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Extreme points and descriptive sets

by

Robert P. Kau fman (Urbana, Ill.)

Abstract. A class of closed, bounded, convex sets in the Banach space c0 is shown
to be a complete PCA set.

Introduction. Let K denote a closed, bounded, convex set in a separa-
ble B-space X, and let exK denote its set of extreme points. It is possible
that exK = ∅, and also that exK fail to be a Borel set ([5, 6]). Hence it is
natural to ask for the complexity of the set CE of sets K in X having an
extreme point. This question will be answered for X = c0, after a digres-
sion on the class F (M) of all closed subsets of a metric space (M,d). This
class can be quite mysterious ([4, 7]), but we mention only the rudiments.
When F (M) is provided with the Hausdorff metric—a minor adjustment is
necessary when d is unbounded—certain sets [U ] in F (M) are open. Here
U is open in M and

A ∈ [U ] ↔ A ∩ U 6= ∅ .

When d is totally bounded—equivalently, when F (M) is separable—the sets
[U ] generate the field of Borel sets, called the Effros Borel structure, and
therefore the Borel structure in F (M) has a definite meaning when M is
separable (since then there is some totally bounded metric). Some sets are
always closed, for example the subset of M × F (M) defined by m ∈ A.
When X is a separable B-space, the convex sets form a Gδ. To see this, let
(Un)∞n=1 be a basis for the open sets; then A is convex provided A meets
1
2 (Un + Um) whenever A meets both Un and Um. The Hausdorff metric
in F (X), relative to the usual metric, will be called the strong metric; that
relative to a totally bounded metric in X will be called a weak metric. (This
has no relation to the weak topology.)

Let E be the subset of F (X)×X×X×X containing elements (A, x, y, z)
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such that

x ∈ A, y ∈ A, z ∈ A, x 6= y, x 6= z, x ∈ yz .

Then E is a Gδ (for any weak metric in F (X)) and its projection on the
first and second factors is the set of pairs (A, x) such that x ∈ A and x is
not an extreme point of A. From this we conclude that CE is of class PCA
(alias Σ1

2) for a weak metric. Recent work on realization of PCA sets by
means of sets in classical analysis is presented in [1, 2].

Theorem. Let S be a PCA set in a compact metric space M . Then
there is a mapping m → K(m) defined on M such that

(i) K(m) is a closed , bounded , convex subset of c0.
(ii) K(m) has an extreme point if and only if m ∈ S.
(iii) The mapping is continuous from M to the strong metric in F (c0).

P r o o f. This begins with some elementary topology and a summary of
[6]. Being of class PCA, S is a continuous image f(S1) of a certain CA set
S1 in a compact metric space M1. By a device used in [6], matters can be
so arranged that f admits a continuous extension to all of M1, mapping
M1 into M . Let P (M1) be the set of probability measures in M1, with its
w∗-topology, and T an affine homeomorphism of P (M1) onto a compact set
C in c0. Then there is a closed, bounded, convex set K0 in c0 × c0 such
that ([6])

(i) C × {0} is contained in K0.
(ii) The extreme points of K0 are precisely the elements (T (δm1), 0) with

m1 ∈ S1.

Let h be continuous on M1 to [0, 1] and let K(h) be the convex subset of
c0×c0×c0 containing all (T (µ), u, v) such that (T (µ), u) ∈ K0, ‖v‖ ≤

∫
h dµ.

To determine exK(h), we recall that the unit ball of c0 has no extreme
points and therefore (T (µ), u, v) cannot be extreme if

∫
h dµ > 0. If, then,

(T (µ), u, v) is extreme, then v = 0, whence (T (µ), u) is extreme in K0, and
(as just observed)

∫
h dµ = 0. Conversely, suppose (T (µ), 0) is extreme and∫

h dµ = 0; and suppose (T (µ), 0, 0) = 1
2 (T (µ1), u1, v1) + 1

2 (T (µ2), u2, v2).
Then µ1 = µ2 = µ, u1 = u2 = 0, and consequently v1 = v2 = 0. Thus, in
summary

K(h) has an extreme point ⇔ h has a zero in S1 .

Moreover, the Hausdorff distance between K(h1) and K(h2) is at most
‖h1 − h2‖.

Let % be a metric in M and suppose % ≤ 1, and let h(m,m1) =
%(m, f(m1)). Then h(m, ·) is continuous on M1, and h(m, ·) has a zero in S1

⇔ m ∈ f(S1) = S. Using these functions for h in K(h) we obtain the theo-
rem.



Extreme points and descriptive sets 181

Conclusion. We mention some problems, of uncertain difficulty, related
to the main result; background material is presented in [3].

(i) Find other spaces X in place of c0. Since l1 has RNP, the most
likely candidate is L1. Besides this, there are the separable subspaces of the
non-RNP spaces of Stegall ([3], Ch. 4).

(ii) What happens when extreme points are replaced by denting points,
exposed points, strongly exposed points, etc. ([3], Ch. 3)?

(iii) Classify the sets K such that K = co(ex K).
(iv) Fixing K, classify the set of points represented by an integral over

ex K ([3], Ch. 6).
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