Almost split sequences for non-regular modules

by

Shiping Liu (Singapore)

Abstract

Let A be an Artin algebra and let $0 \rightarrow X \rightarrow \bigoplus_{i=1}^{r} Y_{i} \rightarrow Z \rightarrow 0$ be an almost split sequence of A-modules with the Y_{i} indecomposable. Suppose that X has a projective predecessor and Z has an injective successor in the Auslander-Reiten quiver Γ_{A} of A. Then $r \leq 4$, and $r=4$ implies that one of the Y_{i} is projective-injective. Moreover, if $X \rightarrow \bigoplus_{j=1}^{t} Y_{j}$ is a source map with the Y_{j} indecomposable and X on an oriented cycle in Γ_{A}, then $t \leq 4$ and at most three of the Y_{j} are not projective. The dual statement for a sink map holds. Finally, if an arrow $X \rightarrow Y$ in Γ_{A} with valuation $\left(d, d^{\prime}\right)$ is on an oriented cycle, then $d d^{\prime} \leq 3$.

Let A be a fixed Artin algebra, $\bmod A$ the category of finitely generated left A-modules and $\operatorname{rad}(\bmod A)$ the Jacobson radical of $\bmod A$. Denote by Γ_{A} the Auslander-Reiten quiver of A. The shape of a connected component of Γ_{A} without projectives or without injectives is fairly well understood [5, $8,12]$. The results of this paper will give some information on connected components of Γ_{A} which contain both a projective module and an injective module.

The notion of an almost split sequence, which was introduced by Auslander and Reiten in [1], plays a fundamental role in the representation theory of algebras (see, for example, [10]). Let $0 \rightarrow X \rightarrow \bigoplus_{i=1}^{r} Y_{i} \rightarrow Z \rightarrow 0$ be an almost split sequence in $\bmod A$ with the Y_{i} indecomposable. Then the number r measures the complication of the maps in $\bmod A$ starting with X and those ending with Z. Therefore it is interesting to find the number of the indecomposable summands of the middle term of an almost split sequence. The well-known Bautista-Brenner theorem [3] states that if A is of finite representation type, then the middle term of an almost split sequence in $\bmod A$ has at most four indecomposable summands, and the number four occurs only in the case where one indecomposable summand is projective-injective. Our main result clearly generalizes this theorem. Moreover, we will also discuss almost split sequences for modules on oriented cycles in Γ_{A}.

We begin with the following easy observation.

Lemma 1. Let $g: Y \rightarrow Z$ be an irreducible epimorphism with Z indecomposable, and let

$$
Z_{n} \rightarrow Z_{n-1} \rightarrow \ldots \rightarrow Z_{1} \rightarrow Z_{0}=Z
$$

be a sectional path in Γ_{A} with $n \geq 1$. If there is an irreducible map from $Y \oplus Z_{1}$ to Z, then Z_{i} is not projective for $0 \leq i \leq n$ and there is an irreducible epimorphism $g_{i}: D \operatorname{Tr} Z_{i} \rightarrow Z_{i+1}$ for $0 \leq i<n$.

Proof. The lemma follows from the easy facts that if

$$
0 \rightarrow X \xrightarrow{\left(f, f^{\prime}\right)} Y \oplus Y^{\prime} \xrightarrow{\binom{g}{g^{\prime}}} Z \rightarrow 0
$$

is an exact sequence, then g is epic if and only if f^{\prime} is epic, and that if $p: M \rightarrow N$ is an epimorphism, then so is the co-restriction of p to a summand of N.

We have the following immediate consequence.
Corollary 2. Let

$$
0 \rightarrow X \xrightarrow{f} \bigoplus_{i=1}^{r} Y_{i} \xrightarrow{g} Z \rightarrow 0
$$

be an almost split sequence with the Y_{i} indecomposable. If the co-restriction of f to Y_{i} is epic for $1 \leq i \leq r$, then any sectional path in Γ_{A} ending with Z contains no projective module.

Proof. Assume that the co-restriction of f to Y_{i} is epic for all $1 \leq i \leq r$. Let

$$
Z_{n} \rightarrow Z_{n-1} \rightarrow \ldots \rightarrow Z_{1} \rightarrow Z_{0}=Z
$$

be a sectional path in Γ_{A} with $n>0$. Then $Z_{1} \cong Y_{i_{0}}$ for some $1 \leq i_{0} \leq r$ and $Z_{2} \neq X$ if $n \geq 2$. Now there is an irreducible epimorphism $h: X \rightarrow Z_{1}$ by assumption. Hence Z_{1} is not projective, and if $n>1$, then Z_{j} with $2 \leq j \leq n$ is not projective by Lemma 1 .

We quote the following lemma from [9].
Lemma 3. Let $p: M \rightarrow Y$ be a non-zero map with Y indecomposable, and let $f: Y \rightarrow Z_{1} \oplus Z_{2}$ be an irreducible map with Z_{1}, Z_{2} indecomposable. If $p f=0$, then Y, Z_{1}, Z_{2} are not projective, moreover, there is a map q : $M \rightarrow D \operatorname{Tr} Y$ in $\bmod A$, a map $v: D \operatorname{Tr} Y \rightarrow Y$ in $\operatorname{rad}(\bmod A)$ and a source map

$$
\left(h_{1}, h_{2}, h\right): D \operatorname{Tr} Y \rightarrow D \operatorname{Tr} Z_{1} \oplus D \operatorname{Tr} Z_{2} \oplus U
$$

such that $p=q v$ and $q h=0$.
In the case where there is an irreducible epimorphism $f: P \rightarrow Z$ with P indecomposable projective, Auslander and Reiten described in [1] the almost split sequence ending with Z. Thus the following fact is of interest.

Corollary 4. If $f: P \rightarrow Z$ is an irreducible epimorphism with P indecomposable projective, then Z is indecomposable. Dually, if $g: X \rightarrow I$ is an irreducible monomorphism with I indecomposable injective, then X is indecomposable.

Proof. Assume that $f: P \rightarrow Z$ is an irreducible epimorphism. Let $k: K \rightarrow P$ be the kernel of f; then clearly $k f=0$. Thus Z is indecomposable by Lemma 3 .

An indecomposable module X in $\bmod A$ is said to be left stable if $D \operatorname{Tr}^{n} X \neq 0$ for all $n \geq 0$, and right stable if $\operatorname{Tr} D^{n} X \neq 0$ for all $n \geq 0$. Let ${ }_{l} \Gamma_{A}$ be the full subquiver of Γ_{A} generated by the left stable modules, and ${ }_{r} \Gamma_{A}$ the full subquiver generated by the right stable modules. We call the connected components of ${ }_{l} \Gamma_{A}$ left stable components of Γ_{A}, and those of ${ }_{r} \Gamma_{A}$ right stable components of $\Gamma_{A}[8]$.

For a module M in $\bmod A$, we denote by $\ell(M)$ its composition length.
Lemma 5. Let $f: X \rightarrow \bigoplus_{i=1}^{4} Y_{i}$ be an irreducible map with X indecomposable and the Y_{i} indecomposable non-projective. If f is epic or $\ell(X) \geq \ell(\operatorname{Tr} D X)$, then
(1) X has no projective predecessor in Γ_{A};
(2) $\ell\left(D \operatorname{Tr}^{n} X\right)$ monotone grows to infinity;
(3) X is not on any oriented cycle in Γ_{A}.

Proof. Assume that f is epic or $\ell(X) \geq \ell(\operatorname{Tr} D X)$. We claim that $2 \ell(X) \geq \sum_{i=1}^{4} \ell\left(Y_{i}\right)$.

Indeed, this is clear if f is epic. Otherwise $\operatorname{Tr} D X \neq 0$ and $\ell(X) \geq$ $\ell(\operatorname{Tr} D X)$. Hence $2 \ell(X) \geq \ell(X)+\ell(\operatorname{Tr} D X) \geq \sum_{i=1}^{4} \ell\left(Y_{i}\right)$.

Let $h: D \operatorname{Tr} X \rightarrow W$ be an irreducible map with W indecomposable. If $W \not \approx D \operatorname{Tr} Y_{i}$ for all $1 \leq i \leq 4$, then

$$
\begin{aligned}
\ell(D \operatorname{Tr} X) & \geq \ell(W)+\sum_{i=1}^{4} \ell\left(D \operatorname{Tr} Y_{i}\right)-\ell(X) \\
& \geq \ell(W)+\sum_{i=1}^{4}\left(\ell(X)-\ell\left(Y_{i}\right)\right)-\ell(X)>\ell(W)
\end{aligned}
$$

If $W \cong D \operatorname{Tr} Y_{i}$ for some i, say $W \cong D \operatorname{Tr} Y_{1}$, then

$$
\begin{aligned}
\ell(D \operatorname{Tr} X) & \geq \sum_{i=1}^{4} \ell\left(D \operatorname{Tr} Y_{i}\right)-\ell(X) \\
& \geq \ell(W)+\sum_{i=2}^{4}\left(\ell(X)-\ell\left(Y_{i}\right)\right)-\ell(X) \geq \ell(W)
\end{aligned}
$$

Thus h is epic. By Corollary 2, any sectional path in Γ_{A} ending with X contains no projective module. Moreover, we have

$$
\begin{aligned}
\ell(D \operatorname{Tr} X) & \geq \sum_{i=1}^{4} \ell\left(D \operatorname{Tr} Y_{i}\right)-\ell(X) \\
& \geq \sum_{i=1}^{4}\left(\ell(X)-\ell\left(Y_{i}\right)\right)-\ell(X) \geq \ell(X)
\end{aligned}
$$

By induction we have $\ell\left(D \operatorname{Tr}^{n+1} X\right) \geq \ell\left(D \operatorname{Tr}^{n} X\right)>0$ for all $n \geq 0$, and any sectional path in Γ_{A} ending with $D \operatorname{Tr}^{n} X$ contains no projective module. Thus X has no projective predecessor in Γ_{A}.

Since $2 \ell(X) \geq \sum_{i=1}^{4} \ell\left(Y_{i}\right)$, either $\ell(X) \geq \ell\left(Y_{1}\right)+\ell\left(Y_{2}\right)$ or $\ell(X) \geq \ell\left(Y_{3}\right)+$ $\ell\left(Y_{4}\right)$. Thus we may assume that the co-restriction $g: X \rightarrow Y_{1} \oplus Y_{2}$ of f is epic. Let $k: K \rightarrow X$ be the kernel of g. By Lemma 3, there is a map $k_{1}: K \rightarrow D \operatorname{Tr} X$ in $\bmod A$, a map $v_{1}: D \operatorname{Tr} X \rightarrow X$ in $\operatorname{rad}(\bmod A)$ and an irreducible epimorphism $g_{1}: D \operatorname{Tr} X \rightarrow D \operatorname{Tr} Y_{3} \oplus D \operatorname{Tr} Y_{4}$ such that $k=k_{1} v_{1}$ and $k_{1} g_{1}=0$. By induction, for all $n>0$, there is a map k_{n} : $K \rightarrow D \operatorname{Tr}^{n} X$ and a map $v_{n}: D \operatorname{Tr}^{n} X \rightarrow D \operatorname{Tr}^{n-1} X$ in $\operatorname{rad}(\bmod A)$ such that $k=k_{n} v_{n} \ldots v_{1}$. Hence $\ell\left(D \operatorname{Tr}^{n} X\right)$ tends to infinity by the Harada-Sai lemma [6]. In particular, X is not $D \operatorname{Tr}$-periodic.

Let Γ be the left stable component of Γ_{A} containing X. Then Γ contains no D Tr-periodic module since X is not. Note that all predecessors of X in Γ_{A} are left stable, hence in Γ. In particular, the $D \operatorname{Tr} Y_{i}$ are in Γ. So Γ contains no oriented cycle $[8,(2.3)]$. Thus X is not on any oriented cycle in Γ_{A}. The proof is complete.

We also need the following lemma.
Lemma 6. Let X be an indecomposable module in $\bmod A$ such that there is a sectional path from X to an injective module in Γ_{A}. Assume that $f: X \rightarrow \bigoplus_{i=1}^{r} Y_{i}$ is a source map with the Y_{i} indecomposable. If $r>4$ or $r=4$ with all Y_{i} non-projective, then X has no projective predecessor and is not on any oriented cycle in Γ_{A}.

Proof. Let $r \geq 4$, and let

$$
\begin{equation*}
X=X_{0} \rightarrow X_{1} \rightarrow \ldots \rightarrow X_{t-1} \rightarrow X_{t} \tag{*}
\end{equation*}
$$

be a shortest sectional path in Γ_{A} with X_{t} injective. If $t=0$, then X is injective. Therefore f is epic. Thus the lemma holds by Lemma 5 .

Suppose now that $t>0$ and $X_{1} \cong Y_{1}$. Then X_{j} is not injective for $0 \leq j<t$, and there is an irreducible epimorphism $f_{t}: X_{t} \rightarrow \operatorname{Tr} D X_{t-1}$. By Lemma 1 , there is an irreducible epimorphism $f_{1}: Y_{1} \rightarrow \operatorname{Tr} D X$. It follows then that the co-restriction of f to $\bigoplus_{i=2}^{r} Y_{i}$ is epic. If $r>4$, then the lemma follows from Lemma 5. Assume that $r=4$ with all Y_{i} non-projective. Note
that X is not projective by Corollary 4. By the dual of Lemma 5 , we have $\ell(D \operatorname{Tr} X) \geq \ell(X)$ since X has an injective successor.

Let $h: D \operatorname{Tr} X \rightarrow \bigoplus_{j=1}^{n} W_{j}$ be a source map with the W_{j} indecomposable, and $W_{j}=D \operatorname{Tr} Y_{j}$ for $1 \leq j \leq 4$. Since the co-restriction of f to $Y_{3} \oplus Y_{4}$ is epic, by Lemma 3, the co-restriction of h to W_{j} with $j \neq 3,4$ is epic. Similarly considering separately the co-restrictions of f to $Y_{2} \oplus Y_{4}$ and $Y_{2} \oplus Y_{3}$ which are epic, we deduce that the co-restrictions of h to W_{3}, W_{4} are epic. Therefore any sectional path in Γ_{A} ending with X contains no projective module by Corollary 2. In particular, $D \operatorname{Tr} Y_{i}$ is not projective for $1 \leq i \leq r$. Hence $D \operatorname{Tr} X$ has no projective predecessor and is not on any oriented cycle in Γ_{A} by Lemma 5 . Therefore X admits no projective predecessor in Γ_{A}. Moreover, X is not on any oriented cycle in Γ_{A} since $D \operatorname{Tr} X$ is not.

We are ready to get our main result.
Theorem 7. Let A be an Artin algebra, and let

$$
0 \rightarrow X \xrightarrow{f} \bigoplus_{i=1}^{r} Y_{i} \xrightarrow{g} Z \rightarrow 0
$$

be an almost split sequence in $\bmod A$ with the Y_{i} indecomposable. Assume that X has a projective predecessor and Z has an injective successor in Γ_{A}. Then $r \leq 4$, and $r=4$ implies that one of the Y_{i} is both projective and injective, whereas the others are neither.

Proof. Let $r \geq 4$. We consider the first case where $\ell(Z) \geq \ell(X)$. Then by the dual of Lemma 5, one of the Y_{i} is injective. By Lemma 6, we infer that $r=4$ and one of the Y_{i} is projective. It is now easy to see that one of the Y_{i} is both projective and injective, and the others are neither. A dual argument will show that the theorem holds in the case where $\ell(X) \geq \ell(Z)$.

Remark. It is well-known that if A is of finite representation type, then any indecomposable module has a projective predecessor and an injective successor in Γ_{A}. Hence the above result generalizes the Bautista-Brenner theorem [3].

Proposition 8. Let A be an Artin algebra, and let X be an indecomposable module in $\bmod A$ which is on an oriented cycle in Γ_{A}. If $f: X \rightarrow$ $\bigoplus_{i=1}^{r} Y_{i}$ is a source map with the Y_{i} indecomposable then $r \leq 4$, and $r=4$ implies that one of the Y_{i} is projective. Dually, if $g: \bigoplus_{j=1}^{t} Z_{j} \rightarrow X$ is a sink map with the Z_{j} indecomposable then $t \leq 4$, and $t=4$ implies that one of the Z_{j} is injective.

Proof. Assume that $f: X \rightarrow \bigoplus_{i=1}^{r} Y_{i}$ is a source map with the Y_{i} indecomposable and $r \geq 4$. Let

$$
X=X_{0} \rightarrow X_{1} \rightarrow \ldots \rightarrow X_{n-1} \rightarrow X_{n}=X
$$

be an oriented cycle in Γ_{A} with $n \geq 2$. If there is a sectional path from X to an injective module in Γ_{A}, then we are done by Lemma 6 .

Assume now that there is no sectional path from X to an injective module in Γ_{A}. By a result of Bautista and Smalø [4], there is a minimal $m \leq t$ such that $X_{m}=\operatorname{Tr} D X_{m-2}$. Then X_{j} is not injective for all $0 \leq j<m$. Thus $\operatorname{Tr} D X$ is also on an oriented cycle in Γ_{A}. If $\ell(\operatorname{Tr} D X)>\ell(X)$ then, by the dual of Lemma 5, we infer that one of the Y_{i} is injective, which is a contradiction. Hence $\ell(X) \geq \ell(\operatorname{Tr} D X)$. By Lemma 5, one of the Y_{i} is projective. Using now the dual of Lemma 6 , we deduce that $r=4$. The proof is complete.

Recall that if $X \rightarrow Y$ is an arrow in Γ_{A}, then its valuation $\left(d, d^{\prime}\right)$ is defined so that d^{\prime} is the multiplicity of X in the domain of the sink map for Y and d is the multiplicity of Y in the codomain of the source map for X.

A path $X_{0} \rightarrow X_{1} \rightarrow \ldots \rightarrow X_{n-1} \rightarrow X_{n}$ in Γ_{A} is said to be pre-sectional if $D \operatorname{Tr} X_{i+1}=X_{i-1}$ for some $0<i<n$ implies that the multiplicity of X_{i-1} in the domain of the sink map for X_{i} is greater than one [7].

Lemma 9. Let $X \rightarrow Y$ be an arrow in Γ_{A} with valuation $\left(d, d^{\prime}\right)$. Assume that both d and d^{\prime} are greater than one. Then neither X nor Y is on an oriented cycle. Moreover, either Y has no projective predecessor or X has no injective successor in Γ_{A}.

Proof. Let $f: X \rightarrow Y$ be an irreducible map. First assume that f is an epimorphism. Then Y is not projective. Let $g: D \operatorname{Tr} Y \rightarrow X \oplus X_{1}$ be a source map. Then the co-restriction of g to X_{1} is an epimorphism. Note that X is a summand of X_{1} since $d^{\prime}>1$. The co-restriction h of g to X is an epimorphism. By Corollary 2 , any sectional path in Γ_{A} ending with Y contains no projective module. Since $d>1$ and there is an irreducible epimorphism $h: D \operatorname{Tr} Y \rightarrow X$, we similarly conclude that X is not projective and there is an irreducible epimorphism $f_{1}: D \operatorname{Tr} X \rightarrow D \operatorname{Tr} Y$. Note that the valuation of the arrow $D \operatorname{Tr} X \rightarrow D \operatorname{Tr} Y$ is also $\left(d, d^{\prime}\right)$.

By induction we have $D \operatorname{Tr}^{n} Y \neq 0$ for all $n \geq 0$, and any sectional path in Γ_{A} ending with $D \operatorname{Tr}^{n} Y$ contains no projective module. Therefore Y has no projective predecessor in Γ_{A}. Now the arrow $X \rightarrow Y$ is contained in a left stable component of Γ_{A}, say Γ. For all $n>0$, there is a pre-sectional path

$$
D \operatorname{Tr}^{n} X \rightarrow D \operatorname{Tr}^{n} Y \rightarrow D \operatorname{Tr}^{n-1} X \rightarrow \ldots \rightarrow D \operatorname{Tr} Y \rightarrow X \rightarrow Y
$$

in Γ_{A}. Thus Y is not $D \operatorname{Tr}$-periodic [7, (1.16)]. Therefore Γ contains no
oriented cycle since $X \rightarrow Y$ has non-trivial valuation $\left(d, d^{\prime}\right)[8,(2.3)]$. Thus Y is not on any oriented cycle in Γ_{A}, and hence X is not either. Dually, if f is a monomorphism, then X has no injective successor and neither X nor Y is on an oriented cycle in Γ_{A}.

Finally, we have the following.
Proposition 10. Let A be an Artin algebra, and let $X \rightarrow Y$ be an arrow in Γ_{A} with valuation $\left(d, d^{\prime}\right)$. If the arrow $X \rightarrow Y$ is on an oriented cycle in Γ_{A}, then $d d^{\prime} \leq 3$.

Proof. Suppose that the arrow $X \rightarrow Y$ is on an oriented cycle in Γ_{A}. Assume that $d \geq 4$. By Proposition 8, we infer that $d=4$ and there is a source map $f: X \rightarrow \bigoplus_{1}^{4} Y$ with Y projective. Hence we have an almost split sequence

$$
0 \rightarrow X \xrightarrow{f} \bigoplus_{1}^{4} Y \xrightarrow{g} \operatorname{Tr} D X \rightarrow 0
$$

Since the co-restriction of f to $\bigoplus_{1}^{3} Y$ is a monomorphism, so is the restriction of g to Y. Hence by the dual of Corollary 2, we infer that any sectional path in Γ_{A} starting with X contains no injective module. Since X is on an oriented cycle, using the Bautista-Smalø theorem, we deduce that $\operatorname{Tr} D X$ is also on an oriented cycle. Hence Y is injective by Proposition 8, which is a contradiction. Thus $d \leq 3$. Dually $d^{\prime} \leq 3$. Moreover, by Lemma 9 , either $d=1$ or $d^{\prime}=1$. Therefore $d d^{\prime} \leq 3$.

References

[1] M. Auslander and I. Reiten, Representation theory of artin algebras III: Almost split sequences, Comm. Algebra 3 (1975), 239-294.
[2] -, 一, Representation theory of artin algebras IV: Invariants given by almost split sequences, ibid. 5 (1977), 443-518.
[3] R. Bautista and S. Brenner, On the number of terms in the middle of an almost split sequence, in: Lecture Notes in Math. 903, Springer, Berlin, 1981, 1-8.
[4] R. Bautista and S. O. Smalø, Non-existent cycles, Comm. Algebra 11 (1983), 1755-1767.
[5] D. Happel, U. Preiser and C. M. Ringel, Vinberg's characterization of Dynkin diagrams using subadditive functions with applications to $D \operatorname{Tr}$-periodic modules, in: Lecture Notes in Math. 832, Springer, Berlin, 1980, 280-294.
[6] M. Harada and Y. Sai, On categories of indecomposable modules, Osaka J. Math. 7 (1970), 323-344.
[7] S. Liu, Degrees of irreducible maps and the shapes of Auslander-Reiten quivers, J. London Math. Soc. (2) 45 (1992), 32-54.
[8] -, Semi-stable components of an Auslander-Reiten quiver, ibid. 47 (1993), 405416.
[9] -, On short cycles in a module category, preprint.
[10] I. Reiten, The use of almost split sequences in the representation theory of artin algebras, in: Lecture Notes in Math. 944, Springer, Berlin, 1982, 29-104.
[11] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, Berlin, 1984.
[12] Y. Zhang, The structure of stable components, Canad. J. Math. 43 (1991), 652672.

DEPARTMENT OF MATHEMATICS
NATIONAL UNIVERSITY OF SINGAPORE
SINGAPORE 0511
REPUBLIC OF SINGAPORE

Received 28 January 1993;
in revised form 30 April 1993

