Extreme points and descriptive sets

by

Robert P. Kaufman (Urbana, Ill.)

Abstract. A class of closed, bounded, convex sets in the Banach space c_0 is shown to be a complete PCA set.

Introduction. Let K denote a closed, bounded, convex set in a separable B-space X, and let ex K denote its set of extreme points. It is possible that ex $K = \emptyset$, and also that ex K fail to be a Borel set ([5, 6]). Hence it is natural to ask for the complexity of the set CE of sets K in X having an extreme point. This question will be answered for $X = c_0$, after a digression on the class F(M) of all closed subsets of a metric space (M, d). This class can be quite mysterious ([4, 7]), but we mention only the rudiments. When F(M) is provided with the Hausdorff metric—a minor adjustment is necessary when d is unbounded—certain sets [U] in F(M) are open. Here U is open in M and

$$A \in [U] \leftrightarrow A \cap U \neq \emptyset.$$

When d is totally bounded—equivalently, when F(M) is separable—the sets [U] generate the field of Borel sets, called the *Effros Borel structure*, and therefore the Borel structure in F(M) has a definite meaning when M is separable (since then there is some totally bounded metric). Some sets are always closed, for example the subset of $M \times F(M)$ defined by $m \in A$. When X is a separable B-space, the convex sets form a G_{δ} . To see this, let $(U_n)_{n=1}^{\infty}$ be a basis for the open sets; then A is convex provided A meets $\frac{1}{2}(U_n + U_m)$ whenever A meets both U_n and U_m . The Hausdorff metric in F(X), relative to the usual metric, will be called the *strong* metric; that relative to a totally bounded metric in X will be called a *weak* metric. (This has no relation to the weak topology.)

Let E be the subset of $F(X) \times X \times X \times X$ containing elements (A, x, y, z)

Supported in part by the National Science Foundation.

such that

$$x \in A, \quad y \in A, \quad z \in A, \quad x \neq y, \quad x \neq z, \quad x \in \overline{yz}$$

Then E is a G_{δ} (for any weak metric in F(X)) and its projection on the first and second factors is the set of pairs (A, x) such that $x \in A$ and x is not an extreme point of A. From this we conclude that CE is of class PCA (alias Σ_2^1) for a weak metric. Recent work on realization of PCA sets by means of sets in classical analysis is presented in [1, 2].

THEOREM. Let S be a PCA set in a compact metric space M. Then there is a mapping $m \to K(m)$ defined on M such that

- (i) K(m) is a closed, bounded, convex subset of c_0 .
- (ii) K(m) has an extreme point if and only if $m \in S$.
- (iii) The mapping is continuous from M to the strong metric in $F(c_0)$.

Proof. This begins with some elementary topology and a summary of [6]. Being of class PCA, S is a continuous image $f(S_1)$ of a certain CA set S_1 in a compact metric space M_1 . By a device used in [6], matters can be so arranged that f admits a continuous extension to all of M_1 , mapping M_1 into M. Let $P(M_1)$ be the set of probability measures in M_1 , with its w^* -topology, and T an affine homeomorphism of $P(M_1)$ onto a compact set C in c_0 . Then there is a closed, bounded, convex set K_0 in $c_0 \times c_0$ such that ([6])

(i) $C \times \{0\}$ is contained in K_0 .

(ii) The extreme points of K_0 are precisely the elements $(T(\delta_{m_1}), 0)$ with $m_1 \in S_1$.

Let h be continuous on M_1 to [0,1] and let K(h) be the convex subset of $c_0 \times c_0 \times c_0$ containing all $(T(\mu), u, v)$ such that $(T(\mu), u) \in K_0$, $||v|| \leq \int h d\mu$. To determine ex K(h), we recall that the unit ball of c_0 has no extreme points and therefore $(T(\mu), u, v)$ cannot be extreme if $\int h d\mu > 0$. If, then, $(T(\mu), u, v)$ is extreme, then v = 0, whence $(T(\mu), u)$ is extreme in K_0 , and (as just observed) $\int h d\mu = 0$. Conversely, suppose $(T(\mu), 0)$ is extreme and $\int h d\mu = 0$; and suppose $(T(\mu), 0, 0) = \frac{1}{2}(T(\mu_1), u_1, v_1) + \frac{1}{2}(T(\mu_2), u_2, v_2)$. Then $\mu_1 = \mu_2 = \mu$, $u_1 = u_2 = 0$, and consequently $v_1 = v_2 = 0$. Thus, in summary

K(h) has an extreme point \Leftrightarrow h has a zero in S_1 .

Moreover, the Hausdorff distance between $K(h_1)$ and $K(h_2)$ is at most $||h_1 - h_2||$.

Let ϱ be a metric in M and suppose $\varrho \leq 1$, and let $h(m, m_1) = \varrho(m, f(m_1))$. Then $h(m, \cdot)$ is continuous on M_1 , and $h(m, \cdot)$ has a zero in $S_1 \Leftrightarrow m \in f(S_1) = S$. Using these functions for h in K(h) we obtain the theorem.

180

Conclusion. We mention some problems, of uncertain difficulty, related to the main result; background material is presented in [3].

(i) Find other spaces X in place of c_0 . Since l^1 has RNP, the most likely candidate is L^1 . Besides this, there are the separable subspaces of the non-RNP spaces of Stegall ([3], Ch. 4).

(ii) What happens when extreme points are replaced by denting points, exposed points, strongly exposed points, etc. ([3], Ch. 3)?

(iii) Classify the sets K such that $K = \overline{co}(ex K)$.

(iv) Fixing K, classify the set of points represented by an integral over ex K ([3], Ch. 6).

References

- [1] H. Becker, Pointwise limits of subsequences and Σ_2^1 sets, Fund. Math. 128 (1987), 159–170.
- [2] H. Becker, S. Kahane and A. Louveau, Some complete Σ_2^1 sets in harmonic analysis, preprint, Univ. Paris VI, 1991.
- [3] D. G. Bourgin, Geometric Aspects of Convex Sets with the Radon-Nikodym Property, Lecture Notes in Math. 993, Springer, 1983.
- [4] E. G. Effros, Convergence of closed subsets in a topological space, Proc. Amer. Math. Soc. 16 (1965), 929–931.
- J. E. Jayne and C. A. Rogers, The extremal structure of convex sets, J. Funct. Anal. 26 (1977), 251-288.
- [6] R. Kaufman, Co-analytic sets and extreme points, Bull. London Math. Soc. 19 (1987), 72-74.
- J. Saint-Raymond, La structure Borélienne d'Effros est-elle standard?, Fund. Math. 50 (1978), 201-210.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN 1409 WEST GREEN STREET URBANA, ILLINOIS 61801 U.S.A.

Received 21 January 1993