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Every Lusin set is undetermined in the point-open game

by

Ireneusz Recław (Gdańsk)

Abstract. We show that some classes of small sets are topological versions of some
combinatorial properties. We also give a characterization of spaces for which White has a
winning strategy in the point-open game. We show that every Lusin set is undetermined,
which solves a problem of Galvin.

1. Introduction. In Set Theory many infinite combinatorial proofs are
“Borel”. So we can very often get interesting topological theorems using the
same proofs as for combinatorics.

For example, in this paper we consider some classical notions of small-
ness such as the Hurewicz property, Menger property, C′′-sets and others
(see [M1] and [FM]). We observe that these classes of sets can be expressed
by some combinatorial properties used to define some cardinal coefficients,
for example b, d, p, cov(M). We also investigate some “measurable” ver-
sions of additivity of measure and we get some implications using the proofs
of Bartoszyński (see [B1]). We apply those methods to investigate the de-
terminacy of point-open games. In particular, we show that every Lusin set
is undetermined.

We use the following notation:

• [ω]ω = {A ⊆ ω : A infinite},
• ∃∞n — there are infinitely many n,
• ∀∞n — for all but finitely many n,
• s_t— the concatenation of finite sequences s and t,
• c — the cardinal number continuum,
• |X|— cardinality of X,
• µ— Lebesgue measure,
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• Gx = {y : (x, y) ∈ G},
• Gy = {x : (x, y) ∈ G},
• for s ∈ κ<ω let [s] = {x ∈ κω : s ⊂ x},
• A ⊂∗ B if |A \B| is finite,
• f <∗ g if {n : g(n) < f(n)} is finite.

We say that X ⊂ ωω is bounded if there is a function g ∈ ωω such that
x <∗ g for each x ∈ X. We then write X <∗ g.

We say that X ⊂ ωω is dominating if for each g ∈ ωω there is an x ∈ X
with g <∗ x.

We say that a subset L ⊆ R is a Lusin (Sierpiński) set if L is uncountable
and its intersection with every set of first category (of measure zero) is
countable.

We say that X is concentrated on D ⊂ X if |X \ U | ≤ ω for every open
set U ⊇ D.

For a property H let non(H) = min{|F | : F does not satisfy H and
F ⊆ R}.

2. Games. Let X be a topological space. We recall two infinite games.

The point-open game G(X): In the nth move Black plays a point xn ∈ X
and White plays an open set Un containing xn. Black wins if

⋃
n Un = X.

Otherwise White wins.
G∗(X): In the nth move White plays an open cover Jn of X and Black

plays an element Un of Jn. Black wins if
⋃
n Un = X, otherwise White wins.

Theorem (Galvin [G]). (a) G(X) and G∗(X) are equivalent.
(b) (CH) There is a Lusin set which is undetermined.

Galvin [G] asked if every Lusin set is undetermined in the point-open
game.

Let κ = ω(X) be the weight of the space X with the discrete topology.
Then κω is a complete metric space.

Theorem 1. White has a winning strategy in G(X) iff there is a closed
set D ⊆ X × κω such that Dx is nowhere dense for every x in X, and⋃
x∈X Dx = κω.

P r o o f. ⇐ We define a winning strategy for White. At each step White
chooses two open sets Un and Vn such that Un ⊆ X, Un contains xn, V n ⊆
Vn−1 ⊆ κω, diam(Vn) < 1/n and (Un × Vn)∩D = ∅. Then White plays Un.

Assume that
⋃
n Un = X. Let y ∈ ⋂n Vn. Then (Un × {y}) ∩D = ∅ for

each n. So (X × {y}) ∩D = ∅, a contradiction.
⇒ By the Galvin Theorem, White has a winning strategy in the game

G∗(X). Let O be a basis of size κ. We can assume that White chooses a
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function from A = {J : κ → O :
⋃
α<κ J(α) = X}. So we can assume that

Black chooses an α ∈ κ.
Let S : κ<ω → A be a strategy for White. We define

W =
⋃

s∈κ<ω

⋃
α∈κ

S(s)(α)× [s_〈α〉] .

Since W is open, D = (X × κω) \W is closed. Let x ∈ X and s ∈ κ<ω.
Then there is an α ∈ κ such that x ∈ S(s)(α) because S(s) is a cover
of X. Then [s_〈α〉] ∩ Dx = ∅. So Dx is nowhere dense. If there were y =
(α0, α1, . . . , αn, . . .) ∈ κω such that y 6∈ ⋃x∈X Dx then Black would win
playing S(α0, α1, . . . , αn−1)(αn) in the nth move. Observe that if x ∈ X then
(x, y) ∈W and so there are s ∈ κ<ω and α ∈ κ such that (x, y) ∈ S(s)(α)×
[s_〈α〉]. Since y ∈ [s_〈α〉], there is an n ∈ ω such that (α0, α1, . . . , αn) =
s_〈α〉 so x ∈ S(α0, α1, . . . , αn−1)(αn).

R e m a r k s. It is consistent that for any uncountable metric space White
has a winning strategy so every metric space is determined. Telgársky con-
structed an uncountable, undetermined, Hausdorff, Lindelöf space. For Lin-
delöf spaces, the κ in Theorem 1 can also be equal to ω.

Lemma 1. Let L ⊆ ωω be a Borel image of a Lusin set. Then there is a
function f ∈ ωω such that ∀x∈L∃∞n (x(n) = f(n) ∧ ∀i<nf(i) < n).

P r o o f. Every Borel image of a Lusin set is concentrated on a countable
subset so it is a C′′-set (for definition see the next section). So there is
a function g ∈ ωω such that ∀x∈L∃∞n x(n) = g(n). Since g itself need not
satisfy the assertion of the theorem, we improve it by putting in some places
0 instead of g(n).

Let {yl : l ∈ ω} ⊆ L be such that L is concentrated on it. Inductively we
can construct an increasing sequence nk such that nk+1 > max{g(n) : n ≤
nk} and ∀l∈ω∃∞k yl(nk) = g(nk).

Let K = {x ∈ L : ∃∞k x(nk) = g(nk)}. Observe that K is a relative Gδ in
L containing {yl : l ∈ ω} so |L \K| ≤ ω.

We define a function F : K → ωω by F (x)(n) = nth element of the set
{k : g(nk) = x(nk)}. Obviously {k : g(nk) = x(nk)} is infinite for x ∈ K.
Since F is Borel, F [K] is a Borel image of a Lusin set so there is an increasing
function a ∈ ωω such that ∀x∈K∃∞i F (x)(i) < a(i). Let L \K = {zl : l ∈ ω}.
We choose mk such that mk > n3a(k)+3 and ∀l∈ω∃∞k g(mk) = zl(mk).

Now we define a function f by

f(n) =





0 if n 6∈ {mk : k ∈ ω} ∪ {nk : k ∈ ω},
g(n) if ∃kn = mk,
g(n) if ∃k(n = nk ∧ ¬∃lnk < ml < nk+1),
0 if ∃k(n = nk ∧ ∃lnk < ml < nk+1).
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Let x ∈ L. First assume that x ∈ L \K. Then ∃∞k g(mk) = x(mk). Let
n < mk and let l ∈ ω be such that nl < mk < nl+1. Then if n ≤ nl−1 then
f(n) ≤ g(n) < nl < mk. If nl−1 < n < mk then f(n) = 0 < mk.

Now assume that x ∈ K. Then ∃∞k F (x)(k) ≤ a(k). Since m[k/3] > a(k)
there is an l ≤ k such that ¬((∃inF (x)(l) < mi < nF (x)(l)+1) ∨ (nF (x)(l)−1 <
mi < nF (x)(l))). Then f(nF (x)(l)) = g(nF (x)(l)) and ∀i≤nF (x)(l)−1f(i) ≤
g(i) < nF (x)(l) and ∀i((nF (x)(l)−1 < i < nF (x)(l))⇒ f(i) = 0).

Theorem 2. Let X ⊆ 2ω be a Lusin set and D ⊆ X × 2ω be a closed set
such that Dx is nowhere dense for each x ∈ X. Then

⋃
x∈X Dx 6= 2ω.

P r o o f. We closely follow the line of reasoning from [M4].
Let 2<ω = {s0, s1, . . .}. We define H : X → ωω by

H(x)(n)

= min{k : ∀i0,i1,...,in−1<n[si0
_si1

_ . . ._sin−1
_sk] ∩Dx = ∅} .

It is easy to see that H is a Borel function. Then there is a function
f ∈ ωω such that ∀z∈H[X]∃∞n (z(n) = f(n) ∧ ∀i<nf(i) < n). Let y =
sf(0)

_sf(1)
_ . . ._sf(n)

_ . . . We will show that ∀x∈Xy 6∈ Dx. For z ∈ H[X],
∃n(z(n) = f(n)∧ ∀i<nf(i) < n). Observe that y ∈ [sf(0)

_sf(1)
_ . . ._sf(n)]

= [sf(0)
_sf(1)

_ . . ._sH(x)(n)]. So since f(0), f(1), . . . , f(n−1) < n we have
[sf(0)

_sf(1)
_ . . ._sf(n)] ∩Dx = ∅.

Corollary 1. Let X ⊆ 2ω be a Lusin set and D ⊆ X × ωω be a closed
set such that Dx is nowhere dense for each x ∈ X. Then

⋃
x∈X Dx 6= ωω.

P r o o f. ωω is homeomorphic to a subset Z ⊆ 2ω such that 2ω \ Z is
countable. If

⋃
x∈X Dx = ωω then by a natural homeomorphism we can

construct a set C ⊆ X×2ω such that Cx ⊇ Z. Then adding to X countably
many isolated points we can obtain the missing points from 2ω to get a
contradiction with Theorem 2.

So we get a positive answer to the question of Galvin.

Corollary 2. Every Lusin set is undetermined in the point-open game.

P r o o f. By Theorem 1, White does not have a winning strategy for a
Lusin set. For subsets of the reals Black has a winning strategy only for
countable sets so every Lusin set is undetermined.

Corollary 3. Let X ⊆ 2ω be a Lusin set and D ⊆ X × R be a first
category set in X × R such that Dx is first category for each x ∈ X. Then⋃
x∈X Dx 6= R.

P r o o f. Observe that for every closed set D ⊆ X × R with every sec-
tion nowhere dense,

⋃
x∈X Dx is not residual. Otherwise we could obtain R

adding countably many isolated points to X.
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First assume that D =
⋃
nDn is such that Dn is closed with every section

nowhere dense. Define C = {(n, x, y) : (x, y) ∈ Dn and n ∈ ω}. Observe that
C is closed, {n} ×X is a Lusin set and C(n,x) = (Dn)x.

Now let D ⊆ X×R be a first category set in X×R such that each Dx is
first category. Then D is contained in a Fσ-set F of first category. The set
A = {x : Fx is second category} is countable. Since X \A is also a Lusin set,⋃
x∈X\A Fx is not residual. Thus

⋃
x∈X Dx ⊆

⋃
x∈ADx ∪

⋃
x∈X\A Fx 6= R.

3. Small sets and cardinal coefficients. In this section we will com-
pare some notions of smallness in the sense of topology and combinatorics.
Definitions 1–4 can be found in [FM], and Definition 6 in [GM]. The def-
initions of the coefficients p, d, b are in [D]. cov(M) and add(N) were
investigated for example in [B1] and [M5].

Definition 1. A topological space X has the Hurewicz property if for
every family {Jn : n ∈ ω} of open covers of X there is a family {J ′n : n ∈ ω}
such that J ′n is a finite subset of Jn and X ⊆ ⋃k

⋂
n>k

⋃
J ′n.

Proposition 1. Let X be a 0-dimensional , separable metric space. Then
X has the Hurewicz property iff every continuous image of X into ωω is
bounded.

P r o o f. ⇒ Every continuous image of a Hurewicz set is a Hurewicz set.
Let X be a subset of ωω. Let Jn = {{f ∈ ωω : f(n) = k} : k ∈ ω}. By the
Hurewicz property this set must be bounded.
⇐ Let Jn be a family of open covers of X. By 0-dimensionality we can

assume that all elements of Jn are clopen and disjoint. Define h : X → ωω

by h(x)(n) = k if x belongs to the kth element of Jn. Then h is continuous
and h[X] is bounded so there is a φ ∈ ωω such that h[X] ≤∗ φ. Then J ′n is
simply the first φ(n) elements of Jn.

As in Proposition 1, we will consider other pairs of classes of small sets
and coefficients.

We say that a family J of subsets of X is an ω-cover if for each finite
set A ⊂ X there is a U ∈ J such that A ⊂ U .

Definition 2. X is a γ-set if for every open ω-cover J of X there exists
a sequence (Dn : n ∈ ω) of elements of J such that X ⊆ ⋃k

⋂
n>kDn.

We say that F ⊆ ωω has property P if |⋂F0| = ω for every finite subset
F0 of F . Then there exists A ∈ [ω]ω such that A ⊆∗ B for every B ∈ F . We
define

p = min{|F | : F ∈ [ω]ω and ¬(F has property P)} .
Proposition 2. Let X be a 0-dimensional , separable metric space. Then

X is a γ-set iff f [X] has property P for every continuous function f : X →
[ω]ω.
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P r o o f. ⇒ Every continuous image of a γ-set is a γ-set. Let X be a
subset of [ω]ω. Let On = {A ∈ [ω]ω : n ∈ A}. Assume that |⋂F0| = ω
for every finite subset F0 of X. Then the family J = {On : n ∈ ω} is
an open ω-cover of X. By the γ-property there is a sequence nk such that
X ⊆ ⋃m

⋂
k>mOnk . The case when the sequence nk has only finitely many

values is left to the reader. Assume that nk is increasing. Then for every
B ∈ X almost every nk belongs to B. Thus {nk : k ∈ ω} ⊆∗ B.
⇐ Let J = {Dn : n ∈ ω} be an open ω-cover of X. By 0-dimensionality

we can assume that all elements of J are clopen and every subset of X is
contained in infinitely many elements of J . Define h : X → [ω]ω by h(x) = A
iff (for every n, n ∈ A iff x ∈ Dn). Then h is continuous and |⋂F0| = ω for
every finite subset F0 of h[X]. So there exists A ∈ [ω]ω such that A ⊆∗ B
for every B ∈ h[X]. We can see that h−1[On] = Dn. So X ⊆ ⋃m

⋂
k>mDnk

where {nk : k ∈ ω} = A.

Definition 3. X has the Menger property if for every sequence (Jn :
n ∈ ω) of open covers there is a sequence (J ′n : n ∈ ω) such that J ′n ⊆ Jn,
J ′n is finite, and X ⊆ ⋃n

⋃
J ′n.

We set

d = min{|F | : F ⊆ ωω and ¬(F is not dominating)} .
Proposition 3. Let X be a 0-dimensional , separable metric space. Then

X has the Menger property iff for every continuous function f : X →
ωω, f [X] is not dominating.

P r o o f. The proof is similar to the proof of Proposition 1.

Definition 4. X has the C′′ property if for every sequence (Jn : n ∈ ω)
of open covers there is a sequence (Dn : n ∈ ω) such that Dn ∈ Jn and
X ⊆ ⋃nDn.

We set

cov(M) = min
{
|F | : F ⊆M and

⋃
F = R

}

where M is the σ-ideal of first category sets.
We say that F ⊆ ωω has property CM if there exists g ∈ ωω such that

for every f ∈ F there exist infinitely many n such that f(n) = g(n).
Bartoszyński [B2] showed that cov(M) = {|F | : F ⊆ ωω and ¬(F has

property CM)}.
Proposition 4. Let X be a 0-dimensional , separable metric space. Then

X is a C′′-set iff f [X] has property CM for every continuous function f :
X → ωω.

P r o o f. The proof is similar to the proof of Proposition 1.
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We also set

add(N) =
{
|F | : F ⊆ N and

⋃
F 6∈ N

}

where N is the σ-ideal of Lebesgue measure zero sets.
Let kn be an arbitrary increasing sequence of natural numbers. We say

that F ⊆ ωω has property AN if there exists g ∈ ([ω]<ω)ω such that |g(n)| ≤
kn for every n, and f(n) ∈ g(n) for every f ∈ F and for almost every n.

Bartoszyński [B1] showed that add(N) = min{|F | : F ⊆ ωω and ¬(F
has property AN)}.

Definition 5. We say that X is add(N)-small if there exists an in-
creasing sequence kn such that for every sequence (Jn : n ∈ ω) of open
covers there is a sequence (J ′n : n ∈ ω) such that J ′n ⊆ Jn, |J ′n| ≤ kn, and
X ⊆ ⋃k

⋂
n>k

⋃
J ′n.

Proposition 5. Let X be a 0-dimensional , separable metric space. Then
X is add(N)-small iff f [X] has property AN for every continuous function
f : X → ωω.

P r o o f. The proof is similar to the proof of Proposition 1.

We say that J is a cover of [X]k if for every finite set A ⊂ X of size k
there is an element O ∈ J with A ⊂ O.

Definition 6. We say that X is a strong γ-set iff there exists (kn : n ∈
ω) such that for any sequence (Jn : n ∈ ω) where Jn is an open cover of
[X]kn there exists (Cn : n ∈ ω) with Cn ∈ Jn and X ⊆ ⋃n

⋂
m>n Cm.

Proposition 6. Every strong γ-set is add(N)-small.

P r o o f. Let (In : n ∈ ω) be a family of open covers of a strong γ-set X,
and Jn = {⋃ I ′n : I ′n ⊆ In and |I ′n| ≤ kn}. Then Jn is a cover of [X]kn . Since
X is a strong γ-set there is a sequence (Dn : n ∈ ω) such that Dn ∈ Jn
and X ⊆ ⋃n

⋂
m>nDm. Since we know that Dn is a union of at most kn

elements of In we conclude that X is add(N)-small.

From the existence of a strong γ-set of size c under MA we get:

Corollary 4. Assuming Martin’s Axiom there exists an add(N)-small
set of reals of size c.

P r o o f. See [GM] for an example of a strong γ-set.

R e m a r k s. From the results above we find that: non(γ) = p, non(Hu-
rewicz property) = b, non(Menger property) = d, non(C′′) = cov(M) and
non(add(N)-small) = add(N). These results except the last one were ob-
tained in [FM].
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The following relations between the cardinal coefficients mentioned above
are known: add(N) ≤ cov(M) ≤ d and p ≤ b ≤ d and p ≤ cov(M). This is
a part of Cichoń’s Diagram (see [F]).

Similar inclusions exist for classes of sets: (strong γ → γ → Hurewicz
property → Menger property) and (γ → C′′ → Menger property).

We can see that non(strong γ) ≤ min(add(N),p). So if add(N) < p,
what is consistent, then strong γ 6= γ. This fact was observed before by
T. Weiss (private communication) in a more particular model of ZFC.

4. “Measurable” additivity and non-covering. In [B1] Bartoszyński
introduced several equivalent conditions for additivity of measure. We will
translate some of them to “measurable” versions. We will also show some
implications between them. A first condition can be found in Definition 5.
Below we consider some other properties of a set X:

(∗) Let V ⊆ R2 be such that V ⊆ ⋂n Un where Un is open and µ((Un)x) <
2−n for all x ∈ X. Then µ(

⋃
x∈X Vx) = 0.

It is easy to see that every set X ⊆ R with property (∗) also has the
following property: For every G of measure zero, X + G is also of measure
zero. Sets with this property were investigated for example in [GM] and [FJ].

(∗∗) For every sequence of continuous functions fn : X → R such that the
series

∑
fn is converging there is a convergent series

∑
an eventually

dominating (fn : n ∈ ω) (that is, ∀x∃k∀n>k|fn(x)| < an).

Proposition 7. (∗∗)⇒(∗).

P r o o f. The proof uses similar arguments to a proof in [B1].
Let Un =

⋃
k Pnk×Qnk be such that the Pnk×Qnk are pairwise disjoint

for each n, the Pnk are clopen and the Qnk are intervals. Let us enumerate
{Pnk ×Qnk : n, k ∈ ω} as {Pl ×Ql : l ∈ ω}. Then V ⊆ ⋂k

⋃
l>k Pl ×Ql.

Let fl : X → R, fl = χ
Pl
· µ(Ql). Since

∑
l fl <∞ there is a convergent

series
∑
al such that ∀x∃k∀l>k|fl(x)| < al. We define

Rl =
{
Ql if µ(Ql) < al,
∅ otherwise.

Observe that
⋂
k

⋃
l>k Rl is a null set. We know that Vx ⊆

⋂
k

⋃
l>k,x∈Pl Ql

for every x. Observe that for every x and almost every l if x ∈ Pl then
Ql = Rl so Vx ⊆

⋂
k

⋃
l>k Rl.

We next define two properties of a set X:

(∗∗∗) ∀fn:X→R Borel(∑
fn <∞

)
⇒ ∃an

(∑
an <∞ and ∀∞n |fn(x)| < an

)
.

(∗∗∗∗) ∀g:X→ωω Borel∃In⊂ω|In| < n2 ∧ ∀h∈g[X]∀∞n h(n) ∈ In .
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It is obvious that (∗∗∗)⇒(∗∗).
Proposition 8. (∗∗∗∗)⇒(∗∗∗).

P r o o f. The proof is a slight modification of a proof from [B1].
Let g : X → ωω, g(x)(k) = min{n :

∑
l>n |fl(x)| < 2−k}. Then g is a

Borel function. So there is a sequence bk such that ∀∞k ∀n≥bk
∑
l>n |fl(x)| <

2−k. We can assume that fn[X] ⊆ Q for each n. Let g1 : X → (Q<ω)ω where
we take Q<ω with discrete topology such that g1(x)(k) = (fbk(x), fbk+1(x),
. . . , fbk+1−1(x)). Since g1 is a Borel function, there are Ik ⊆ Q<ω such that
|Ik| < k2 and ∀h∈g1∀∞k h(k)∈Ik. Define an= sup{fn(x) : (fbk(x), fbk+1(x),
. . . , fbk+1−1(x)) ∈ Ik and

∑bk+1−1
l=bk |fl(x)| < 2−k and x ∈ X and bk ≤ n ≤

bk+1− 1}. It is easy to see that
∑bk+1−1
l=bk al ≤ k22−k so an is convergent and

eventually dominates each fn.

Fact. non((∗)) = non((∗∗)) = non((∗∗∗)) = non((∗∗∗∗)) = add(N).

P r o o f. It is enough to show that add(N) ≥ non((∗)).
Let {Gx : x ∈ X} be a family of Gδ-sets of measure zero such that

µ∗(
⋃
x∈X Gx) > 0. Let {Unx : n ∈ ω} be a family of open sets such that

Gx =
⋂
n U

n
x and µ(Unx ) < 1/n. Now we can find a separable, 0-dimensional

metric topology such that
⋃
x∈X{x} × Unx is an open set in X × R for each

n (see [BBM]). So we see that X does not satisfy (∗).
Proposition 9. Suppose that every Borel image of a set X into ωω is

bounded. Let B ⊆ X × R be a Borel set. Then there is a sequence of open
sets Un ⊆ X × R such that B ⊆ ⋂n Un and ∀x∈X∀∞n µ((Un \B)x) < 2−n.

P r o o f. First we show that the family A of all Borel sets A ⊆ X ×R for
which there is a sequence of open subsets Un of X×R such that A ⊆ ⋂n Un
and ∀x∈X∀∞n µ((Un \A)x) < 2−n is a monotonic family. Let A =

⋂
k A

k and
let Ukn witness that Ak ∈ A.

We define f : X → ωω by f(x)(k) = min{n : ∀l≥nµ((Ukl \Ak)x) < 2−k}.
Since f is Borel, there is an h ∈ ωω with f [X] <∗ h. Let g : X → ωω be
defined by g(x)(i) = min{n : ∀k≥nµ((Ak \ A)x) < 2−i}. Then g is Borel
so there is an φ ∈ ωω with g[X] <∗ φ. Then U

φ(k)
h(φ(k)) has the required

properties.
Now let A =

⋃
k A

k with Ak ⊆ Ak+1 and let Ukn witness that Ak ∈ A.
We define f : X → ωω by f(x)(k) = min{n : ∀l≥nµ((Ukl \ Ak)x) < 2−k}.
Since f is Borel, there is an h ∈ ωω with f [X] <∗ h. Then the family
Vn =

⋃
l≥n U

l
h(l) has the required properties.

It is easy to show that the algebra generated by rectangles (open interval
cross open interval) is contained in A so all Borel sets belong to A.

Corollary 5. If X satisfies (∗∗∗∗) then µ(
⋃
x∈X Bx) = 0 for every

Borel set B ⊆ X × R with µ(Bx) = 0 for each x ∈ X.
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P r o o f. Obviously property (∗∗∗∗) is hereditary and (∗∗∗∗) for X implies
that every Borel image of X into ωω is bounded. So there is a family of open
sets Un such that ∀x∈X∀∞n µ(Un) < 2−n and B ⊆ ⋂n Un. Let Xk = {x ∈
X : ∀n≥kµ((Un)x) < 2−n}. Then

⋃
kXk = X. By Propositions 7 and 8,

µ(
⋃
k

⋃
x∈Xk Bx) = 0.

Examples. Every set of size less than add(N) satisfies (∗∗∗∗).
Another example comes from a result of Todorčević. Since it has not

been published we will sketch the proof.

Theorem 3 (Todorčević). Assuming CH there is a set of size c whose
every Borel image is a strong γ-set.

Lemma 2. Let {Bn : n ∈ ω} be a family of disjoint perfect sets, A a
countable set and (Jn : n ∈ ω) a sequence of countable Borel families such
that Jn is a cover of [

⋃
lDl ∪ A]kn . Then there is a family {B′n : n ∈ ω} of

perfect sets with B′n ⊆ Bn and a sequence {Dn : n ∈ ω} with Dn ∈ Jn such
that

⋃
nB
′
n ∪A ⊆

⋃
m

⋂
n>mDn.

P r o o f. The proof uses similar argument to the proof of a lemma in [GM].

P r o o f o f T h e o r e m 3. We construct an Aronszajn tree built from
perfect sets of R ordered by reverse inclusion. First we order all pairs
(fα, (Iαn : n ∈ ω)) where fα : R → R is a Borel function and each In is
a family of open subsets of R. Let Jαn = {f−1

α (O) : O ∈ Iαn }. On each level
α we extend the tree by constructing a countable family of perfect sets and
a countable subset Xα of their union either using Lemma 2 for (Jαn : n ∈ ω)
or choosing Xα such that Jαn is not a cover of [Xα]kn for some n. Then
X =

⋃
α<ω1

Xα has the required properties. For details see [GM].

Corollary 6. Assuming CH there is a set of reals of size c with property
(∗∗∗∗).

Corollary 7. Assuming CH there is a set of reals of size c such that⋃
x∈X µ(Bx) = 0 for every Borel set B ⊆ X × R with µ(Bx) = 0 for each

x ∈ X.

D. H. Fremlin and J. Jasiński [FJ] showed that if Martin’s Axiom holds
and there exists κ < c such that P (κ) contains a proper uniform ω1-
saturated κ-additive ideal then there exists a set X of reals of cardinality c
containing a subset D of cardinality less than c, Borel-dense in X. It is easy
to show that this set also satisfies (∗∗∗∗).

It is obvious that (∗∗∗∗) implies that X is add(N)-small.

Definition 7. A set X ⊆ R is strong first category (= strongly meagre)
(see [M1]) if for every set G ⊆ R of measure zero there is a t ∈ R such that
X ∩ (G+ t) = ∅ (or equivalently X +G 6= R).
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We now consider another property of a set X:

(+) For every Borel set H ⊆ R2 such that µ(Hx) = 0 for every x ∈ X,
we have

⋃
x∈X Hx 6= R.

Observe that (+)⇒ strong first category.
There is a question of Galvin (see [M1]) whether every Sierpiński set is

strong first category. We can also raise the question whether every Sierpiński
set has (+).

It is known that under CH there is a Sierpiński set which is strong first
category. We show a stronger example:

Proposition 10. Under the Continuum Hypothesis there is a Sierpiński
set with (+).

P r o o f. Let Hα, α < c, be all Borel sets on the plane such that µ((Hα)x)
= 0 for every x ∈ R, and let Gα, α < c, be all Borel subsets of the reals of
measure zero. We define inductively sequences {xα, yα : α < c}.

Let yα 6∈
⋃
β<α(Hα)xβ be such that µ(R \ (Hα)yα) = 0. Let xα ∈ R \⋃

β<α(Gβ ∪ (Hβ)yβ ). Observe that yα 6∈
⋃
β<c(Hα)xβ for every α.

R e m a r k. It is easy to see that no set with (+) can be mapped onto the
reals by a Borel function. In [R] under MA there is constructed a strong first
category set which can be mapped onto the reals by a continuous function.
So under MA strong first category does not imply (+).

Let N2 be the ideal of null sets on the plane and M2 the ideal of meagre
sets on the plane.

Problem. (CH) Do there exist functions f, g : R→ R such that (f, g) :
R2 → R2 satisfies (f, g)[N2] = M2?

A simpler question is also interesting: (CH) Let G ⊆ R2 be a set of
measure zero. Do there exist functions f, g : R → R such that (f, g)[G] is
first category and f [N] = M and g[N] = M?

Observe that the positive answer to one of the above questions and Corol-
lary 3 show that every Sierpiński set has (+) so give the solution to the
problem of Galvin about Sierpiński sets.

R e m a r k. In [PR] the authors show that for every X ⊆ R if µ(
⋃
x∈X Gx)

= 0 for every Borel set G ⊆ R2 with µ(Gx) = 0 for each x ∈ X, then⋃
x∈X Fx is meagre for every Borel set F ⊆ R2 such that each Fx is meagre.

R e m a r k. Recently J. Pawlikowski has solved the problem of Galvin by
showing that every Sierpiński set is strongly meagre. He also showed that
every Sierpiński set has (+).

The author would like to express his thanks to G. Gruenhage and J. Ja-
siński for fruitful discussions.



54 I. Recław

References

[B1] T. Bartoszyńsk i, Additivity of measure implies additivity of category, Trans.
Amer. Math. Soc. 281 (1984), 209–213.

[B2] —, Combinatorial aspects of measure and category, Fund. Math. 127 (1987),
225–239.

[BBM] R. H. Bing, W. W. Bledsoe and R. D. Mauld in, Sets generated by rectangles,
Pacific J. Math. 51 (1974), 27–36.
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