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The structure of superflat graphs

by

A. A. I v anov (Wroc law)

Abstract. We prove a structure theorem asserting that each superflat graph is tree-
decomposable in a very nice way. As a consequence we fully determine the spectrum
functions of theories of superflat graphs.

0. Introduction. This paper is in a way a continuation of [10], [3],
where the investigation of stability of theories of graphs was initiated. In
[10], superflat graphs were introduced. In some sense it is possible to con-
sider them as graphs having the simplest theories. For example it was
proved in [10] that superflat graphs are stable. So, it is very natural to
expect they have nice further properties. The main result of our paper
(Theorem 3.4) confirms this. It gives a description of uncountable super-
flat graphs as trees of models very similar to the structure theorem for
ω-stable theories. It generalizes the author’s result for ultraflat graphs (see
the definition in [3]) which was announced at the Mal’cev Conference in
Novosibirsk in 1989. The proof of Theorem 3.4 relies on the analysis of
forking and orthogonality of types in superflat graphs, carried out in Sec-
tion 2.

The natural application of Theorem 3.4—the description of the spec-
trum functions of theories of superflat graphs—is given in Section 5. The
argument in Section 5 consists in adaptation to the present context of the
methods of [12]. [12] deals with ω-stable theories. So in Section 5 we have to
consider some additional (not ω-stable) cases. This requires some non-trivial
facts on the existence of many pairwise orthogonal types. These facts are
proved in Section 4.

Our notation follows [1], [6], [12], [13].

I would like to express my gratitude to the referee for his heroic work with
the first version of the paper. Also I am deeply indebted to Ludomir Newel-
ski for a lot of helpful remarks and simplifications (especially in Section 4).
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1. Preliminaries. In this section we introduce the basic notions used
in this paper. In Theorem 1.4 we prove that every complete theory of
superflat graphs is monadically stable. In fact, the proof is the same as that
of Theorem 3 of [3]. In the proof of Theorem 1.4 we use a technical Lemma
1.3. This lemma is an important fact, often used in this paper.

A graph is a structure U = 〈A,R〉 where R is a binary relation on A. We
say that elements a, b are neighbours (a and b are connected by an edge) if
U � R(a, b)∨R(b, a). A sequence 〈c0, c1, . . . , ct〉 is a path of length t from c0
to ct if for all i < t, ci and ci+1 are distinct neighbours. Elements a, b are
connected in U if there is a path from a to b in U. A component of U is a
maximal set of pairwise connected elements in U. If a and b are connected,
then the distance from a to b, denoted by d(a, b), is the length of the shortest
path from a to b. If a, b are not connected, we put d(a, b) = ∞. If a = b,
we put d(a, b) = 0.

For finite m, n, let Km
n be the class of graphs which can be constructed

from the complete graph on n vertices by inserting at most m vertices on
each edge. Let U∗ be 〈A,R∗〉, where

R∗ = {(a, b) : U � R(a, b) ∨R(b, a)} .

A graph U omits Km
n if no subgraph of U∗ belongs to Km

n . U is superflat if
for each m, U omits Km

n for some n. U is ultraflat if there is n such that for
all m the graph U omits Km

n .
From now on we assume that T is a complete theory of superflat graphs,

and usually all graphs we consider are models of T . For convenience we
work within a very saturated “monster” model C of T , that is, we assume
that all models of T we consider are elementary submodels of C and all sets
of parameters are subsets of C (of cardinality smaller than the cardinality
of C).

The following lemma is a variant of Lemma 3 from [3].

Lemma 1.1. For each m ∈ ω there is a finite nT (m) such that for every
algebraically closed set A and a 6∈ A there are at most nT (m) elements of
A, connected with a by paths of length ≤ m lying outside A.

Assume A is algebraically closed, A ⊆ N and a ∈ N\A. Let G(a/A) (the
boundary of A determined by a) be the set of b ∈ A connected with a by
a path lying outside A. By Lemma 1.1, G(a/A) is countable. We say that
elements b1, b2 6∈ A are connected over A if they are connected by a path
disjoint from A. CN(a/A) (the component of a over A in N) is the set of
b ∈ N\A connected with a over A. C(a/A) denotes CC(a/A).

If G = G(a/A) then clearly C(a/A) = C(a/G), and if b ∈ C(a/A) then
C(a/A) = C(b/A) and G(a/A) = G(b/A). We say also that C(a/A) is a
component over A with boundary G.
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Lemma 1.2. If b ∈ C(a/A) then for some φ(x) over A ∪ {a},
b ∈ φ(C) ⊆ C(a/A) .

In particular , C(a/A) is a countable union of (A ∪ {a})-definable sets and
CN(a/A) = N ∩ C(a/A).

P r o o f. Let n be the length of the shortest path connecting a and b
outside A. By Lemma 1.1, the set

G = {c ∈ G(a/A) : d(a, c) ≤ n}
is finite. So there is a formula φ(x) over A∪{a} saying that x is connected
with a by a path of length n, disjoint fromG. Clearly φ satisfies our demands.

Assume Γ , Γ ′ are components with boundary G (in M, M′ respectively).
We say that Γ , Γ ′ are isomorphic over G if the structures 〈Γ ∪G, g〉g∈G and
〈Γ ′ ∪G, g〉g∈G are isomorphic. Similarly we define the notion of elementary
equivalence of Γ , Γ ′ over G.

The next lemma slightly generalizes the corresponding results of [7].

Lemma 1.3. (1) Assume for i = 1, 2, Ci ∪ Gi is a connected superflat
graph, Gi is a subgraph of a superflat graph Mi, card(G) ≤ ω, and Ci is
disjoint from Mi. Suppose f : G1 → G2 is a graph isomorphism,

〈M1, g〉g∈G1 ≡ 〈M2, f(g)〉g∈G1 ,

〈C1 ∪G1, g〉g∈G1 ≡ 〈C2 ∪G2, f(g)〉g∈G1 .

Then
〈M1 ∪ C1, g〉g∈G1 ≡ 〈M2 ∪ C2, f(g)〉g∈G1 .

(2) In the situation above let c1 and c2 be tuples from C1 and C2 respec-
tively. Then the condition

〈M1 ∪ C1, c1, g〉g∈G1 ≡ 〈M2 ∪ C2, c2, f(g)〉g∈G1

implies
〈C1 ∪G1, c1, g〉g∈G1 ≡ 〈C2 ∪G2, c2, f(g)〉g∈G1 .

P r o o f. (1) Easy.
(2) See the proof of Lemma 3 from [7]. In our case in that proof it is

enough to use the function dG(x, y), which is the number of edges in the
shortest path from x to y outside G, instead of the distance d(x, y).

The following theorem is a variant of Theorem 3 of [2] and the main
result of [10] .

Theorem 1.4. T is monadically stable.

P r o o f. We prove that every expansion T ′ of T by unary predicates is
stable. In this expanded language we also have the notions of boundary,
component and so on, defined above. Lemmas 1.1–1.3 remain true for T ′.
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Now let M be a model of T ′. Suppose a, b 6∈ M andG(a/M) = G(b/M) = G.
If tp(a/G) = tp(b/G) then, by Lemma 1.3, tp(a/M) = tp(b/M). This is
enough for stability because every boundary is countable.

This theorem has many interesting consequences.

1. By [2] monadic stability is equivalent to tree-decomposability and
implies triviality of T . So, we conclude that every theory of superflat graphs
is trivial and has regular types only.

2. If T is a unidimensional theory of superflat graphs then by [4] it is
superstable and by triviality it is ω1-categorical (see [14]).

3. From tree-decomposability and [5] we also deduce that Vaught’s con-
jecture holds for T .

4. If T has finite U -rank then T is 1-based [9].

2. Independence in superflat graphs. In this section we analyze
independence and orthogonality of types in superflat graphs. As a con-
sequence we deduce that no complete theory of superflat graphs has the
dimensional order property (Theorem 2.4). Earlier A. Baudisch and the
author independently proved this for ultraflat graphs.

The following lemma is similar to the corresponding lemma of [11].

Lemma 2.1. Assume A = acl(A) ⊆ B and a ∈ C. Then tp(a/B) does
not fork over A iff for every a ∈ a\A, C(a/A) ∩B = ∅.

P r o o f. ⇒ Suppose a ∈ a\A and C(a/A)∩B 6= ∅. Let b ∈ C(a/A)∩B.
Thus also a ∈ C(b/A), and by Lemma 1.2 there is a formula φ(x, b) over
A ∪ {b} such that a ∈ φ(C, b) ⊆ C(b/A). We will show that φ(x, b) forks
over A. Choose a Morley sequence bi, i < ω, in stp(b/A). By the proof of
Lemma 1.1 (see Lemmas 1, 3 in [3]) we may assume that C(bi/A), i < ω, are
pairwise disjoint. It follows that {φ(x, bi) : i < ω} is 2-inconsistent. Indeed,
if a′ realizes φ(x, bi) and φ(x, bj) then C(bi/A) = C(a′/A) = C(bj/A), hence
i = j. Thus, φ(x, b) forks over A.

⇐ Suppose that for every a ∈ a\A, C(a/A) ∩B = ∅. If p(x) = tp(a/B)
forks over A then there exists a formula φ(x,b) ∈ p(x) and a set {b0,b1, . . .}
indiscernible over A with b = b0 such that {φ(x,bi) : i ∈ ω} is k-inconsis-
tent for some finite k.

We can assume that for every a ∈ a\A, C(a/A) ∩ bi = ∅ for each i.
By Lemma 1.3 we can prove that tp(ab/A) = tp(abi/A) for each i. So, a
realizes {φ(x,bi) : i ∈ ω}. This is a contradiction.

Corollary. Assume M, N, N′ are models of T , M = N ∩N′ and all
elements b ∈ N\M and b′ ∈ N′\M are independent over M. Then N ∪N′

is an elementary submodel of C.
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P r o o f. Suppose φ(x,b,b′) is a formula over N∪N′ with b ∈ N, b′ ∈ N′;
we must prove that some c ∈ N ∪N′ realizes φ. Choose any c realizing φ.
If tp(c/bN′) forks over N′ and tp(c/b′N) forks over N, then by Lemma 2.1
there is a path disjoint from M, joining an element of b to an element of b′,
a contradiction. So, for example, tp(c/bN′) does not fork over N′. Hence
φ(x,b,b′) does not fork over N′, which means that φ(x,b,b′) is realized
in N′.

Now we investigate orthogonality in superflat graphs.

Lemma 2.2. Assume A ⊆ B, A is algebraically closed and p(x) ∈ S(A),
q(y) ∈ S(B). Then p(x) and q(y) are orthogonal iff there are no a, b
realizing p, q respectively and no component Γ over A such that

Γ ∩ a 6= ∅, Γ ∩ b 6= ∅, Γ ∩B = ∅ .
P r o o f. ⇒ Suppose a component Γ over A meets both a and b (for

some a � p, b � q), and is disjoint from B. Let a ∈ Γ ∩ a, b ∈ b ∩ Γ . So,
Γ = C(a/A) = C(b/A), and by Lemma 2.1, tp(a/B) does not fork over A.
Since Γ ∩ B = ∅, we also have Γ = C(b/B) = C(a/B). By Lemma 2.1
again, tp(a/B ∪ {b}) forks over B. So, p and q are non-orthogonal.

⇐ A similar proof.

Similarly we get the following lemma.

Lemma 2.3. Assume A = acl(A) ⊆ B and a ∈ C. Then q(x) = tp(a/B)
is (almost) orthogonal to A iff for every a ∈ a\A, C(a/A) ∩B 6= ∅.
Theorem 2.4. T does not have the dimensional order property.

P r o o f. Assume M0, M1, M2 are models of T , M0 = M1∩M2 and M1,
M2 are independent over M0. Suppose M1, M2 are ωγ-saturated, where
γ > 0. It is enough to prove that M1∪M2 is ωγ-saturated (see the corollary
of Lemma 2.1). Suppose A ⊆ M1 ∪M2 has cardinality < ωγ and p ∈ S(A)
is realized by a 6∈ M1∪M2. Consider G = G(a/M1∪M2). By independence
of M1, M2 over M0, using Lemma 2.1 we have G ⊆ M1 or G ⊆ M2. Let us
consider the first case. Since G is countable, tp(a/G∪ (A∩M1)) is realized
in M1, say by an a′. By Lemma 1.3 it is easy to see that a′ realizes tp(a/A).

3. The structure of superflat graphs. In this section we prove
our main theorem asserting that each uncountable superflat graph is tree-
decomposable in a very nice way.

Assume p(x) ∈ S(U) is non-algebraic. We say that N is a p-model (over
U) if for some a realizing p, U ∪ {a} ⊆ N ⊆ U ∪ C(a/U). An isomorphism
of p-models over U is called a p-isomorphism. The following lemma gives
another definition of a p-model.

Lemma 3.1. Assume p = tp(a/U) and U ∪ {a} ⊆ N.
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(1) N is a p-model iff tp(N/U ∪ {a}) is orthogonal to U.
(2) U′ = U ∪ (C(a/U) ∩ N) is a p-model and an elementary submodel

of N.

P r o o f. (1) follows quickly from Lemmas 2.1 and 2.3.
(2) Let φ(x,b) be a formula over U′. We must show that φ is realized in

U′. We may assume φ is not realized in U. This means that φ forks over U.
Let b ∈ N realize φ. By Lemma 2.1, b ∈ C(a/U).

If U ∪ {a} ⊆ B ⊆ U ∪ C(a/U) and b ∈ C(a/U) then q(y) = tp(b/B) is
called a successor of p(x) = tp(a/U). Notice that q(y) is orthogonal to U.
If U is countable then we define v(p) (the valency of p) as

sup{card{q(y) ∈ S(B) : q(y) is a successor of p(x)} : card(B) ≤ ω} .
The following lemmas use the strategy of [8].

Lemma 3.2. Let M0 ∪ {a} ⊆ M ⊆ N, p(x) = tp(a/M0) and let M0 be
countable. Assume N is a p-model and v(p) ≤ ω. Then for some b ∈ N\M,
tp(b/M) is strongly regular.

P r o o f. We have N = M0∪CN(a/M0). Thus for every c ∈ N\M0 there
is a formula ψc,∅(x) over M0 ∪ {a} such that

c ∈ ψc,∅(C) ⊆ C(a/M0)

(see Lemma 1.2).
Note that there is a formula φ(x,m) such that m ∈ M, φ(M,m) 6=

φ(N,m), and for every formula η(x,m′) over M, if η(N\M,m′)∩φ(N\M,m)
6= ∅ then φ(N\M,m) ⊆ η(N\M,m′). If not, we can find a tree of formulas
ψλ(x), λ ∈ 2<ω, over M, such that ψ∅ = ψc,∅ for some c ∈ N\M, and for
each λ ∈ 2<ω, ψλ(N\M) 6= ∅ and ψλ∧0(N\M), ψλ∧1(N\M) are disjoint
subsets of ψλ(N\M). Choose a countable B with M0 ∪ {a} ⊆ B ⊆ M such
that all ψλ’s are over B. Thus over B there are 2ω successors of tp(a/M0),
contradicting v(p) ≤ ω.

So, we can fix a formula φ(x) over M such that φ(N\M) 6= ∅ and for
every c1, c2 ∈ φ(N\M) the types of c1 and c2 over M are the same. By D.15
of [6], if b ∈ φ(N\M) then tp(b/M) is strongly regular.

Lemma 3.3. Let M be countable, M ∪ {a} ⊆ B ⊆ M ∪ C(a/M) and
v(tp(a/M)) ≤ ω. Then there is a prime model over B.

P r o o f. By Lemma 3.1(2), N = M∪C(a/M) is an elementary submodel
of C and B ⊆ N. Now v(tp(a/M)) ≤ ω implies (as in Lemma 3.2), that
there is N′ ⊆ N which is constructible over B. It follows that N′ is prime
over B.

In the next theorem we use the following notation: if λ is a cardinal and
δ, η ∈ λ<ω then δ− = η means δ = η∧〈ν〉 for some ν ∈ λ.
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Theorem 3.4. Let M be a countable submodel of N and card(N) = λ.
Then there are a tree I ⊆ λ<ω and Mη, aη, Nη for η ∈ I satisfying the
following conditions:

(1) M∅ = M, N∅ = N, Nη =
⋃
{Nσ : σ− = η}, card(Mη) ≤ card(M),

(2) if η 6= ∅ then Mη− ∪ {aη} ⊆ Mη ⊆ Nη ⊆ Nη− ,

tp(Nη/Mη− ∪ {a}) ⊥ Mη− ,

and Nη is the largest set with this condition,
(3) for η 6= ∅, pη(x) = tp(aη/Mη−) is regular ,
(4) the set {Nσ : η = σ−} is independent over Mη,
(5) if there is σ− with σ = η−, then tp(aη/Mη−) ⊥ Mσ− ,
(6) if v(pη(x)) ≤ ω then for every σ ≥ η, Mσ is prime over Mσ− ∪{aσ},
(7) if v(pη(x)) ≤ ω, η ≤ σ, γ− = β− = σ, then pγ(x) is strongly regular

and the condition pγ(x) 6= pβ(x) implies pγ(x) ⊥ pβ(x).

P r o o f. If Mη and Nη are given assume that the set {aσ : σ− = η} is a
maximal independent set over Mη in Nη\Mη. Let Nσ = Mη∪CNη (aσ/Mη).
By Lemma 2.1,

Nη =
⋃
{Nσ : σ− = η}

and the set {Nσ : σ− = η} is independent over Mη. By Lemma 3.1,
tp(Nσ/Mη ∪ {aσ}) ⊥ Mη and Nσ is the largest set with this condition.

Now for every σ with σ− = η choose a countable Mσ ⊆ Nσ containing
Mη ∪ {aσ}. It is easy to see that (5) follows by Lemma 2.3.

To satisfy condition (7) we choose {aσ : σ− = η} ⊆ Nη\Mη as a maximal
set independent over Mη whose elements realize strongly regular types over
Mη. If there is a component Γ over Mη (in Nη) such that Γ ∩{aσ : σ− = η}
= ∅, then by Lemmas 3.1 and 3.2, there is an a ∈ Γ realizing a strongly
regular type over Mη. By Lemma 2.1, a is independent of {aσ : σ− = η}.
This contradicts the maximality of this set. So, Nη =

⋃
{Nσ : σ− = η}.

If tp(aγ/Mη), tp(aβ/Mη) are not orthogonal then by Lemma 2.2 they
are realized in the same component over Mη. By strong regularity any com-
ponent containing a realization of one of them contains a realization of the
other (we use the following fact from [13]: if p, q ∈ S(U) are not orthogonal
and p is strongly regular then every model containing a realization of q con-
tains a realization of p). This allows us to choose aβ such that aγ and aβ

have the same types over Mη.
To satisfy condition (6) it is enough to use Lemma 3.3.

4. The superstable case. From now on we assume that T is super-
stable not ω-stable. Lemmas 4.1 and 4.2 below assert the existence of many
pairwise orthogonal types in some important cases. This will allow us later



114 A. A. Ivanov

to apply the method of [12] to count the number of models even in the
non-ω-stable case.

Lemma 4.1. For some countable algebraically closed set A, S1(A) con-
tains 2ω pairwise orthogonal types.

P r o o f. Choose a minimal α such that over some algebraically closed
countable set A there are 2ω 1-types of ∞-rank α. If the lemma is not
true, then for some p(x) ∈ S(A), R∞(p) = α and there are uncountably
many types qβ ∈ S(A), β < ω1, of ∞-rank α and non-orthogonal to p(x).
Let a realize p(x). By Lemma 2.2, for each β, C(a/A) contains some bβ
realizing qβ . Let A′ = acl(A ∪ {a}). We may assume bβ 6∈ A′ for each
β (A′ is countable). By Lemma 2.1, q′β = tp(bβ/A′) forks over A, hence
R∞(q′β) < α. It follows that for some α′ < α, over A′ there are 2ω types of
∞-rank α′, contradicting the minimality of α.

Lemma 4.2. Assume U ∪ {a} ⊆ B ⊆ U ∪ C(a/U) and B is countable.
If there are uncountably many successors of p(x) = tp(a/U) in S1(B), then
there is a countable B′ with U ∪ {a} ⊆ B′ ⊆ U ∪ C(a/U) such that S1(B′)
contains 2ω pairwise orthogonal successors of p(x). B′ may be taken as a
p-model.

P r o o f. Let α be minimal such that there are uncountably many suc-
cessors (of p(x)) of ∞-rank α over a countable B′ with

U ∪ {a} ⊆ B′ ⊆ U ∪ C(a/U) .

By Lemma 1.2, in fact over B′ there are 2ω successors of p(x). As in Lemma
4.1, such a B′ satisfies our demands. By Lemma 3.1(2), for some countable
model B′, B′ ⊆ B′ ⊆ U ∪C(a/U). Clearly, S1(B′) also contains 2ω orthog-
onal successors of p(x).

5. The number of uncountable models. In this section all spectrum
functions for theories of superflat graphs are described. We use the method
of [12], where all spectrum functions for ω-stable theories are found. Really,
our proof is not complete. We consider only some exceptional cases. The
rest can be checked by adaptation of the proof of Theorem 5.1 in [12] (for
example, as in Sections 10, 11 of [8]).

Moreover, it is not difficult to realize every function of [12] in our sit-
uation. So, we avoid the ω-stable case. Since unsuperstable theories have
the maximum number of models in every uncountable cardinal we consider
superstable theories only.

As usual, I(ωα, T ) denotes the number of models of cardinality ωα. We
will use the beth function iγ(κ) (see e.g. [13]).

An element a ∈ C is an infinite point iff a has infinitely many neighbours.
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Lemma 5.1. Assume T is superstable and of depth 1. Let I∗ be the set
of infinite points.

(1) If a 6∈ acl(∅) then C(a/acl(∅)) ⊆ acl(a).
(2) I∗ is finite and I∗ ⊆ acl(∅).
(3) If A = acl(A) and a 6∈ A then C(a/A) ⊆ acl(a) and G(a/A) ⊆ I∗.
(4) T is weakly minimal.

P r o o f. (1) If b ∈ C(a/acl(∅))\ acl(a), then by Lemma 2.3, tp(b/a) is
orthogonal to ∅, showing that the depth of stp(a) is > 0, and so Dp(T ) > 1.

(2), (3) First notice that since C(a/A) ⊆ C(a/acl(∅)), by (1) we have
C(a/A) ⊆ acl(a). Also, G(a/A) ⊆ acl(∅). If not, then for any b ∈ G(a/A)\
acl(∅), a ∈ C(b/acl(∅))\ acl(b), contradicting (1). Similarly we see that no
b 6∈ acl(∅) is an infinite point, hence I∗ ⊆ acl(∅). By compactness, I∗ is
finite. Since any neighbour of any b ∈ acl(∅)\I∗ is in acl(∅), it follows that
G(a/acl(∅)) ⊆ I∗. Since G(a/A) ⊆ G(a/acl(∅)), also G(a/A) ⊆ I∗.

(4) follows from (3) and Lemma 2.1.

Proposition 5.2. Let T be non-ω-stable of depth 1. Then for every
uncountable cardinal κ = ωα, I(κ, T ) = min(2κ, |α+ 1|2ω

).

P r o o f. Assume card(N) = κ. By Lemma 5.1 the number of isomor-
phism types of components over acl(∅) is not greater than 2ω. Counting the
number of copies of every component we can associate with N a function
from 2ω to |α+ 1 + ω|. So, I(κ, T ) ≤ min(2κ, |α+ 1|2ω

), where κ = ωα .
Let us prove the inverse inequality. By Lemma 4.1 there is a countable

model M with an uncountable set Q ⊆ S1(M) of pairwise orthogonal types.
Since M has a finite number of boundaries and all boundaries are finite
we may suppose that all types of Q have the same boundary in M (this
boundary is algebraic over ∅) and for distinct p, q ∈ Q, p is not a copy of q
over ∅. Now we can build min(2κ, |α+ 1|2ω

) elementary extensions of M by
using the usual technique of dimensions of pairwise orthogonal types.

This proposition and Corollary 4.8 of [12] describe all spectrum functions
of theories of superflat graphs of depth 1.

From now on we investigate theories of depth > 1. For a theory T
of finite depth suppose Dpv(T ) is a maximal number n such that there
are countable models M1, . . . ,Mn and elements a1, . . . , an satisfying the
following conditions:

(1) Mi∪{ai} ⊆ Mi+1, tp(Mi+1/Mi∪{ai}) ⊥ Mi and tp(ai+1/Mi+1) ⊥
Mi where 1 ≤ i < n,

(2) v(tp(an/Mn)) > ω.

When we replace condition (2) by condition (2′) given below we obtain a
definition of the number Dpw(T ).
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(2′) tp(an/Mn) has infinitely many pairwise orthogonal successors.

Theorem 5.3. Let T be superstable non-ω-stable of depth d. For finite
d let d1 = Dpv(T ) and d2 = Dpw(T ).

1. If ω < d and κ = ωα then I(ωα, T ) = min(2κ, id(|α+ ω|)).
2. If 1 < d < ω and κ = ωα then

I(ωα, T ) = min(2κ,id−1(|α+ ω|)id1(|α+ 1|2
ω

)id2(|α+ 1|ω)) or
I(ωα, T ) = min(2κ,id−2(|α+ ω||α|)id1(|α+ 1|2

ω

)id2(|α+ 1|ω)) .

P r o o f. Using the lemmas of Sections 3, 4 we can adapt the proof of
Theorem 5.1 in [12] for the case of superflat graphs. Minor modifications
have to be made in the proof of 5.17 and 5.18 in [12]. We use the following
lemma here.

Lemma 5.4. Let q(x) ∈ S(M) be strongly regular of depth 1, M be count-
able and N be a q-model. If C is a finite subset of N\M and r(y) is a
successor of q(x) over M ∪ C then for every subset B of N\M the dimen-
sion in N of a non-forking extension r′(y) of r(y) over M ∪ B ∪ C is not
less than dim(r(y),N)− card(B).

P r o o f. By Section 2 the dimension of r(y) (and r′(y) respectively) in
N is the number of components in N over acl(M∪C) (over acl(M∪C ∪B))
containing realizations of r(y) (r′(y)). It is easy to check that if a component
Γ over acl(M∪C) does not contain an element of B then Γ is a component
over acl(M ∪ C ∪B). So,

dim(r(y),N)− card(B) ≤ dim(r′(y),N) .

Assume that in the situation of this lemma q(x) has only finite number
of successors and r(y) has a finite dimension in some p-model. By the
construction of 5.17 of [12] we can build |α + ω| p-models. By Lemma 5.4
if such models N1 and N2 are eventually q-q-t-isomorphic (see [12]) then
the difference of dimensions of r(y) in N1 and N2 is bounded by some fixed
number. This is enough for the situations of 5.17, 5.18 in [12].
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