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Examples of non-shy sets

by

Randall D o u g h e r t y (Columbus, Ohio)

Abstract. Christensen has defined a generalization of the property of being of Haar
measure zero to subsets of (abelian) Polish groups which need not be locally compact;
a recent paper of Hunt, Sauer, and Yorke defines the same property for Borel subsets of
linear spaces, and gives a number of examples and applications. The latter authors use the
term “shyness” for this property, and “prevalence” for the complementary property. In the
present paper, we construct a number of examples of non-shy Borel sets in various groups,
and thereby answer several questions of Christensen and Mycielski. The main results are:
in many (most?) non-locally-compact Polish groups, the ideal of shy sets does not satisfy
the countable chain condition (i.e., there exist uncountably many disjoint non-shy Borel
sets); in function spaces C(ω2, G) where G is an abelian Polish group, the set of functions
f which are highly non-injective is non-shy, and even prevalent if G is locally compact.

If G is a Polish group which is locally compact, then one can define a
Borel measure on G, the Haar measure, which is invariant (on one side) and
gives finite non-zero measure to non-empty open sets with compact closure.
This measure is unique up to a multiplicative constant, so the collection of
measure-zero sets is uniquely determined, and gives an invariant (on both
sides) property of “smallness” for subsets of G which is probably closer to
the intuitive idea of “smallness” than the category analogue, meagerness.

The definition of Haar measure does not extend to groups which are not
locally compact, but there is a suitable extension of the property of being of
Haar measure zero; this is given in Christensen [1] and again in Hunt, Sauer,
and Yorke [3]. In the former paper, a universally measurable subset S of an
abelian Polish group G is called a Haar zero set if there is a probability
measure on G which gives every translate of S measure 0; the latter paper
uses an equivalent definition for Borel subsets of separable complete metric
linear spaces, and calls such sets shy . Topsøe and Hoffmann-Jørgensen [6]
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and Mycielski [5] have observed that the definitions work just as well for
non-abelian Polish groups if one requires that all two-sided translates gSh
of S have measure zero (in fact, the former authors generalize even further).
In particular, the collection of Haar zero or shy sets (we will use the latter
term for the rest of this paper, but will apply it to all universally measurable
sets rather than just Borel sets) is a σ-ideal, and in the case whereG is locally
compact a (universally measurable) set is shy iff it has Haar measure zero.

A measure which gives every translate of S measure zero is called trans-
verse to S. Also, a set is prevalent if its complement is shy.

There are many properties of measure-zero sets in locally compact groups
for which one can ask whether the properties hold for shy sets in general
Polish groups G. In particular, Christensen [1] asks whether any collection of
disjoint universally measurable non-shy sets must be countable (this prop-
erty of a σ-ideal is called the countable chain condition), and whether any
two universally measurable non-shy sets must have translates with non-shy
intersection; and Mycielski [5] asks whether any universally measurable sub-
set of G invariant under (left) translations by a countable dense subgroup
of G must be either shy or prevalent. In the present paper, we will construct
examples giving negative answers to these three questions (using an obser-
vation of Mycielski for one of them). We will also answer other questions
of Mycielski [5] by showing that certain comeager sets in continuous func-
tion spaces C(ω2, G) (in particular, the set of injective functions) are not
prevalent and are even shy in some cases.

Showing that a set is prevalent requires only a single transverse measure
for the complement, but showing that a set is not shy requires that all
measures fail to be transverse. The latter would seem to be harder, but it
turns out to be apparently easier in some cases, even when the set is indeed
prevalent. (For an example of this in addition to the examples in the present
paper, see Dougherty and Mycielski [2].) The main fact that will be used
here is that every probability measure on a Polish space gives some compact
set positive measure; a number of subsets S of Polish groups that we will
be interested in have the property that any compact set (or any compact
set of small diameter, or something similar) has a translate included in S,
and therefore the reverse translation moves S to a set covering the given
compact set.

Perhaps the simplest example of this is the set of positive numbers in R;
any compact set can be translated entirely to the right of the origin. This
can be slightly generalized to the following.

Proposition 1. For any set A of natural numbers, the set S(A) of all
sequences s ∈ ωR such that s(n) > 0 for n ∈ A and s(n) < 0 for n 6∈ A is
non-shy in ωR.
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P r o o f. Let µ be a probability measure on ωR; we must find a translate
of S(A) which has positive µ-measure. Equivalently, it will suffice to find a
set C of positive µ-measure which has a translate included in S(A). To do
this, choose a number bn for each n such that µ({s : |s(n)| > bn}) < 2−n−1,
and let C = {s ∈ ωR : |s(n)| ≤ bn for all n}; then µ(C) > 0. Define t ∈ ωR
by: if n ∈ A, then t(n) = bn + 1; if n 6∈ A, then t(n) = −bn − 1. Then
C + t ⊂ S(A), so we are done.

Since the sets S(A) are disjoint, the ideal of shy subsets of ωR does not
satisfy the countable chain condition. Also, if T is defined to be the set of
s ∈ ωR such that s(n) > 0 for infinitely many n, then T is a Borel set which
is invariant under a dense subgroup of ωR (the eventually-0 sequences), but
T is neither prevalent nor shy.

Mycielski observes that, if A and B are sets of natural numbers whose
symmetric difference is infinite, then not only are the sets S(A) and S(B)
disjoint, but also any translate of S(A) intersects S(B) in a shy set. (To
show this, it suffices to prove that, if we have a finite interval Ij in R for
each j in an infinite set J , then the set S′ of all x ∈ ωR such that x(j) ∈ Ij
for all j ∈ J is shy. This can be deduced from Propositions 12 and 8 below,
or one can prove it directly as follows: if we choose a finite interval I ′j for
each j ∈ ω such that I ′j is twice as long as Ij if j ∈ J , and let µj be
Lebesgue measurex on I ′j normalized to 1, then the product of the measures
µj is a measure transverse to S′.) This answers Problem 1 of Christensen [1]
negatively. In fact, Mycielski notes that one can get 2ℵ0 non-shy subsets of
ωR which mutually have this strong disjointness property, by taking S(A)
for 2ℵ0 sets A ⊆ ω which have infinite symmetric differences with each other
(e.g., the sets p(B × ω) for B ⊆ ω, where p is an injective pairing function
from ω × ω to ω).

Now that we know that the ideal of shy sets satisfies the countable chain
condition for some Polish groups but not for others, the next question to
consider is how to characterize the groups for which the ccc does hold, and
the natural conjecture is that the ccc holds only in the locally compact case.
The following three results show that this is true for most natural exam-
ples of Polish groups, but it remains open whether it is true for all Polish
groups.

The proof of Proposition 1 can be generalized to give:

Proposition 2. If 〈Gn : n ∈ ω〉 is a sequence of locally compact but
non-compact Polish groups, and G =

∏
n∈ω Gn, then the ideal of shy subsets

of G does not satisfy the countable chain condition.

P r o o f. For each n, let 〈Onk : k ∈ ω〉 be a sequence of open sets of Gn
with compact closure whose union is Gn; we may assume Onk ⊆ On,k+1.
Since Gn is not compact, the set (Onk)−1Onk is not all of Gn, so we can
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choose r(n, k) ∈ Gn outside it; then Onkr(n, k) is disjoint from Onk. For
g ∈ Gn, let fn(g) be the least k such that g ∈ Onk.

For A ⊆ ω, let S(A) be the set of all s ∈ G such that f2n(s(2n)) >
f2n+1(s(2n + 1)) for n ∈ A and f2n(s(2n)) < f2n+1(s(2n + 1)) for n 6∈ A.
The sets S(A) are clearly Borel and disjoint; we will now see that S(A) is
not shy. Let µ be a probability measure on G. For each n, the sets {s ∈ G :
fn(s(n)) ≤ k} for k ∈ ω have union G, so we can choose a number bn such
that µ({s ∈ G : fn(s(n)) > bn}) < 2−n−1. Let C = {s ∈ G : fn(s(n)) ≤ bn
for all n}; then µ(C) > 0. Define t ∈ G as follows: for n ∈ A, let t(2n) =
r(2n,max(b2n, b2n+1)) and t(2n + 1) = 0; for n 6∈ A, let t(2n) = 0 and
t(2n+1) = r(2n+1,max(b2n, b2n+1)). Then Ct ⊆ S(A), so µ(S(A)t−1) > 0,
as desired.

Another method of producing non-shy sets gives the following general
result.

Theorem 3. Let G be a Polish group which has an invariant metric
and is not locally compact. Suppose that there exist a neighborhood U of the
identity and a dense subgroup G∗ of G such that , for any finitely generated
subgroup F of G∗, F ∩ U is compact. Then the ideal of shy subsets of G
does not satisfy the countable chain condition.

P r o o f. Let d be an invariant complete metric for G (by Exercise 1.9 of
Kechris [4], any invariant metric for G is complete), and let e be the identity
of G. First, we show that there are arbitrarily small positive numbers δ such
that, for any finitely generated subgroup H of G∗, there exists x ∈ G∗ such
that d(x, e) ≤ δ and d(x,H) ≥ δ/2. Let ε be a positive number, which we
may assume is small enough that the open ball B(e, 2ε) is included in the
given neighborhood U .

If ε is not a suitable value for δ, then there is a finitely generated subgroup
H0 of G∗ such that every point of G∗ within distance ε of e is at distance
less than ε/2 from H0. Next, if ε/2 is not a suitable value for δ, then there is
a finitely generated subgroup H1 of G∗ such that every point of G∗ within
distance ε/2 of e is at distance less than ε/4 from H1; we may assume H0 ⊆
H1. But then, since d is left-invariant, every point of G∗ within distance ε/2
of a point of H0 is at distance less than ε/4 from H1; in particular, every
point of G∗ within distance ε of e is at distance less than ε/4 from H1.

Continued iteration shows that, if none of the values ε, ε/2, . . . , ε/2n

is suitable for δ, then there is a finitely generated subgroup Hn of G∗ such
that every point of G∗∩B(e, ε) is at distance less than ε/2n+1 from Hn, and
hence, clearly, from Hn ∩B(e, 2ε). Since Hn ∩B(e, 2ε) has compact closure,
it can be covered by finitely many balls of radius ε/2n+1, so G∗ ∩ B(e, ε)
can be covered by finitely many balls of radius ε/2n. Since n is arbitrary,
G∗ ∩B(e, ε) = B(e, ε) is compact, which is impossible since G was assumed



Examples of non-shy sets 77

not to be locally compact. Therefore, at least one of the numbers ε/2n must
be a suitable value for δ.

Choose a sequence δ0, δ1, δ2, . . . of numbers δ as above such that δi+1 ≤
δi/8 for all i. Let {rn : n ∈ ω} be a countable dense subset of G∗, and let
Fn be the subgroup generated by {rk : k < n}. We may assume that the
points rn are chosen iteratively so that the following is true: if n has the
form 2i3j , then d(rn, e) ≤ δi and d(rn, Fn) ≥ δi/2. (Use the points rn for n
not of the form 2i3j to ensure density.) For any natural number i and any
x ∈ G, let Mi(x) be the least M such that d(x, FM ) < δi/4. Now, for any
set A ⊆ ω, define S(A) to be the set of x ∈ G such that M2i(x) = M2i+1(x)
for all i ∈ A and M2i(x) < M2i+1(x) for all i 6∈ A. The sets S(A) are clearly
disjoint; we will show that, for each A, S(A) is not shy.

Let µ be a probability measure on G. For each n, the sets {x : Mn(x) ≤
k} for k ∈ ω have union G, so we can choose a number b(n) such that
µ({x : Mn(x) ≤ b(n)}) > 1− 2−n−1. Let C = {x : Mn(x) ≤ b(n) for all n};
then µ(C) > 0. Given A, we will find an element g of G such that Cg ⊆ S(A).

For k = 0, 1, . . . , define c(k) ∈ ω as follows. If k ∈ A, let i = 2k; if
k 6∈ A, let i = 2k + 1. Now find a number n of the form 2i3j for this i so
that n > c(k − 1) (if k > 0) and n > b(2k + 2), and let c(k) = n. Since
d(rc(k), e) ≤ δ2k and d is invariant, the infinite product rc(0)rc(1)rc(2) . . .
converges; let g be its value. Then, for any x ∈ C, we have

d(x, F c(k)) = d(xrc(0) . . . rc(k−1), F c(k)) < δ2k+2/4 ,

d(rc(k+1)rc(k+2) . . . , e) ≤ (8/7)δ2k+2 ,

and δi/2 ≤ d(rc(k), F c(k)) ≤ δi, so we get

δi/4 < d(xg, F c(k)) < 2δi and d(xg, F c(k)+1) < 2δ2k+2 ≤ δ2k+1/4 .

Therefore, we have M2k(xg) = M2k+1(xg) = c(k) + 1 if k ∈ A, and
M2k(xg) ≤ c(k) < c(k) + 1 = M2k+1(xg) if k 6∈ A. This shows that
xg ∈ S(A); since x ∈ C was arbitrary, we are done.

The supposition in Theorem 3 holds with G∗ = G for standard examples
of Polish groups, including all separable Banach spaces (since, in a finite-
dimensional subspace, closed bounded sets are compact) and all abelian
torsion groups (since finitely generated subgroups are finite). I do not have
an example with an invariant metric where the supposition fails (without the
invariant metric, one can consider the semidirect product Z ×θ Z(R ×ψ R),
where θ(n)(s)(m) = s(m − n) and ψ(x)(y) = exy), but here is an example
where the supposition cannot hold with G∗ = G: Let T be the circle group
R/Z, and take the infinite product ωT with the sup- or `∞-metric; this is a
complete but non-separable metric space. Let F be the subgroup generated
by the single element s defined by s(n) = 2−n

2
for all n. Then the closure of
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F is an abelian Polish group which is not locally compact but has a dense
cyclic subgroup.

Often a counterexample to the countable chain condition for the shy sets
in a group can be transferred to an extension of that group, as follows.

Proposition 4. Suppose (G,+) is an abelian Polish group and H is a
closed subgroup of G. If the ideal of shy subsets of H does not satisfy the
countable chain condition (within the algebra of Borel subsets of H), then
the ideal of shy subsets of G does not satisfy the countable chain condition.

P r o o f. Let s : G/H → G be a Borel selector for the cosets of H (see
Theorem 1.21 of Kechris [4]). Define f : G → H by f(g) = g − s(g + H);
then f is Borel, and we have f(g+h) = f(g) +h for h ∈ H. For any S ⊆ H,
we get a corresponding set f−1(S) ⊆ G, and f−1(S) is shy in G iff S is shy
in H.

To see this, first suppose f−1(S) is shy in G, as witnessed by the measure
µ, and use f to map µ to a measure µ′ on H; then, for any h ∈ H, µ′(S+h) =
µ(f−1(S + h)) = µ(f−1(S) + h) = 0, so S is shy. Conversely, if µ is a
measure on H witnessing that S is shy, then µ can be extended to a measure
on G which concentrates on H. Then, for any g ∈ G, µ(f−1(S) + g) =
µ((f−1(S)+g)∩H). But, for h ∈ H, we have f(h−g) ∈ S iff h+f(−g) ∈ S;
hence, (f−1(S)+g)∩H = S−f(−g), so µ(f−1(S)+g) = µ(S−f(−g)) = 0.
Therefore, f−1(S) is shy.

It follows that any counterexample to the ccc for the shy sets in H is
mapped by f−1 to a counterexample to the ccc for the shy subsets of G, so
we are done.

This works for non-abelian G if one assumes, not only that H is a closed
normal subgroup of G, but also that for every g ∈ G there is h ∈ H such
that gh commutes with every element of H (equivalently, conjugation by
members of G gives no more automorphisms of H than conjugation by
members of H does).

Now for some more specific examples involving spaces of the form
C(ω2, G), where G is a Polish group. This will give negative answers to some
questions from Mycielski [5], by showing that injectivity is not a prevalent
property.

For continuous functions f from ω2 to a metric space X, define a modulus
of continuity to be a sequence b ∈ ωω such that, if x, y ∈ ω2 agree on their
first b(n) coordinates, then d(f(x), f(y)) ≤ 2−n.

Lemma 5. If µ is a probability measure on C(ω2, X) where X is a Polish
space with complete metric d, then there exist a compact set K ⊆ X and
a sequence b ∈ ωω such that , if C is the set of functions in C(ω2, X) with
range included in K and having modulus of continuity b, then µ(C) > 0.
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P r o o f. Let {r0, r1, r2, . . .} be a countable dense subset of X. For any
function f ∈ C(ω2, X), the range of f is compact; hence, for any n ∈ ω,
the range of f is included in the union of finitely many of the open balls
B(rj , 2−n), say the first af,n of them. Also, f must be uniformly continuous,
so there exists a number bf,n such that, if x and y are members of ω2 which
agree on the first bf,n coordinates, then d(f(x), f(y)) ≤ 2−n.

We can now choose numbers a(n) and b(n) so large that the set Cn =
{f : af,n ≤ a(n) and bf,n ≤ b(n)} satisfies µ(Cn) > 1− 2−n−1. Let

K =
⋂
n∈ω

⋃

j≤a(n)

B(rj , 2−n) .

Then K is compact (complete and totally bounded). If C is the set of func-
tions in C(ω2, X) with range included inK and having modulus of continuity
b, then C includes

⋂
n∈ω Cn, so µ(C) > 0.

Proposition 6. Suppose K is a compact metric space, and b ∈ ωω.
Then there is a function F ∈ C(ω2,K) such that , for every f ∈ C(ω2,K)
with modulus of continuity b, f agrees with F on a perfect subset of ω2.
In fact , there exist an infinite set I ⊆ ω and a function F ∈ C(ω2,K)
such that , for every f ∈ C(ω2,K) with modulus of continuity b, there exists
z ∈ ω2 such that f(x) = F (x) for all x such that x(j) = z(j) for j 6∈ I.

P r o o f. Fix a metric d for K, and, for each n, let Sn be a finite 2−n-dense
subset of K. Define sequences b′ and c recursively as follows. Let b′(0) = b(0);
for n > 0, let b′(n) = max(b(n), c(n− 1)). Given b′(n), choose c(n) so large

that 2c(n)−b′(n)−1 ≥ |Sn|2b
′(n)

.
Now define continuous functions Fn : ω2→ K as follows. Fix a mapping

Qn from the set (b′(n),c(n))2 (essentially the set of binary sequences of length

c(n)− b′(n)− 1) onto
b′(n)2Sn. Now, for any x ∈ ω2, let

F̂n(x) = Qn(x¹(b′(n), c(n)))(x¹b′(n)) .

Let F0 = F̂0. For n > 0, let

Fn(x) =
{
F̂n(x) if d(F̂n(x), Fn−1(x)) ≤ 6 · 2−n,
Fn−1(x) otherwise.

Then F̂n(x) and Fn(x) depend only on x¹c(n), so F̂n and Fn are continuous.
Also, d(Fn−1(x), Fn(x)) ≤ 6 · 2−n for all x, so Fn converges uniformly to a
function F ∈ C(ω2,K) as n→∞. Let I = {b′(n) : n ∈ ω}.

Let f ∈ C(ω2,K) be a function with modulus of continuity b. For each
n and each binary sequence σ of length b′(n), choose an element rn(σ) of Sn
such that d(rn(σ), f(σ∩0)) ≤ 2−n, and hence d(rn(σ), f(x)) ≤ 2·2−n for any
x which starts with σ, since b′(n) ≥ b(n). Choose yn ∈ (b′(n),c(n))2 such that
Qn(yn)(σ) = rn(σ) for all σ. Now find z ∈ ω2 such that z¹(b′(n), c(n)) =
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yn for all n. If x ∈ ω2 satisfies x(j) = z(j) for j 6∈ I, then we have
x¹(b′(n), c(n)) = yn for all n, so F̂n(x) = Qn(yn)(x¹b′(n)) = rn(x¹b′(n)). But
we have d(F̂n(x), f(x)) = d(rn(x¹b′(n)), f(x)) ≤ 2 ·2−n for all n; this implies
that d(F̂n(x), F̂n−1(x)) ≤ 6 · 2−n for all n > 0, so we have Fn(x) = F̂n(x)
for all n. Hence, d(Fn(x), f(x)) ≤ 2 · 2−n for all n, so F (x) = f(x), as
desired.

Proposition 7. Let K0 be a compact subset of a Polish group G. Then
the set of functions f ∈ C(ω2, G) such that every point in K0 is the image
of 2ℵ0 points from ω2 is non-shy in C(ω2, G).

P r o o f. Suppose that µ is a probability measure on C(ω2, G). Let K, b,
and C be as in Lemma 5, and then let F and I be as in Proposition 6. We
will find a function h ∈ C(ω2, G) such that every element of Ch maps 2ℵ0

points of ω2 to each point in K0; since µ(C) > 0, this shows that the set in
question is not shy.

Since K0 is compact (and, we may assume, non-empty), there is a con-
tinuous function p which maps ω2 onto K0. Let b′(0) < b′(1) < . . . be the
increasing enumeration of I, and let q(x) = 〈x(b′(2n)) : n ∈ ω〉. Now let
h(x) = F (x)−1p(q(x)) for all x. If f ∈ C, then there is z ∈ ω2 such that
f(x) = F (x) for all x which agree with z on coordinates outside I. But, for
any w ∈ K0, we can find 2ℵ0 x’s such that p(q(x)) = w: find y ∈ ω2 such
that p(y) = w, and let x(j) be z(j) if j 6∈ I, y(n) if j = b′(2n), and arbitrary
if j = b′(2n+ 1). For such an x, we have fh(x) = F (x)F (x)−1p(q(x)) = w.
Therefore, fh maps 2ℵ0 points of ω2 to each point of K0, as desired.

The same method gives a number of similar results, such as: for any
f0 ∈ C(ω2, G), the set of f ∈ C(ω2, G) which agree with f0 on a perfect set
is non-shy.

One can extend this to other function spaces by using the following
result:

Proposition 8. If ϕ : G → H is a continuous epimorphism of Polish
groups, and S ⊆ H is universally measurable, then S is shy in H iff ϕ−1(S)
is shy in G.

P r o o f. First suppose that S is shy in H, as witnessed by the probability
measure ν. Let ψ be a Borel right inverse of ϕ. (To see that ψ exists, use
the fact that the canonical projection from G to G/ ker(ϕ) is an open map,
and apply Theorem 1.13a and Exercise 1.21a from Kechris [4].) Use ψ to
transfer ν to a measure µ on G. For any g1, g2 ∈ G, if ψ(h) ∈ g1ϕ

−1(S)g2,
then h = ϕ(ψ(h)) ∈ ϕ(g1)Sϕ(g2). Hence, ψ−1(g1ϕ

−1(S)g2) ⊆ ϕ(g1)Sϕ(g2),
so µ(g1ϕ

−1(S)g2) = ν(ψ−1(g1ϕ
−1(S)g2)) = 0. Therefore, µ witnesses that

ϕ−1(S) is shy in G.
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Now suppose that S is not shy in H. Let µ be a probability measure on
G, and use ϕ to get a corresponding measure ν on H. Find h1, h2 ∈ H such
that ν(h1Sh2) > 0, and find g1, g2 ∈ G such that ϕ(g1) = h1 and ϕ(g2) = h2.
If ϕ(g) ∈ h1Sh2, then ϕ(g−1

1 gg−1
2 ) ∈ h−1

1 h1Sh2h
−1
2 = S, so g ∈ g1ϕ

−1(S)g2.
Therefore, µ(g1ϕ

−1(S)g2) ≥ µ(ϕ−1(h1Sh2)) = ν(h1Sh2) > 0. Since µ was
arbitrary, ϕ−1 is not shy in G.

For example, in the space C([0, 1],Rn) where n is finite or ω, the set
of (highly) non-injective functions is non-shy, because, if A is the Cantor
middle-thirds set in [0, 1], then restriction to A is a continuous epimorphism
from C([0, 1],Rn) to C(A,Rn).

For non-locally-compact G, the non-shy sets above turn out to be non-
prevalent as well.

Proposition 9. If G is a Polish group which is not locally compact ,
and A is a σ-compact subset of G, then the set of f ∈ C(ω2, G) such that
f is injective and the range of f is disjoint from A is not shy.

P r o o f. Let µ be a probability measure on C(ω2, G), and find K and C
as in Lemma 5. We will show that there is h ∈ C(ω2, G) such that, for any
f ∈ C, fh is injective and has range disjoint from A.

Let An, n ∈ ω, be compact sets with union A. Since G is not locally
compact, the compact sets K−1K and K−1An are nowhere dense in G.
Working in the space K(G) of compact subsets of G, the sets {E : KE∩An
= ∅} = {E : E ∩K−1An = ∅} are open dense, as are the sets

{E : ∀x, y∈E, d(x, y) ≥ 2−n ⇒ Kx ∩Ky = ∅}
= {E : ∀x, y∈E, d(x, y) ≥ 2−n ⇒ xy−1 6∈ K−1K} .

Therefore, the intersection of all of these open sets is comeager in K(G),
so there is a perfect set E which is in all of these sets. Then KE ∩ A = ∅
and, for any x 6= y in E, Kx ∩Ky = ∅. Let h ∈ C(ω2, G) be a continuous
injection from ω2 to E; then, for any f ∈ C(ω2, G) with range included in
K, fh is injective and has range disjoint from A, so we are done.

This gives more examples of sets invariant under a countable dense sub-
group which are neither prevalent nor shy, such as {f ∈ C(ω2, G) : the range
of f avoids D}, where G is as in Proposition 9 and D is a countable dense
subgroup of G, or

{f ∈ C(ω2, G) : f is locally injective}
(i.e., f is injective on sufficiently small neighborhoods in ω2; this is invariant
under translation by locally constant functions). A Borel variant of the latter
is

{f ∈ C(ω2, ωR) : f is locally distance-non-decreasing} .
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(To see that this is non-shy, note that any compact subset K of ωR is in-
cluded in {s : ∀n, |s(n)| ≤ a(n)} for some fixed sequence a; if h ∈ C(ω2, ωR)
is defined by h(x)(n) = (2a(n) + 1)x(n), then any function f + h where the
range of f is included in K does not decrease distances.)

The case where G is locally compact is quite different; here, at least if
G is abelian, one can show that the set of highly non-injective functions is
prevalent in C(ω2, G). The proof of this involves the following variant of the
Law of Large Numbers (which I assume is a corollary of other well-known
variants).

Lemma 10. For any natural number N and any ε > 0, there is a δ > 0
such that the following is true: If one is given numbers c1, . . . , cn such that
0 ≤ ci ≤ δ for all i and

∑n
i=1 ci = 1, and if one assigns these numbers to

N sets A1, . . . , AN randomly (with ci being assigned to Aj with probability
1/N , and the assignments of the various ci’s being independent), then the
probability that all of the sets Ai have sums at least 1/(2N) is greater than
1− ε.

P r o o f. Fix a number j ≤ N , and let X be a random variable giving the
sum of the elements ci which are assigned to Aj . Then X is the sum of n
independent random variablesXi, whereXi takes the value ci if ci is assigned
to Aj , 0 otherwise. The variable Xi has mean ci/N and variance less than c2i ,
so the sum X has mean

∑n
i=1 ci/N = 1/N and variance less than

∑n
i=1 c

2
i ≤∑n

i=1 ciδ = δ. Therefore, by Chebyshev’s inequality, the probability that X
differs from 1/N by more than 1/(2N) is at most δ(1/(2N))−2. Hence, if δ
is chosen to be so small that 4N2δ < ε/N , then the probability that Aj will
have sum less than 1/(2N) is less than ε/N . This is true for any j ≤ N , so
the probability that all of the sets Aj have sums at least 1/(2N) is greater
than 1−Nε/N = 1− ε.

Theorem 11. If G is a locally compact abelian Polish group, then the
set of all functions f ∈ C(ω2, G) such that the range of f has non-empty
interior is prevalent.

P r o o f. Since the domain of a function in C(ω2, G) is compact, its range
is also compact and hence closed. Therefore, it will suffice to show that the
set of f such that the range of f is dense in some non-empty open set is
prevalent.

Let λ be the standard symmetric probability measure on ω2. Let + and 0
be the group operation and identity element of G, and let d be an invariant
complete metric for G. Let R > 0 be so small that some (and hence any)
closed ball of radius 5R is compact. For each n, let Sn be a finite 2−n−1R-
dense subset of the open ball B(0, 2−nR). Also, let k be a natural number
such that there exists an R-dense subset of B(0, 5R) of size k. Then any
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open ball of radius 5R can be covered by k open balls of radius R, and the
open ball B(x, 2−nR) is covered by the |Sn| open balls B(x + y, 2−n−1R),
y ∈ Sn. It follows that, for m ≤ n, the open ball B(x, 2−mR) is covered by
the open balls B(x + y, 2−nR) for y in Sm + Sm+1 + . . . + Sn−1 (which is
defined to be {0} for m = n).

For each n, let pn =
∏n−1
i=0 |Si| and an = 2nkp3

n. Now define a sequence
of natural numbers 0 = b(0) < b(1) < b(2) < . . . recursively as follows:
given b(n), choose b(n + 1) so large that 2−(b(n+1)−b(n))an|Sn| is less than
the number δ given by Lemma 10 for N = |S2

n| and ε = 2−np−1
n .

We now define a probability measure on C(ω2, G) by specifying a process
for randomly choosing an element f of C(ω2, G) according to this measure.
For each n ∈ ω, define a function fn ∈ C(ω2, G) as follows. For each σ ∈
[b(n),b(n+1))2 (i.e., for each binary sequence of length b(n+1)−b(n)), choose a
pair (r(σ), r′(σ)) of elements of Sn at random, with equal probability for each
of the |Sn|2 possibilities; these choices should be independent for the various
σ’s. Now let fn(x) = r(σ)−r′(σ), where σ = x¹[b(n), b(n+1)). Let µn be the
probability measure corresponding to this method of randomly choosing fn
(so µn concentrates on a finite set). Clearly the randomly chosen function fn
is always continuous, and we always have d(fn(x),0) ≤ 21−nR. Therefore,
if we choose such an fn independently for each n, then the series

∑∞
n=0 fn

converges uniformly; let f be its sum. Then the probability measure µ under
which f is chosen is just the infinite convolution of the measures µn.

We will show that, for any fixed h ∈ C(ω2, G), if f is chosen randomly
according to µ, then with probability 1 the function f+h has a range which
is dense in some non-empty open set U . Hence, the measure µ witnesses
that the set of functions with this property is prevalent.

Let h ∈ C(ω2, G) be fixed. Let n be a natural number such that the
range of h can be covered by n open balls of radius R; since the range of h is
compact, any sufficiently large n will do. If fi is chosen randomly according
to the measure µi for i < n, then we have d(fi(x),0) ≤ 21−iR for all x, so
d(
∑n̄−1
i=0 fi(x),0) < 4R. Therefore, if we let hn̄ = h+

∑n̄−1
i=0 fi(x), then the

range of hn̄ will be covered by n open balls of radius 5R, and hence by kn
open balls of radius R and by knpn̄ balls of radius 2−n̄R. Since an̄ ≥ knpn̄,
we can find an open ball U = B(x, 2−n̄R) such that λ(h−1

n̄ (U)) ≥ a−1
n̄ .

We now prove the following claim by induction on m: For any m ≥ n,
if the functions fi are chosen randomly according to µi for n ≤ i < m,
and we let hn = hn̄ +

∑n−1
i=n̄ fi for n ≤ n ≤ m, then the probability that

λ(h−1
n (B(x + y, 2−nR))) ≥ a−1

n for all possible choices of n ≤ m and y ∈
Sn̄+Sn̄+1 + . . .+Sn−1 is at least 1− 21−n̄+ 21−m. (Note that the functions
fi for i < n were chosen previously and are being held fixed here.)

The base case m = n is immediate from the choice of U and x. Now
suppose the claim is true for m. If fi has been chosen for i < m, and
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y ∈ Sn̄+Sn̄+1 +. . .+Sm−1 is such that λ(h−1
m (B(x+y, 2−mR))) ≥ a−1

m , then
there must exist a z ∈ Sm such that M = λ(h−1

m (B(x+ y+ z, 2−m−1R))) ≥
a−1
m /|Sm|. Fix such z and M , and let

cσ = λ({α : α¹[b(m), b(m+ 1)) = σ and

hm(α) ∈ B(x+ y + z, 2−m−1R)})/M
for σ ∈ [b(m),b(m+1))2. Then the numbers cσ add up to 1 and we have

cσ ≤ 2−(b(m+1)−b(m))/M ≤ 2−(b(m+1)−b(m))am|Sm|
for all σ, so, by the definition of b(m + 1) and Lemma 10, the probability
is at least 1 − 2−mp−1

m that, for all z′ ∈ Sm, the sum of the cσ’s for which
r(σ) = z and r′(σ) = z′ (where r and r′ are as in the definition of µm) is at
least 1/(2|Sn|2). But, if r(σ) = z and r′(σ) = z′ then

h−1
m (B(x+ y + z, 2−m−1R)) ∩ {α : α¹[b(m), b(m+ 1)) = σ}

⊆ (hm + fm)−1(B(x+ y + z′, 2−m−1R));

hence, the probability is at least 1− 2−mp−1
m that, for all z′ ∈ Sm,

λ(h−1
m+1(B(x+ y + z′, 2−m−1R))) ≥M/(2|Sm|2) ≥ a−1

m+1 .

Applying this to all y in Sn̄ + Sn̄+1 + . . .+ Sm−1 (a set of size at most pm)
shows that, if the assertion in the claim holds form, then the probability that
it fails for m+ 1 is at most pm2−mp−1

m = 2−m. By the inductive hypothesis,
the probability that the assertion holds for m is at least 1 − 21−n̄ + 21−m,
so the probability that the assertion holds for m + 1 is at least 1 − 21−n̄ +
21−m − 2−m = 1− 21−n̄ + 21−(m+1). This completes the inductive proof of
the claim.

Therefore, the probability that λ(h−1
n (B(x + y, 2−nR))) ≥ a−1

n for all
n ≥ n and y ∈ Sn̄+Sn̄+1 + . . .+Sn−1 is at least 1−21−n̄. For any particular
n, the open balls B(x + y, 2−nR) for y ∈ Sn̄ + Sn̄+1 + . . . + Sn−1 cover
the original ball U = B(x, 2−n̄R). Now, if V is a non-empty open subset of
U , choose w ∈ V , and let n ≥ n be so large that B(w, 6 · 2−nR) ⊆ V . If
w ∈ B(x + y, 2−nR), then for any α such that hn(α) ∈ B(x + y, 2−nR) we
have

d
(
w, hn(α) +

∞∑

i=n

fi(α)
)
< 2 · 2−nR+

∞∑

i=n

21−iR = 6 · 2−nR ,

so, if f =
∑∞
i=0 fi, then h(α)+f(α) ∈ V . Hence, λ(h−1

n (B(x+y, 2−nR))) > 0
implies λ((h + f)−1(V )) > 0 and hence (h + f)−1(V ) 6= ∅. Therefore, the
probability that (h + f)−1(V ) 6= ∅ for all non-empty open V ⊆ U (i.e., the
range of h+ f is dense in U) is at least 1− 21−n̄. Since, as we noted earlier,
n could be chosen to be an arbitrarily large natural number, the probability
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that there is some non-empty open U such that the range of h+ f is dense
in U is 1, as desired.

We now argue further that, for “most” (in the sense of prevalence) func-
tions f , there exists a non-empty open set U such that every point of U
is the image of 2ℵ0 points of ω2. To see this, first note that G, being ho-
mogeneous, must be either discrete or perfect; the discrete case is trivial,
so assume G is perfect. One can define a bicontinuous isomorphism Φ from
C(ω2, G) to C(ω2, G2) by the formula Φ(f)(x) = (f(0x), f(1x)). For “most”
functions h ∈ C(ω2, G2), the range of h includes an open set, which in turn
includes a basic open set of the form U × V . Therefore, if f = Φ−1(h) (note
that “most” f ∈ C(ω2, G) have this form for some h as above), then for any
y ∈ U and z ∈ V there exists x ∈ ω2 such that f(0x) = y and f(1x) = z;
hence, for each y ∈ U there are 2ℵ0 x’s such that f(0x) = y.

Some of the results here can be worked with more easily in terms of
variants of non-shyness, a number of which are mentioned in Hunt, Sauer,
and Yorke [3]. In the following list of properties of a universally measurable
subset S of a Polish group G, ε will vary over positive real numbers, µ over
probability measures on G, and t over translation functions g 7→ g1gg2.

(1) ∃µ∀t µ(t(S)) = 1 [prevalent]

(2) ∀ε∃µ∀t µ(t(S)) > 1− ε [lower density 1]

(3) ∃ε∃µ∀t µ(t(S)) > ε [positive lower density]

(4) ∃µ∀t µ(t(S)) > 0 [observable]

(1′) ∀µ∃t µ(t(S)) = 1

(2′) ∀ε∀µ∃t µ(t(S)) > 1− ε [upper density 1]

(3′) ∃ε∀µ∃t µ(t(S)) > ε [positive upper density]

(4′) ∀µ∃t µ(t(S)) > 0 [non-shy]

(Perhaps, for completeness, one should introduce a word for (1′), such as
“ubiquitous.”) These come in four dual pairs: S satisfies (1) iff the com-
plement of S does not satisfy (4′), and so on. The implications (j) → (k)
and (j′) → (k′) for j < k are trivial. An argument using convolution and
Fubini’s theorem shows that (j)→ (j′) for each j.

N o t e. The application of the above definitions to any universally mea-
surable set S follows Christensen [1] and Kechris [4] but differs from Hunt,
Sauer, and Yorke [3], in which the definitions are given for Borel sets and
then extended to other sets by inclusion. For an example where the differ-
ence is significant, one can use the fact that, if the continuum hypothesis
(or just Martin’s axiom) holds, then any Polish space X has a subset S such
that S ∩A has cardinality less than 2ℵ0 whenever A is σ-compact but S ∩A
has cardinality 2ℵ0 whenever A is a Borel set which is not included in a
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σ-compact set. If X is a Polish group with an invariant metric which is not
locally compact, then this set S is universally measurable and shy (since any
probability measure on X is based on a σ-compact subset of X, and Martin’s
axiom implies that sets of cardinality less than 2ℵ0 have measure 0 under
any atomless measure, any atomless probability measure will be transverse
to S), but any Borel set which includes X must be the complement of a
σ-compact set and therefore prevalent by Proposition 12 below. [This gives
a conditional negative answer to problem (P1) from Mycielski [5].] However,
this set S has a high complexity, if it is definable at all; as far as I know, it
is open whether any, say, analytic shy set must be included in a Borel shy
set, or any analytic non-shy set must include a Borel non-shy set.

On the other hand, one cannot apply the above definitions to arbitrary
sets S, if one wants to maintain desirable properties such as additivity of
shyness. Again assuming the continuum hypothesis or Martin’s axiom, if G
is an uncountable Polish group and � is a well-ordering of G in minimal
order type, then both � and its complement are subsets of G2 which have
transverse Borel measures (namely product measures µ × µ′, where one
of µ, µ′ is an atomless measure on G and the other is a measure which
concentrates on a single point).

Hence, it is important to note that, in each case where we have con-
structed a non-shy or prevalent set which is not obviously universally mea-
surable (e.g., the set of functions f ∈ C(ω2, G) for which every point in some
non-empty open subset of G is the f -image of 2ℵ0 points from ω2), we have
done so by showing that the set includes a non-shy or prevalent set which is
universally measurable (e.g., the preimage under the isomorphism Φ defined
after Proposition 11 of the set of f ∈ C(ω2, G2) such that the range of f is
dense in some non-empty open neighborhood; this set is Borel).

For compact G, (1), (2), (1′), and (2′) are equivalent to having full Haar
measure, while the remaining four are equivalent to having positive Haar
measure. For locally compact G, (1) and (1′) are equivalent to having full
Haar measure and (4) and (4′) to having positive Haar measure, but the
remaining four can be distinguished: a finite interval in R satisfies (4) but
not (3′), its complement satisfies (2) but not (1′), and the set of positive
reals satisfies (2′) but not (3).

All of the examples of non-shy sets we have constructed here are actu-
ally sets of upper density 1. To see this, note that, given a measure, we
constructed certain intermediate sets of large measure and intersected them
to get a set C of positive measure; by making the intermediate sets a little
larger, we may ensure that C has measure greater than 1 − ε for a given
ε > 0. In certain cases, we can do even better. For instance, take the set P
of s ∈ ωR such that s(n) > 0 for all but finitely many n. If the numbers
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bn are constructed from a given measure µ as in the proof of Proposition 1,
then µ({s ∈ ωR : |s(n)| ≤ bn for all n ≥ N}) > 1 − 2N for all N , so the
set {s ∈ ωR : |s(n)| ≤ bn for almost all n} has measure 1. This set has a
translate included in P , so P satisfies (1′). The complement of P also satis-
fies (1′) for the same reasons, so neither P nor its complement is observable.
Therefore, all eight of these properties are distinct in general.

All eight properties are preserved under finite products (considered as
subsets of the corresponding finite products of groups). However, it is not
hard to see that the stronger properties (1), (2), (1′), and (2′) are preserved
under countably infinite products as well. Hence, once one has a pair of dis-
joint subsets of G satisfying (1′) or (2′) (such as the positive and negative
reals, or the set P and its complement from the preceding paragraph), one
can immediately get 2ℵ0 disjoint subsets of ωG satisfying the same prop-
erty. One cannot do this with properties (1) and (2), of course, since these
properties define (countably closed) filters.

Finally, a more general version of Fact 8 from Hunt, Sauer, and Yorke
[3] and Exercise 1.56 from Kechris [4]:

Proposition 12. Let G be a non-locally-compact Polish group with an
invariant metric. Then any compact subset (and hence any Kσ subset) of
G is shy.

P r o o f. Let d be the invariant metric, and let e be the identity element
of G. Let K be a compact subset of G. Construct positive numbers δn, εn
and finite subsets Sn of G for n ∈ ω as follows. Let δ0 = 1. Given δn,
choose εn > 0 so small that there are infinitely many points in B(e, δn/2)
which are at distance at least εn from each other. Since K is compact,
there is a finite subset of K which is εn/6-dense in K. Let N be the size
of such a subset; then K cannot contain more than N points at distance at
least εn/3 from each other. Let Sn be a subset of B(e, δn/2) of cardinality
max(2, N) whose points are at distance at least εn from each other. Now let
δn+1 = min(δn/2, εn/3).

Let µn be the measure on the finite set Sn which assigns measure 1/|Sn|
to each point in Sn, and let µ be the infinite convolution of the measures
µn. Then, for any n, µ concentrates on the union of

∏n
i=0 |Si| closed balls

of radius δn+1, giving equal measure to each, and these balls are at distance
at least εn/3 from each other. Therefore, any translate of K can meet at
most |Sn| of these balls; since

∏n
i=0 |Si| ≥ 2n|Sn|, any translate of K has

µ-measure at most 2−n. Since n was arbitrary, all translates of K have
µ-measure 0, as desired.

I would like to (and hereby do) thank J. Mycielski and A. Kechris for
helpful discussions, results, and problem suggestions.
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