings in the factors with the lifting on the limit or product.
The notion of the “consistent lifting” of M. Talagrand [30] seems to be the
first example on this line. Talagrand’s paper is only for finite products in
which all factors must be equal. [22] gives consistency conditions for finite
and countable products with different factors, and our basic sufficient con-
dition for the existence of strong liftings on projective limits in this paper,
the so- called “self-consistency” (see Section 1 for definitions), may be read
as a strengthening of Talagrand’s consistent lifting, i.e. to be precise in his
special instance it is a condition in terms of the generators of the product
σ-algebra while ours is a condition on the whole σ-algebra. Remark 2.2(iii)
gives a list of projective systems which allow self- consistent liftings. Among
them are always countable systems provided all factors have the universally
strong lifting property (USLP for short). The basic existence result for
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strong liftings on projective limits is Theorem 2.3. It can be seen that self-
consistency is not a necessary condition for the existence of strong liftings
(see Remark 3.3).

For products there is a well-known but somewhat elusive relationship
between completion regularity and the existence of strong liftings (see e.g.
[6]). By Theorem 3.1, self-consistency is sufficient (but again not necessary
by Remark 3.3) for the permanence of completion regularity under projec-
tive limits of compact spaces and more generally for Hausdorff completely
regular spaces in the presence of sequential maximality. Corollary 3.2 gives
a permanence result for strong Baire liftings in projective limits.

In Section 4 we study the projective limit for lifting topologies. In terms
of lifting topologies equivalent conditions can be given for the existence of
a strong lifting on the projective limit (see Theorem 4.1 and its corollaries).
Section 5 contains the specialization to products, thus extending the results
in [22] from countable to uncountable products (see Theorem 5.3).

One consequence of the basic result (Theorem 5.3) is the existence of a
strong lifting if all factors have the USLP (see Theorem 5.6). This theorem
comprises the classical result of [14] and [16].

There exist projective limit Radon measures, e.g. the Wiener measure
on Ic where I := [−∞, +∞] in which every lifting is almost strong, i.e. they
have the USLP but there exists no strong lifting which can be represented
as a projective limit of strong liftings.

1. Preliminaries. We assume throughout that every topological space
X is Hausdorff completely regular. The σ-field of Borel (resp. Baire) sets
over X, B(X) (resp. B0(X)), is the one generated by all open subsets of X
(resp. by all bounded continuous functions on X). By a Borel (resp. Baire)
measure on X we mean a finite, nonnegative countably additive set function
defined on B(X) (resp. B0(X)).

Let (Ω,Σ, µ) be a finite measure space, i.e. Ω is a set, Σ a σ-field of
subsets of Ω, and µ a nonnegative real-valued countably additive measure
on Σ. Throughout we assume that 0 < µ(Ω) < ∞. We write Σ∧ for the
Carathéodory completion of Σ with respect to µ. The canonical extension
of µ to Σ∧ will again be denoted by µ.

Let (T,Λ) be a measurable space, i.e. T is a set and Λ a σ-field of subsets
of T . A mapping f from Ω into T is called Σ-Λ- measurable iff f−1(B) ∈ Σ
for all B ∈ Λ. L∞(Ω,Σ, µ) or just L∞(Ω,µ) is the space of all bounded
Σ- B(R)-measurable functions on Ω, where R denotes the set of all real
numbers.

For a complete finite measure space (Ω,Σ, µ) a lifting on L∞(Ω,µ) is a
linear mapping %∗ from L∞(Ω,µ) into L∞(Ω,µ) with the following proper-
ties:



Strong liftings for projective limits 211

(I) %∗(f) = f a.e. (µ),
(II) f = g a.e. (µ) implies %∗(f) = %∗(g),

(III) %∗(1) = 1 where 1 is the function identically equal to 1 on Ω,
(IV) f ≥ 0 a.e. (µ) implies %∗(f) ≥ 0,
(V) %∗(fg) = %∗(f)%∗(g)

(cf. [14, p. 34]). A lifting on Σ is a mapping % from Σ into Σ with the
following properties:

(I′) %(A) = A a.e. (µ),
(II′) A = B a.e. (µ) implies %(A) = %(B),

(III′) %(Ω) = Ω, %(∅) = ∅,
(IV′) %(A ∩B) = %(A) ∩ %(B),
(V′) %(A ∪B) = %(A) ∪ %(B)

(cf. [14, p. 35]). A mapping ϕ from Σ into Σ is called a lower density (or
just a density) for (Ω,Σ, µ) if it satisfies (I′)–(IV′) (cf. [14, p. 36]).

We note that for any lifting % on Σ there exists exactly one lifting %∗

on L∞(Ω,µ) such that %∗(1A) = 1%(A) for A ∈ Σ and vice versa (cf. [14,
pp. 35, 36]). For simplicity we write %∗ = % throughout.

A Radon measure µ on X is a nonnegative real-valued Borel measure on
B(X) such that for each Borel set E in B(X),

µ(E) = sup{µ(K) : K ⊆ E, K compact} .

A Borel measure µ on X is called:

(i) a category measure iff the Borel null sets and the Borel sets of first
category are the same. Then (X,B∧(X), µ) is called a category measure
space (cf. Oxtoby [28], p. 86);

(ii) regular iff it satisfies one of the following equivalent conditions:

(I) µ(B) = sup{µ(F ) : F ⊆ B, F closed},
(II) µ(B) = inf{µ(U) : B ⊆ U, U open},

for all B ∈ B(X).

A regular Borel measure µ (or Baire measure µ0) on a compact space X
is called completion regular iff the completion of the Baire restriction µ0 of
µ coincides with the completion of µ (or the completion of µ0 coincides with
the completion of its regular Borel extension µ). The terminology is due to
Halmos [13], p. 230.

We shall use the fact that every τ -additive Baire measure µ0 on a com-
pletely regular space X has a unique extension to a τ - additive Borel measure
µ (cf. [17] for the proof of this result and for definition of τ -additivity).

A lifting % for (X,B∧0 (X), µ) is called a strong Baire lifting iff %(h) = h for
each h ∈ Cb(X), where Cb(X) is the set of all bounded continuous functions
on X.
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1.1. Definitions. A topological measure space is a quadruple (X, T ,
Σ, µ) where (X, Σ, µ) is a measure space and T is a topology on X with
T ⊆ Σ.

A lifting % for a complete topological probability space (X, T , Σ, µ) is
called almost strong iff there exists N ∈ Σ with µ(N) = 0 and %(f)(x) =
f(x) for all f ∈ Cb(X) and all x ∈ X \ N . The space (X, T, Σ, µ) has the
universal strong lifting property (USLP for short) iff each lifting % for µ is
almost strong.

1.2. Definition. A family of sets (Xα)α∈I is said to be a projective
system relative to mappings fαβ , α, β ∈ I, iff

(i) I is a directed set with respect to the ordering relation ≤; if α ≤ β
and α 6= β, then we write α < β;

(ii) the mappings fαβ : Xβ → Xα are defined for each α, β ∈ I such that
α ≤ β;

(iii) fαγ = fαβ ◦ fβγ , whenever α ≤ β ≤ γ, and fαα is the identity
mapping.

We use the notation (Xα, fαβ , I) for such a system. The set

X :=
{

(xα)α∈I ∈
∏
α∈I

Xα : fαβ(xβ) = xα, α < β
}

is the projective limit of (Xα, fαβ , I). In symbols X = lim projα∈I Xα.

1.3. Definition. A family (Xα, Σα)α∈I of measurable spaces (resp.
(Xα, Tα)α∈I of topological spaces) is said to be a projective system relative
to mappings fαβ , α, β ∈ I, iff

(i) (Xα, fαβ , I) is a projective system,
(ii) fαβ is Σβ-Σα- measurable (resp. Tβ-Tα-continuous) for α≤β, α, β∈I.

We use the notation (Xα, Σα, fαβ , I) (resp. (Xα, Tα, fαβ , I)) for such a
system. If Σ (resp. T ) is the smallest σ-field (resp. topology) in X relative to
which the canonical projections fα from X into Xα, defined by fα((xβ)β∈I)
= xα, are Σ-Σα-measurable (resp. T -Tα-continuous), then Σ (resp. T ) is
called the projective limit σ-field (resp. topology) of (Σα)α∈I (resp. (Tα)α∈I).
In symbols Σ = lim projα∈I Σα (resp. T = lim projα∈I Tα).

1.4. Definition. A family (Xα, Σα, µα)α∈I (resp. (Xα, Tα, Σα, µα)α∈I)
of measure spaces (resp. topological measure spaces) is said to be a projective
system relative to mappings fαβ , α, β ∈ I iff

(i) (Xα, Σα, fαβ , I) (resp. (Xα, Σα, fαβ , I) and (Xα, Tα, fαβ , I)) are
projective systems,

(ii) fαβ is measure preserving, i.e. µβ(f−1
αβ (A)) = µα(A) for each α ≤ β

and A ∈ Σα.
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We use the notation (Xα, Σα, µα, fαβ , I) (resp. (Xα, Tα, Σα, µα, fαβ , I))
for such a system. The projective system (Xα, Σα, µα, fαβ , I) (resp. (Xα, Tα,
Σα, µα, fαβ , I)) is convergent iff there exists a measure µ on Σ such that

µ(f−1
α (A)) = µα(A) for each α ∈ I and A ∈ Σα

(resp. (Xα, Σα, µα, fαβ , I) is convergent and the projective limit topology
T of (Tα)α∈I is contained in Σ). Then (X, Σ, µ, (fα)α∈I) (resp. (X, T , Σ,
µ, (fα)α∈I)) is called the projective limit of (Xα, Σα, µα, fαβ , I) (resp.
(Xα, Tα, Σα, µα, fαβ , I)). The measure space (X,Σ,µ) (resp. the topological
measure space (X, T , Σ, µ)) is called the projective limit measure space (resp.
topological measure space) of (Xα, Σα, µα)α∈I (resp. (Xα, Tα, Σα, µα)α∈I).

The projective system (Xα, Σα, µα, fαβ , I) (resp. (Xα, Tα, Σα, µα,
fαβ , I)) is said to be sequentially convergent iff for each sequence J = (αn),
α1 < α2 < . . . , αn ∈ I, the projective system (Xα, Σα, µα, fαβ , J) (resp.
(Xα, Tα, Σα, µα, fαβ , J)) is convergent.

All the systems that are used in this paper are projective, so that, in
order to simplify the notation, we may use the word “system” instead of
“projective system”. We also suppose throughout this paper that all canon-
ical projections fα are surjective.

Finally, let (Xα, Σα, µα) be a complete measure space and %α a lifting
for µα, α ∈ I. The family (%α)α∈I is called self-consistent iff %β(f−1

αβ (A)) =
f−1

αβ (%α(A)) for all α ≤ β and A ∈ Σα.
All unexplained (topological) measure theoretic notions will be those of

Halmos [13] and Knowles [17]. Those concerning lifting theory and topology
can be found in A. and C. Ionescu Tulcea [14] and Dugundji [8] respectively.

2. The existence theorem

2.1. Proposition. Let (Xn, Tn, Σn, µn, fnm, N) for N = {1, 2, . . .} be a
system of complete topological probability spaces and let (%n)n∈N be a self-
consistent sequence of strong liftings %n for µn. Suppose that the system
(Xn, Σn, µn, fnm, N) is convergent with projective limit (X, Σ, µ, (fn)n∈N),
and that T is the projective limit of the topologies (Tn)n∈N. Then T ⊆ Σ∧

and there exists a strong lifting % for (X, T , Σ∧, µ) such that

%(f−1
n (A)) = f−1

n (%n(A))

for each n ∈ N and A ∈ Σn. In particular , if Σn = B∧(Xn) then Σ∧ =
B∧(X).

P r o o f. For any n ∈ N the class of sets Σ∗
n := f−1

n (Σn) is a field
of subsets of X. For A∗

n ∈ Σ∗
n, A∗

n = f−1
n (An), let µ∗n(A∗

n) := µn(An).
Then (X, Σ∗

n, µ∗n) is a measure space. Moreover, for n ≤ m, Σ∗
n ⊆ Σ∗

m

and µ∗n(A) = µ∗m(A) for any A ∈ Σ∗
n. Let (Σ∗

n)µ be the σ-subfield of Σ∧

generated by Σ∗
n ∪ u for u := {A ∈ Σ∧ : µ(A) = 0}, (µn)∧ := µ|(Σ∗

n)µ and
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Σ∗ :=
⋃

n∈N(Σ∗
n)µ. Then it can be easily seen that (Σ∗

n)µ = {(A ∩ N c) ∪
(Ac ∩ N) : A ∈ Σ∗

n, N ∈ u}, Σ∗ is a field of subsets of X, and the σ-field
Σ∧ is equal to σ(Σ∗), the σ-field generated by Σ∗.

Claim 1. There exists a density ϕ for (X, Σ∧, µ) such that , for every
n ∈ N and A ∈ Σn,

ϕ(f−1
n (A)) = f−1

n (%n(A)) .

Define, for every %n, a lifting %∗n for (X, (Σ∗
n)µ, (µn)∧) by %∗n(A∗) =

f−1
n (%n(A)), where A∗ ∈ (Σ∗

n)µ and A ∈ Σn with A∗ = f−1
n (A) a.e. (µn)∧.

For all n, m ∈ N, n ≤ m, we have

%∗m|(Σ∗
n)µ = %∗n .

Indeed, for A∗
n ∈ (Σ∗

n)µ there exists a set An ∈ Σn such that A∗
n = f−1

n (An)
a.e. (µn)∧, n ∈ N. So, we get

%∗m(A∗
n) = %∗m(f−1

n (An)) = %∗m(f−1
m (f−1

nm(An))) = f−1
m (f−1

nm(%n(An)))

= f−1
n (%n(An)) = %∗n(f−1

n (An)) = %∗n(A∗
n) .

Thus there exists a density ϕ for (X, Σ∧, µ) such that ϕ(f−1
n (A)) =

f−1
n (%n(A)) for each n ∈ N and A ∈ Σn (cf. [12], Proposition 2 for ex-

ample).

Claim 2. There exists a strong lifting % for (X, T , Σ∧, µ) such that

%(f−1
n (A)) = f−1

n (%n(A))

for each n ∈ N and A ∈ Σn.

By the theorem of von Neumann [26] (see also Traynor [31], Theorem 3,
p. 268) there exists a lifting % for (X, Σ∧, µ) such that ϕ(A) ⊆ %(A) for each
A ∈ Σ∧, and %(f−1

n (B)) = f−1
n (%n(B)) for each n ∈ N and B ∈ Σn.

Now let T%n := {An ∈ Σn : An ⊆ %n(A)}, n ∈ N, be the “lifting
topology” on Xn. Since for each set An ∈ T%n we have

f−1
nm(An) ⊆ f−1

nm(%n(An)) = %m(f−1
nm(An)) ,

i.e. f−1
nm(An) ∈ T%m , each mapping fnm is T%m -T%n -continuous. In the same

way it can be proved that each fn is T%-T%n
-continuous. Thus we get

(∗) T ⊆ lim proj
n∈N

T%n
⊆ T% ⊆ B(T%) = Σ∧

(for the equality cf. e.g. [14]). Consequently, % is a strong lifting for (X, T ,
Σ∧, µ).

In particular, if Σn = B∧(Xn), n ∈ N, then relations (∗) and the obvious
one, Σ∧ ⊆ B∧(X), imply that Σ∧ = B∧(X).

2.2. R e m a r k s. (i) By using the same arguments as in the proof of the
above proposition it can be proved that (a) the density ϕ in the proof is
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strong, and (b) the lifting % and the density ϕ are strong even if every %n is
only a strong density.

(ii) Clearly the trivial system (Xα, Σα, µα, fαβ , I) where Xα = X, Σα =
Σ, µα = µ for each α ∈ I, (X, Σ, µ) is a probability space and each fαβ is
the identical mapping on X is convergent. The first nontrivial example of
a convergent system was given by Kolmogorov who obtained a projective
limit probability measure on the infinite cartesian product of unit inter-
vals (cf. e.g. [5, p. 321]). Bochner [4, pp. 118–119] extended the result of
Kolmogorov by proving the existence of the projective limit space for an
arbitrary system of topological spaces with measures approximated by com-
pact sets. Generalizations of the result of Bochner can be found e.g. in [5],
[25], and [27].

(iii) There are projective systems (Xα, Tα,B∧(Xα), µα, fαβ , I) of topo-
logical probability spaces for which there exist self-consistent systems of
(almost) strong liftings as the following examples show:

(a) Each Xα is only a completely regular space, µα has the USLP and
I = N. We construct inductively a self-consistent sequence (%n)n∈N of almost
strong liftings in the following way: Let %1 be an almost strong lifting for
µ1. Define ω2 by

ω2(g ◦ f12) := %1(g) ◦ f12 ,

where g ∈ L∞(X1, µ1). Then ω2 is an unambiguously defined almost strong
lifting on {g ◦ f12 : g ∈ L∞(X1, µ1)} which can be extended to an almost
strong lifting %2 for µ2 (cf. [1], proof of Theorem 2.3, or [21], Lemma 2.1).
In the same way we construct for a given almost strong lifting %n for µn an
almost strong lifting %n+1 for µn+1 such that

%n+1(g ◦ fn(n+1)) := %n(g) ◦ fn(n+1)

where g ∈ L∞(Xn, µn). Obviously the system (%n) is self-consistent.
(b) Each Xα is an extremally disconnected compact space, each (Xα,

B∧(Xα), µα) is a category probability space (such spaces Xα are exactly the
hyperstonian spaces of Dixmier [7] (cf. [11], Satz 9.6)) with supp(µα) = Xα,
α ∈ I, and each %α is the natural strong lifting for µα. We mention that
the projective limit of hyperstonian spaces is not in general a hyperstonian
space (cf. [20], §4).

(c) Each (Xα, Tα,B∧(Xα), µα) is a topological probability space such
that each Xα is an extremally disconnected Baire space where each set of
the first category is closed, and each (Xα,B∧(Xα), µα) is a category measure
space. Then, for each α ∈ I, there exists a unique strong lifting %α for µα

such that Tα = T%α
(cf. [11], Satz 8.33).

If α ≤ β put

Hβ,0 := {f̃ ◦ fαβ : f̃ ∈ L∞(Xα, µα)} .
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Let Hβ := {g ∈ L∞(Xβ , µβ) : g = g′ a.e. (µβ) for some g′ ∈ Hβ,0}. Define
a lifting %′β on Hβ by means of the equation

(∗) %′β(f̃ ◦ fαβ) = %α(f̃) ◦ fαβ

for f̃ ∈ L∞(Xα, µα). Then %′β is Hβ-strong, i.e. %′β(g) = g for each g ∈
Hβ := {h ◦ fαβ : h ∈ Cb(Xα)}. In both cases (b) and (c) the restriction of
the strong lifting %β to Hβ is equal to %′β . Therefore in (∗) we may replace
%′β by %β , which is the self-consistency we have to prove.

Next we deal with the general projective system (Xα, Tα, Σα, µα, fαβ , I).
We put

D(I) := {(αn)n∈N : αn ∈ I for n ∈ N and α1 < α2 < . . .} .

For each M = (αn)n∈N in D(I) we denote by fM the canonical projection
from X to XM = lim projn∈N Xαn . We say that the system (Xα, fαβ , I) is
sequentially maximal iff fM is a surjection for each M in D(I) (cf. e.g. [25]).

Using Proposition 2.1 we obtain the following result.

2.3.Theorem.Let (Xα, Tα, Σα, µα, fαβ , I) be a system of complete topo-
logical probability spaces. Suppose (Xα, Σα, µα, fαβ , I) is convergent with
projective limit (X, Σ, µ, (fα)α∈I), T is the projective limit of (Tα)α∈I , and
(%α)α∈I is a self-consistent family of strong liftings %α for (Xα, Tα, Σα, µα).
Then T ⊆ Σ∧ and there exists a strong lifting % for (X, T , Σ∧, µ) such that

(L) %(f−1
α (A)) = f−1

α (%α(A))

for all α ∈ I and A ∈ Σα. In particular , if Σα = B∧(Xα) then Σ∧ =
B∧(X).

P r o o f. For each M = (αn)n∈N in D(I), (Xαn
, Tαn

, Σαn
, µαn

, fαnαm
, N)

is a system of complete topological probability spaces such that (Xαn
,

Σαn
, µαn

, fαnαm
, N) is convergent with projective limit (XM , ΣM , µM ,

(fαnM )n∈N) and µ ◦ f−1
M = µM (cf. [25], Proposition 2.3). Let TM be

the projective limit topology of (Tαn)n∈N.
By Remark 2.2(i) there exists a strong density ϕM for (XM , TM , Σ∧

M , µM )
such that

ϕM (f−1
αnM (A)) = f−1

αnM (%αn
(A))

for any αn ∈ M and A ∈ Σαn
. In particular, Σ∧

M = B∧(XM ) if Σαn
=

B∧(Xαn
).

We now introduce an order relation in D(I) as follows: for M = (αn),
N = (βn) in D(I),

M ≤ N iff αn ≤ βn for each n ∈ N.

For (xβn
) in XN we set

fMN ((xβn
)) = (fαnβn

(xβn
)).
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It follows that fM = fMN ◦ fN and µN ◦ f−1
MN = µM since µM = µ ◦ f−1

M =
µ ◦ f−1

N ◦ f−1
MN = µN ◦ f−1

MN .
Now we claim that for M = (αn), N = (βn) ∈ D(I),

M ≤ N implies ϕN ◦ f−1
MN = f−1

MN ◦ ϕM .

Indeed, let A ∈ Σ∧
M and denote by Eαn(1A) the conditional expectation

of 1A with respect to the σ-field (Σ∗
αn

)µM
, n ∈ N, defined in the proof of

Proposition 2.1. For all n, k ∈ N we have (Ak,αn
)∗ := {Eαn

(1A) > 1−1/k} ∈
(Σ∗

αn
)µM

. It is easily seen that

(∗) f−1
MN ((Ak,αn

)∗) = ((f−1
MN (A))k,βn

)∗ a.e. (µβn
)∧ .

On the other hand, it is well known that

ϕM (A) =
⋂
k∈N

⋃
n∈N

⋂
m≥n

%∗αm
((Ak,αm

)∗)

where %∗αm
are defined in the proof of Proposition 2.1 (cf. for example [11],

Lemma 4.6, p. 64). Hence,

f−1
MN (ϕM (A)) =

⋂
k∈N

⋃
n∈N

⋂
m≥n

f−1
MN (%∗αm

((Ak,αm
)∗))(1)

=
⋂
k∈N

⋃
n∈N

⋂
m≥n

f−1
MN (%∗αm

(f−1
αmM (Ak,αm

))

=
⋂
k∈N

⋃
n∈N

⋂
m≥n

f−1
MN (f−1

αmM (%αm
(Ak,αm

)))

=
⋂
k∈N

⋃
n∈N

⋂
m≥n

f−1
βmN (f−1

αmβm
(%αm(Ak,αm))).

On the other hand,

ϕN (f−1
MN (A))

(∗)
=

⋂
k∈N

⋃
n∈N

⋂
m≥n

%∗βm
(f−1

MN ((Ak,αm
)∗))(2)

=
⋂
k∈N

⋃
n∈N

⋂
m≥n

%∗βm
(f−1

MN (f−1
αmM (Ak,αm

)))

=
⋂
k∈N

⋃
n∈N

⋂
m≥n

%∗βm
(f−1

βmN (f−1
αmβm

(Ak,αm
)))

=
⋂
k∈N

⋃
n∈N

⋂
m≥n

f−1
βmN (%βm(f−1

αmβm
(Ak,αm)))

=
⋂
k∈N

⋃
n∈N

⋂
m≥n

f−1
βmN (f−1

αmβm
(%αm(Ak,αm))) .

From (1) and (2) we deduce our claim.
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Furthermore, we have Σ =
⋃

M∈D(I) f−1
M (ΣM ) and for any M,N ∈ D(I),

M ≤ N ,

f−1
M (ΣM ) ⊆ f−1

N (ΣN ).

Now, for M ∈ D(I), define a density ϕ∗M for (X, (f−1
M (Σ∧

M ))µ, (µM )∧), where
(f−1

M (Σ∧
M ))µ is the σ-subfield of Σ∧ generated by f−1

M (Σ∧
M )∪u for u := {A ∈

Σ∧ : µ(A) = 0}, and (µM )∧ := µ|(f−1
M (Σ∧

M ))µ, by

ϕ∗M (A∗) := f−1
M (ϕM (A))

for any A∗ ∈ (f−1
M (Σ∧

M ))µ and A ∈ Σ∧
M with A∗ = f−1

M (A) a.e. (µM )∧ (see
the proof of Proposition 2.1). Since ϕ∗N |(f

−1
M (Σ∧

M ))µ = ϕ∗M for M ≤ N ,
there exists a density ϕ for (X, Σ∧, µ) such that

ϕ(f−1
M (A)) = f−1

M (ϕM (A)) for A ∈ Σ∧
M .

The result now follows as in the proof of Proposition 2.1.

If for a self-consistent family (%α)α∈I of liftings %α for (Xα, Σα, µα),
α ∈ I, and for a lifting % for (X, Σ∧, µ) the equality (L) of the above
theorem is true we write % = lim projα∈I %α and call % a projective limit of
the family (%α)α∈I .

2.4. R e m a r k s. (i) There are systems of topological probability spaces
without any self-consistent family of strong liftings. Fremlin’s simplification
of Losert’s [18] celebrated counter-example to the strong lifting conjecture
gives such a system. Indeed, let µ be Fremlin’s Radon probability measure
on X := {0, 1}ℵ2 which has no strong lifting and is supported by X (cf. [10]).

The set I of all finite subsets of ℵ2 forms a directed set under inclusion;
(X, (fα)α∈I) is the projective limit of (Xα, fαβ , I) where Xα =

∏
Xi, Xi =

{0, 1}, and fαβ (resp. fα) is the canonical projection from Xβ onto Xα (resp.
from X onto Xα) for α ≤ β, α, β ∈ I (resp. α ∈ I). If µα is the image
measure µ ◦ f−1

α on B∧(Xα) then µ is the projective limit of the system
(µα)α∈I .

Now assume that there exists a self-consistent family (%α)α∈I of strong
liftings %α for µα. Then by Theorem 2.3 there exists a strong lifting % for
µ; this yields a contradiction and hence there cannot exist any self-of strong
liftings for the system (Xα, Tα,B∧(Xα), µα, fαβ , I).

(ii) It is well known that the projective limit µ of a system (µα) of
τ -additive measures µα is, in general, not such a measure, even if each µα

is Radon (cf. [27], p. 331 and [24], Theorem 4.6).
Combining Theorem 2.3 and [2], Proposition 3, we conclude that the

existence of a self-consistent family (%α)α∈I of strong liftings %α for µα is
sufficient in order to preserve the τ -additivity of measures under the forma-
tion of projective limits.
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(iii) The above example of Moran from (ii) together with [3], Theorem 4.2
and Corollary 6.1, and [1] shows that projective limits of (strongly) measure
compact spaces (resp. (strongly) lifting compact spaces) are, in general, not
even measure compact (resp. lifting compact). (For definitions of the above
notions see [1], [3] and [24].)

(iv) The relation B∧(X) = Σ∧ is not true in general. For example, the
Wiener measure µ (or the measure of the Brownian motion process) defined
on I[0,1] = Ic where I := [−∞, +∞] is a projective limit of Borel measures
µα defined on Iα for α ∈ I and I is the family of all finite nonvoid subsets
of [0, 1]. Denote by (Ic, Σ∧, µ) the completed projective limit space of the
measure spaces (Iα,B∧(Iα), µα) where µα = µ◦f−1

α and fα : Ic → Iα are the
canonical projections for all α ∈ I. Since µ is not completion regular (cf. [6])
it follows that B∧0 (X) ⊂ B∧(X) properly. On the other hand, B0(X) = Σ
(cf. e.g. [15]). Thus B∧(X) ( Σ∧. This means that the open sets are not
measurable for the infinite product while they are for the finite products.

(v) The converse of Theorem 2.3 is true in the following sense: Let
(Xα, Tα, Σα, µα, fαβ , I) be a system of complete topological probability
spaces. Suppose that (Xα, Σα, µα, fαβ , I) is convergent with projective limit
(X, Σ, µ, (fα)α∈I) and T is the projective limit of (Tα)α∈I . If T ⊆ Σ∧,
(%α)α∈I is a family of liftings %α for µα (α ∈ I), and % is a strong lifting for
µ such that condition (L) from Theorem 2.3 holds true then all %α (α ∈ I)
are necessarily strong. Indeed, for given U ∈ Tα for some α ∈ I we have
f−1

α (U) ⊆ %(f−1
α (U)) = f−1

α (%α(U)). This implies U ⊆ %α(U).

3. Permanence of completion regularity. Theorem 2.3 provides a
basis for discussing the permanence of completion regularity for projective
limits. The Wiener measure shows that a projective limit of completion
regular measures is not in general such a measure and at the same time
it shows that a projective limit of measures with the strong Baire lifting
property need not be such a measure (see Remark 2.4 (iv) in combination
with [2], Prop. 3).

For preparation we need the following lemma.

Lemma. Let (X, Σ, µ, (fα)α∈I) and (X, Σ1, µ1, (fα)α∈I) be the projective
limits of the systems (Xα, Σα, µα, fαβ , I) and (Xα, Σ∧

α , µα, fαβ , I) respec-
tively. Suppose that the system (Xα, fαβ , I) is sequentially maximal. Then
Σ∧ = Σ∧

1 .

P r o o f. Clearly, given a system (Xα, Σα, µα, fαβ , I) the family (Xα, Σ∧
α ,

µα, fαβ , I) is also a system, Σ ⊆ Σ1, and the restriction of µ1 to Σ coincides
with µ. We only have to show that Σ1 ⊆ Σ∧. Let A ∈

⋃
α∈I f−1

α (Σ∧
α ).

There exist α ∈ I and Aα ∈ Σ∧
α with A = f−1

α (Aα). So there exist
Eα, Fα ∈ Σα such that Eα ⊆ Aα ⊆ Fα and µα(Fα \ Eα) = 0. Conse-
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quently, f−1
α (Eα), f−1

α (Fα) ∈ Σ, f−1
α (Eα) ⊆ A ⊆ f−1

α (Fα) and µ(f−1
α (Fα) \

f−1
α (Eα)) = 0, i.e. A ∈ Σ∧.

3.1. Theorem. Let (Xα, Tα, fαβ , I) (resp. (Xα,B0(Xα), µα,0, fαβ , I)) be
a system of compact spaces (resp. Baire probability spaces) with projective
limit (X, T , (fα)α∈I) (resp. (X, Σ0, µ0, (fα)α∈I)). Suppose that the regular
Borel extension µα of µα,0, α ∈ I, is completion regular , and that (%α)α∈I

is a self-(Xα, Tα,B∧(Xα), µα). Then Σ∧
0 = B∧(X), there exists a strong

lifting % for (X, T ,B∧(X), µ0) with

(∗) %(f−1
α (A)) = f−1

α (%α(A))

for all α ∈ I and A ∈ B∧(Xα), and µ0 is completion regular.

P r o o f. By [5], p. 325, the system (Xα,B0(Xα), µα,0, fαβ , I) is conver-
gent with

(1) Σ0 = B0(X) .

Again by [5], Theorem 2.2, the system (Xα,B(Xα), µα, fαβ , I) (resp. (Xα,
B∧(Xα), µα, fαβ , I)) is convergent; denote by (X, Σ, µ, (fα)α∈I) (resp. (X,
Σ1, µ1, (fα)α∈I)) its projective limit. We may apply Theorem 2.3 to deduce
that

(2) Σ∧
1 = B∧(X)

and that there exists a strong lifting % for (X, T ,B∧(X), µ1) with prop-
erty (∗).

Since each µα is completion regular it follows that

Σ1 = lim proj
α∈I

B∧0 (Xα) .

Hence applying the above lemma we get

(3) Σ∧
1 = Σ∧

0 ,

and µ1 = µ0. Thus % is strong for (X, T ,B∧(X), µ0).
Finally, from (1)–(3) it follows that B∧0 (X) = B∧(X), i.e. the completion

regularity of µ0.

R e m a r k. The above theorem remains true if the spaces Xα are only
Hausdorff completely regular, (Xα, fαβ , I) is sequentially maximal, B0(X) =
Σ0, and the measures µα are Radon for all α ∈ I. The proof is the same
with the exception of the convergence of (Xα, Tα,B0(Xα), µα, fαβ , I), which
follows e.g. from [5], Theorem 2.1.

3.2. Corollary. Let (Xα, Tα, fαβ , I) (resp. (Xα,B0(Xα), µα,0, fαβ , I))
be a system of compact spaces (resp. Baire probability spaces) with projective
limit (X, T , (fα)α∈I) (resp. (X, Σ, µ, (fα)α∈I)). Suppose that (%α)α∈I is a
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self-consistent family of strong Baire liftings %α for µα,0. Then there exists
a strong Baire lifting % for µ such that

(∗) %(f−1
α (A)) = f−1

α (%α(A))

for all α ∈ I and A ∈ B∧0 (Xα), and B∧0 (X) = Σ∧.

P r o o f. According to [2], Proposition 3, each µα,0 is completion regular
and therefore each %α is a strong lifting for (Xα, Tα,B∧(Xα), µα), where µα

is the regular Borel extension of µα,0. Thus by Theorem 3.1, B∧(X) = Σ∧,
µ is completion regular and there exists a strong lifting for (X, T ,B∧(X), µ)
with property (∗). Consequently, % is a Baire strong lifting.

3.3. Remark. The self-consistency of the strong liftings %α in Theorem
2.3 as well as in Theorem 3.1 is not necessary for the existence of a strong
lifting for the Borel extension of the projective limit measure µ or for the
completion regularity of µ as the following examples show.

The Wiener measure µ in Remark 2.4(iv) has a strong lifting % but
it is not completion regular (cf. [6]). If % were a projective limit of a
self-consistent family of strong liftings %α for µα then by Theorem 3.1, µ
should be completion regular, which contradicts what we mentioned at the
beginning of this section.

On the other hand, Fremlin’s simplification [10] of Losert’s counter-
example to the strong lifting conjecture gives a Radon probability measure
on [0, 1]ℵ2 which is completion regular but it has no strong lifting. The
above measure is a projective limit of completion regular measures without
any family of self-consistent strong liftings (compare Remark 2.4(i)).

4. Lifting topologies. In the following we give conditions equivalent to
the existence of a strong lifting which is a projective limit in terms of lifting
topologies. For a complete probability space (Ω,Σ, µ), one can associate
with every lifting % for µ two so-called lifting topologies T% := {A ∈ Σ : A ⊆
%(A)} and T% := {

⋃
i %(Ai) : Ai ∈ Σ for i ∈ I}. We used T% in the proof

of Proposition 2.1. The topologies T% and T% are extremally disconnected,
T% ⊆ T% and Cb(Ω, T%) = Cb(Ω, T%) = {f ∈ L∞(µ) : f = %(f)} (see [14]).

4.1. Theorem. Let (Xα, Σα, µα, fαβ , I) be a convergent system of com-
plete probability spaces with projective limit (X, Σ, µ, (fα)α∈I). Let (%α)α∈I

be a self- consistent family of liftings %α for µα, and % a lifting for µ. Then
the following conditions are equivalent :

(i) The projective limit topology T of (T%α
)α∈I is contained in Σ∧ and

% is strong with respect to T .
(ii) The projective limit topology T of (T%α)α∈I is contained in Σ∧ and

% is strong with respect to T.
(iii) % is the projective limit of (%α)α∈I .
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(iv) T ⊆ T%.
(v) T ⊆ T%.

P r o o f. Using the self-consistency of (%α)α∈I and the same arguments
as in the proof of Proposition 2.1 we conclude that (Xα, T%α

, Σα, µα, fαβ , I)
and (Xα,T%α

, Σα, µα, fαβ , I) are convergent systems of complete topological
probability spaces with projective limits (X, T , Σ, µ, (fα)α∈I) and (X, T, Σ,
µ, (fα)α∈I) respectively.

((i) or (ii))⇒(iii). Let T ⊆ Σ∧ and % be strong with respect to T . For
α ∈ I and hα ∈ Cb(Xα, T%α) = Cb(Xα,T%α) we have hα ◦ fα ∈ Cb(X, T ) ⊆
Cb(X, T) and hence

(∗) %(hα ◦ fα) = hα ◦ fα = %α(hα) ◦ fα .

For Aα ∈ Σα (α ∈ I) the sets f−1
α (Aα) and f−1

α (%α(Aα)) differ only by
a set of µ- measure zero. Therefore %(f−1

α (Aα)) = %(f−1
α (%α(Aα))) =

f−1
α (%α(Aα)) where the latter equality follows from (∗) for hα = 1%α(Aα)

in Cb(Xα, T%α
) = Cb(Xα,T%α

), α ∈ I.
(iii)⇒((i) or (ii)) follows from Theorem 2.3.
The equivalences (i)⇔(iv) and (ii)⇔(v) hold true by [14], Theorem 3,

p. 64.

4.2. Corollary. Let (Xα, Tα,B∧(Xα), µα, fαβ , I) be a system of topo-
logical probability spaces as in Remark 2.2(iii)(c) with all probability mea-
sures µα (α ∈ I) of full support. Suppose that (X, T , (fα)α∈I) and (X, Σ,
µ, (fα)α∈I) are the projective limits of the systems (Xα, Tα, fαβ , I) and
(Xα,B∧(Xα), µα, fαβ , I) respectively , and % is a lifting for µ. Then the
following conditions are equivalent.

(i) T ⊆ Σ∧ and % is strong with respect to T .
(ii) % is a projective limit of (%α)α∈I where each %α is the unique lifting

for µα such that Tα = T%α
.

(iii) T ⊆ T%.

P r o o f. By Remark 2.2(iii)(c) the family (%α)α∈I is self-consistent. So
we may apply Theorem 4.1 to deduce the equivalence of (i)–(iii).

4.3. Corollary. Let (Xα, Tα,B∧(Xα), µα, fαβ , I) be a system of topo-
logical probability spaces where Xα is compact extremally disconnected for
each α ∈ I, µα is a diffuse measure with full support , and (Xα,B∧(Xα), µα)
is a category probability space. Denote by (X, T , (fα)α∈I) the projective limit
of (Xα, Tα, fαβ , I). Then the system (Xα,B∧(Xα), µα, fαβ , I) is convergent
with projective limit (X, Σ, µ, (fα)α∈I) and for a lifting % for µ the following
conditions are equivalent.

(i) T ⊆ Σ∧ and % is strong with respect to T .
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(ii) The projective limit topology T of (T%α
)α∈I , where each %α is the

unique strong lifting for (Xα, Tα,B∧(Xα), µα), is contained in Σ∧ and % is
strong with respect to T.

(iii) % is a projective limit of (%α)α∈I .
(iv) T ⊆ T%.
(v) T ⊆ T%.

Moreover , if one of the above conditions is valid then µ is completion regular.

P r o o f. According to [28], Theorem 22.3, each µα is Radon and com-
pletion regular. Thus by [5], Theorem 2.2, the system (Xα, Tα,B∧(Xα), µα,
fαβ , I) is convergent. On the other hand, T%α = Tα ⊆ T%α for all α ∈ I (cf.
[22], Remark 2) and by Remark 2.2(iii)(b), (%α)α∈I is self-consistent. So we
may apply Theorem 4.1 to deduce the equivalence of (i)–(v).

Moreover, if (iii) is valid the completion regularity of µ follows from
Theorem 3.1.

R e m a r k. In general we have T ⊂ T% properly by Remark 2.2(iii)(b).
Spaces as those of the system in Corollary 4.2 are given by the hyperstonian
space derived from a diffuse probability space, e.g. the hyperstonian space
of the Lebesgue measure space on [0, 1] will do (see [9]).

5. Products. Our next aim is to apply our results to products of
topological probability spaces. Let I 6= ∅ be an arbitrary index set. For
each i ∈ I let Ti (resp. Σi) be a topology (resp. σ-field) in Xi 6= ∅, and let
µi be a measure on Σi. For each nonempty subset J of I let XJ :=

∏
i∈J Xi

be the product of (Xi)i∈J , ΣJ :=
∏

i∈J Σi be the product σ-field in XJ ,
TJ :=

∏
i∈J Ti be the product topology in XJ , and µJ :=

∏
i∈J µi be the

product measure on ΣJ . For ∅ 6= J ⊆ K ⊆ I let fJK be the canonical
projection from XK onto XJ given by fJK((xj)j∈K) = (xj)j∈J . Put X :=
XI , Σ := ΣI , T := TI , µ := µI , and fJ := fJI (∅ 6= J ⊆ I). For f{i}J (resp.
f{i}) we write fiJ (resp. fi), for simplicity.

In particular, for topological measure spaces (Xi, Ti, Σi, µi), i ∈ [n] :=
1, . . . , n, n ∈ N, we write

X[n] :=
n∏

i=1

Xi, Σ[n] :=
n∏

i=1

Σi, T[n] :=
n∏

i=1

Ti, µ[n] :=
n∏

i=1

µi .

Finally, put F(I) := {α : α ⊆ I, α finite}.
The following lemma, proved in [22], Section 3, Theorem 1, will turn out

to be useful for the proofs of the next results.

5.1. Lemma. Let (Xi, Ti,B(Xi), µi), i ∈ [n], be topological probability
spaces and (X[n], Σ[n], µ[n]) (resp. T[n]) be the product of the probability
spaces (Xi,B(Xi), µi) (resp. of the topologies Ti), i ∈ [n]. Suppose that
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there exists a strong lifting %i for (Xi, Ti,B∧(Xi), µi), i ∈ [n], and a lifting
%[n] for µ[n] such that

%[n](f−1
i (A)) = f−1

i (%i(A))

for all i ∈ [n] and A ∈ B∧(Xi). Then %[n] is strong for (X[n], T[n], Σ
∧
[n], µ[n])

and Σ∧
[n] = B∧(X[n]). Moreover , if Xi is compact and µi is completion

regular for each i ∈ [n] then µ is completion regular.

The assertion that %[n] is strong is also true for products of spaces
(Xi, Ti, Σi, µi) with Ti ⊆ Σi and Σi complete (i ∈ [n]). The proof is the
same. Using now Lemma 5.1 and the same arguments as in the proof of
Corollary 3.2 one can easily deduce the following result.

5.2. Corollary. Let (Xi, Ti), i ∈ [n], be compact topological spaces, µi

Baire probability measures on Xi, and (X[n], Σ[n], µ[n]) (resp. T[n]) the prod-
uct of the probability measure spaces (Xi,B0(Xi), µi) (resp. of the topologies
Ti), i ∈ [n]. Suppose that there exists a strong Baire lifting %i for µi, i ∈ [n],
and a lifting %[n] for µ[n] such that

%[n](f−1
i (A)) = f−1

i (%i(A))

for all i ∈ [n] and A ∈ B0(Xi). Then %[n] is a strong Baire lifting for µ[n].

The next result extends Theorem 1, Section 3 of [22] to uncountable
products.

5.3. Theorem. Let (Xi, Ti, Σi, µi)i∈I be a family of complete topological
probability spaces and (X, Σ, µ) (resp. T ) the product of (Xi, Σi, µi) (resp.
Ti), i∈I. Suppose that (%α)α∈F(I) is a family of liftings %α for µα such that

%β(f−1
αβ (A)) = f−1

αβ (%α(A))

for all α, β ∈ F(I), α ⊆ β, A ∈ Σ∧
α , and such that each %i is strong for µi.

Then there exists a strong lifting % for (X, T , Σ∧, µ) with

%(f−1
α (A)) = f−1

α (%α(A))

for all α ∈ F(I) and A ∈ Σ∧
α . In particular , if Σi = B∧(Xi) then Σ∧ =

B∧(X) and if Xi is compact and µi is completion regular for each i ∈ I then
µ is completion regular.

P r o o f. The set F(I) forms a directed set under inclusion; the fam-
ily (Xα, Tα, Σα, µα, fαβ , I) forms a system of topological probability spaces
such that (X, Σ, µ) (resp. T ) can be identified with the projective limit of
(Xα, Σα, µα) (resp. Tα), α ∈ F(I) (cf. [15], VI, Proposition 5.4).

According to Lemma 5.1, %α is strong for (Xα, Tα, Σ∧
α , µα) for each α ∈

F(I). Hence by Theorem 2.3 there exists a strong lifting % for (X, T , Σ∧, µ)



Strong liftings for projective limits 225

such that
%(f−1

α (A)) = f−1
α (%α(A))

for all α ∈ F(I) and A ∈ Σ∧
α .

In particular, if Σi = B∧(Xi) then by Lemma 5.1, Σα = B∧(Xα) and by
Theorem 2.3, Σ∧ = B∧(X).

Moreover, if each Xi is compact and each µi is completion regular then
by Lemma 5.1 each µα is completion regular and therefore by Theorem 3.1,
µ is completion regular.

5.4. Corollary. Let (Xi, Ti), i ∈ I, be compact topological spaces, µi

Baire probability measures on Xi, and (X, Σ, µ) (resp. T ) the product of
(Xi,B0(Xi), µi) (resp. Ti), i ∈ I. Suppose that (%α)α∈F(I) is a family of
liftings %α for µα with

%β(f−1
αβ (A)) = f−1

αβ (%α(A))

for all α, β ∈ F(I), α ⊆ β, A ∈ B∧0 (Xα), and such that each %i is a strong
Baire lifting for µi. Then there exists a strong Baire lifting % for µ with

%(f−1
α (A)) = f−1

α (%α(A))

for all α ∈ F(I) and α ∈ B∧0 (Xα).

P r o o f. As shown in the proof of Theorem 5.3, (X, Σ, µ, (fα)α∈F(I))
(resp. T ) is the projective limit of (Xα,B0(Xα), µα, fαβ ,F(I)) (resp. of
(Tα)α∈F(I)). By [2], Proposition 3, each µi is completion regular and there-
fore each %i is strong for (Xi, Ti,B∧(Xi), µi). Thus Theorem 5.3 yields the
desired result.

5.5. Theorem. Let (Xi, Ti, Σi, µi) (i = 1, 2) be complete topological
probability spaces, (X, Σ, µ) the completed product of (Xi, Σi, µi), and T
the product topology T1 × T2. Suppose that %1 is a strong lifting for µ1, %2

is an almost strong lifting for µ2 with exceptional µ2- null set N2, µ2 has
full support , and π is a lifting for µ with π = %1 ⊗ %2, i.e. π(f1 ⊗ f2) =
%1(f1)%2(f2), where fi ∈ L∞(Xi, µi) and f1 ⊗ f2 := (f1 ◦ p1) · (f2 ◦ p2), with
pi the canonical projections from X1 × X2 onto Xi (i = 1, 2). Then there
exist strong liftings %∧2 for µ2 and π∧ for µ such that π∧ = %1 ⊗ %∧2 , for any
f2 ∈ L∞(X2, µ2), %∧2 (f2)|N c

2 = %2(f2)|N c
2 , and T ⊆ Σ. If N := X1 × N2

then N ∈ Σ, µ(N) = 0 and π∧(f)|N c = π(f)|N c for any f ∈ L∞(X, µ).
Moreover , if Σi = B∧0 (Xi), µi (i = 1, 2) is completion regular , and

B0(X) = B0(X1)⊗ B0(X2) then µ is completion regular.

P r o o f. For x2 ∈ N2 let χx2 be a character on L∞(X2, µ2) such that
χx2([f2]) := f2(x2) for f2 ∈ Cb(X2) and put for any f2 ∈ L∞(X2, µ2),

%∧2 (f2)(x2) :=
{

%2(f2)(x2) for x2 ∈ X ′
2 := X2 \N2,

χx2([f2]) for x2 ∈ N2.



226 N. D. Macheras and W. Strauss

Then %∧2 is strong for µ2 (cf. [14], p. 127). Let

L∞(X1, µ1)⊗ L∞(X2, µ2)

:=
{ n∑

i=1

[fi ⊗ gi] : fi ∈ L∞(X1, µ1), gi ∈ L∞(X2, µ2), i = 1, . . . , n
}

and let A be the closure of L∞(X1, µ1)⊗L∞(X2, µ2) in L∞(X, µ). We define
a linear, multiplicative functional χ0

(x1,x2)
on L∞(X1, µ1) ⊗ L∞(X2, µ2) by

means of

χ0
(x1,x2)

( n∑
i=1

[fi ⊗ gi]
)

:=
n∑

i=1

%1(fi)(x1)χx2([gi])

for any fi ∈ L∞(X1, µ1), gi ∈ L∞(X2, µ2), x1 ∈ X1, x2 ∈ N2.
Denote by χ∧(x1,x2)

the continuous extension of χ0
(x1,x2)

on A, which is a
character on the closed subalgebra A of L∞(X, µ). By [14], Chapter VIII,
Prop. 1, there exists a character χ(x1,x2) on L∞(X, µ) such that χ(x1,x2)|A =
χ∧(x1,x2)

, in particular

(∗) χ(x1,x2)([f1 ⊗ f2]) = %1(f1)(x1)χx2([f2])

for fi ∈ L∞(Xi, µi) (i = 1, 2), x1 ∈ X1, x2 ∈ N2.
Next define for any f ∈ L∞(X, µ),

π∧(f)(x1, x2) :=
{

π(f)(x1, x2) for (x1, x2) ∈ X1 ×X ′
2,

χ(x1,x2)([f ]) for (x1, x2) ∈ N .

Then π∧ is a lifting for µ and for fi ∈ L∞(Xi, µi) (i = 1, 2), if (x1, x2) ∈
X1 ×X ′

2, and therefore x2 ∈ X ′
2, we have

π∧(f1 ⊗ f2)(x1, x2) = π(f1 ⊗ f2)(x1, x2) = %1(f1)(x1)%2(f2)(x2)
= %1(f1)(x1)%∧2 (f2)(x2) = (%1 ⊗ %∧2 )(f1 ⊗ f2)(x1, x2),

and if (x1, x2) ∈ N , i.e. x2 ∈ N2, then

π∧(f1 ⊗ f2)(x1, x2) = χ(x1,x2)([f1 ⊗ f2])
(∗)
= %1(f1)(x1)χx2([f2])

= %1(f1)(x1)%∧2 (f2)(x2)
= (%1 ⊗ %∧2 )(f1 ⊗ f2)(x1, x2),

i.e. π∧ = %1 ⊗ %∧2 . Applying now [22], Section 3, Th. 1, we conclude that
T ⊆ Σ and π∧ is strong for µ. The relations π∧(f)|N c = π(f)|N c for any
f ∈ L∞(X, µ) and %∧2 (f2)|N c

2 = %2(f2)|N c
2 for any f2 in L∞(X2, µ2) follow

immediately from the definitions of π∧ and %∧2 respectively. The completion
regularity of µ follows from [22], Section 3, Th. 1.

5.6. Theorem. Let (Xi, Ti,B∧(Xi), µi)i∈J be a family of topological
probability spaces such that (Xi, Ti,B∧(Xi), µi) has the USLP and µi has full
support for each i ∈ J . Then the completed product (X, T , Σ∧, µ) of (Xi, Ti,
B∧(Xi), µi)i∈J has a strong lifting and Σ∧ = B∧(X). Moreover , if µi is
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completion regular for each i ∈ J , and B0(XJ) is the product of the σ-fields
B0(Xi) (i ∈ J) then µ is completion regular.

P r o o f. Let L be the set of all pairs (I, %I) where I ⊆ J and %I is a
strong lifting for (XI , TI ,B∧(XI), µI). We order the set L as follows:

(I ′, %I′) ≤ (I ′′, %I′′) iff I ′ ⊆ I ′′ and %I′′ ◦ f−1
I′I′′ = f−1

I′I′′ ◦ %I′ .

We will show that L is inductive for the above order relation. Let Φ =
(I(j), %I(j))j∈H be a totally ordered family of elements of L (we suppose
that j′ ≤ j′′ iff (I(j′), %I(j′)) ≤ (I(j′′), %I(j′′))). Let I =

⋃
j∈H I(j). It

is easy to show that (XI(j), TI(j),B∧(XI(j)), µI(j), fI(j)I(j′),H) is a system
of topological probability spaces, (%I(j))j∈H is a self- consistent system of
strong liftings %I(j) for µI(j), and (XI , TI , ΣI , µI) is the projective limit of
the system (XI(j), TI(j),B∧(XI(j)), µI(j))j∈H . By Theorem 2.3 there exists
a strong lifting %I for µI such that

%I ◦ f−1
II(j) = f−1

II(j) ◦ %I(j) for all j ∈ H,

and Σ∧
I = B∧(XI). Thus (I, %I) is a majorant for Φ. We now apply Zorn’s

lemma and obtain a maximal element (M,%M ) in L. It is sufficient to prove
M = J . Assume that M 6= J and i ∈ J \ M . Applying [22], Theorem 4,
Section 2, we find a lifting %i for µi and a lifting %M∪{i} for the product
of the probability measures µM and µi such that %M∪{i} = %i ⊗ %M . Since
each (Xi, Ti,B∧(Xi), µi), i ∈ J , has the USLP, each %i is almost strong. So
by Theorem 5.5, there exist strong liftings %∧i for µi and %∧M∪{i} for µM∪{i}
such that %∧M∪{i} = %M ⊗ %∧i and Σ∧

M∪{i} = B∧(XM∪{i}), therefore

%∧M∪{i} ◦ f−1
M,M∪{i} = f−1

M,M∪{i} ◦ %M .

Hence (M ∪ {i}, %∧M∪{i}) is a strict majorant of (M,%M ), contradicting the
maximality of (M,%M ). Thus J = M follows and %M = %J is a strong lifting
for the product space (X, T ,B∧(X), µ) = (X, T , Σ∧, µ).

Moreover, suppose that µi is completion regular for each i ∈ J and
B0(XJ) is the product of the σ-fields B0(Xi) (i ∈ J). Let L′ be the set of all
pairs (I, %I) where I ⊆ J , %I is a strong lifting for (XI , TI ,B∧(XI), µI) and
µI is completion regular. Using the same argument as above and applying
Theorem 3.1 instead of Theorem 2.3 we get the completion regularity of µ.

The following classical result (compare [14], [16] and [23]) is an immediate
consequence of Theorem 5.6.

5.7. Corollary (A. and C. Ionescu Tulcea [14], Kakutani [16], and
Maharam [23]). Let (Xi, Ti,B∧(Xi), µi)i∈J be a family of topological proba-
bility spaces such that each Xi is a compact metric space, and each µi has full
support. Then the completed product (X, T , Σ∧, µ) of (Xi, Ti,B∧(Xi), µi)i∈J

has a strong lifting , Σ∧ = B∧(X) and µ is completion regular.



228 N. D. Macheras and W. Strauss

References

[1] A. G. A. G. Babiker, G. Hel l e r and W. Strauss, On strong lifting compactness,
with applications to topological vector spaces, J. Austral. Math. Soc. Ser. A 41
(1986), 211–223.

[2] A. G. A. G. Babiker and W. Strauss, Almost strong liftings and τ -additivity ,
in: Measure Theory, Proc. Oberwolfach, 1979, D. Kölzow (ed.), Lecture Notes in
Math. 794, Springer, 1980, 220–227.

[3] A. Be l low, Lifting compact spaces, ibid., 233–253.
[4] S. Bochner, Harmonic Analysis and the Theory of Probability , Univ. of California

Press, Berkeley, 1955.
[5] J. R. Choks i, Inverse limits of measure spaces, Proc. London Math. Soc. (3) 8

(1958), 321–342.
[6] —, Recent developments arising out of Kakutani’s work on completion regularity of

measures, in: Contemp. Math. 26, Amer. Math. Soc., 1984, 8–93.
[7] J. Dixmier, Sur certains espaces considérés par M. H. Stone, Summa Brasil. Math.

2 (1951), 151–182.
[8] J. Dugundj i, Topology , Allyn and Bacon, Boston, 1970.
[9] D. H. Freml in, Products of Radon measures: A counter-example, Canad. Math.

Bull. 19 (1976), 285–289.
[10] —, Losert’s example, Note of 18/9/79, University of Essex, Mathematics Depart-

ment.
[11] S. Graf, Schnitte Boolescher Korrespondenzen und Ihre Dualisierungen, Disserta-

tion, Erlangen, 1973.
[12] —, On the existence of strong liftings in second countable topological spaces, Pacific

J. Math. 58 (1975), 419–426.
[13] P. R. Halmos, Measure Theory , Van Nostrand Reinhold, New York, 1950.
[14] A. and C. Ionescu Tulcea, Topics in the Theory of Lifting , Springer, Berlin,

1969.
[15] K. Jacobs, Measure and Integral , Academic Press, New York, 1978.
[16] S. Kakutani, Notes on infinite product measures, II , Proc. Imperial Acad. Tokyo

19 (1943), 184–188.
[17] J. D. Knowles, Measures on topological spaces, Proc. London Math. Soc. 17

(1967), 139–156.
[18] V. Losert, A measure space without the strong lifting property , Math. Ann. 239

(1979), 119–128.
[19] N. D. Macheras, On inductive limits of measure spaces and projective limits of

Lp-spaces, Mathematika 36 (1989), 116–130.
[20] —, On limit permanence of projectivity and injectivity , Bull. Greek Math. Soc., to

appear.
[21] N. D. Macheras and W. Strauss, On various strong lifting properties for topo-

logical measure spaces, Rend. Circ. Mat. Palermo (2) Suppl. 28 (1992), 149–162.
[22] —, —, On products of almost strong liftings, J. Austral. Math. Soc., to appear.
[23] D. Maharam, On a theorem of von Neumann, Proc. Amer. Math. Soc. 9 (1958),

987–994.
[24] W. Moran, The additivity of measures on completely regular spaces, J. London

Math. Soc. 43 (1968), 633–639.
[25] K. Mus ia  l, Projective limits of perfect measure spaces, Fund. Math. 110 (1980),

163–189.



Strong liftings for projective limits 229
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