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Lindelöf property and the iterated
continuous function spaces

by

G. A. Soko l o v (Tomsk)

Abstract. We give an example of a compact space X whose iterated continuous
function spaces Cp(X), CpCp(X), . . . are Lindelöf, but X is not a Corson compactum.
This solves a problem of Gul’ko (Problem 1052 in [11]). We also provide a theorem con-
cerning the Lindelöf property in the function spaces Cp(X) on compact scattered spaces
with the ω1th derived set empty, improving some earlier results of Pol [12] in this direc-
tion.

1. Notation and terminology. Our terminology follows Arkhan-
gel’skĭı [1]. Given a topological space X, we denote by Cp(X) the space
of real-valued continuous functions, equipped with the topology of point-
wise convergence, and CpCp(X), CpCpCp(X), . . . are the iterated continuous
function spaces.

We denote by D the discrete two-point space {0, 1} and Cp(X,D) =
{f ∈ Cp(X) : f(X) ⊂ D}.

We denote by ω1 the set of all countable ordinals.
A set A ⊂ ω1 is stationary if it intersects each closed set (in the order

topology), unbounded in ω1; we call A bistationary if both A and ω1 \A are
stationary. For information concerning stationary sets needed in this paper
we refer the reader to Jech [7], or Fleissner [3].

A topological space X is ℵ0-monolithic if for any countable subset A ⊂ X
the closure cl(A) has a countable network (see [1; Ch. II, §6]); a network for
a space Y is a family of sets such that each open set is the union of some
subfamily of this family.

A topological space X has countable tightness if for any x in cl(A) there
is an at most countable subset B ⊂ A with x ∈ cl(B) (see [1]).

A compact space X is a Corson compactum if X can be embedded in the
subspace of the Tikhonov product RΓ of the real line consisting of functions
vanishing at all but countably many points in Γ (see [1], [9]).
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2. Main results. Gul’ko proved in [5] (a more detailed exposition in [6])
that for any weakly compact set X in a Banach space (i.e. for any Eberlein
compactum [1], [9]) the iterated function spaces Cp(X), CpCp(X), . . . are
Lindelöf. The author extended this result in [16] to the class of Corson
compacta (essentially wider than the class of Eberlein compacta, see [1],
[9]). Subsequently, Gul’ko conjectured that the Lindelöf property of all
iterated continuous function spaces actually characterizes the class of Corson
compacta (Problem 1052 in [11]).

We disprove this conjecture.

2.1. Theorem. There exists a compact space X (with the third de-
rived set empty) such that all iterated continuous function spaces Cp(X),
CpCp(X), . . . are Lindelöf , but X is not a Corson compactum.

Our space X is a compactum associated in a standard way with some
special “ladder system” on the countable ordinals (see Section 4 for details).
Similar function spaces were investigated earlier by Pol [13] and Ciesielski
and Pol [2].

More precisely, we consider a class S of Lindelöf spaces, stable under the
Cp-operation, and we characterize those ladder systems on the countable
ordinals which provide compacta X with X ∈ S.

In the definition of S we follow the author’s paper [16], where more
general classes of spaces (extending some classes defined by Gul’ko in [5],
[6]) were considered. We discuss the class S in Section 3.

2.2. R e m a r k. Some closely related questions concerning the iterated
function spaces Cp(X), CpCp(X), . . . were investigated by Sipachova [15]
and Okunev [10]. In particular, Sipachova proved that if X is an Eber-
lein compactum, then each of Cp(X), CpCp(X), . . . is a Lindelöf Σ-space
(≡ countably determined space, see [9]), and Okunev extended this result
to the class of Gul’ko compacta (see definition in [9]). The result of Okunev
is definitive in this direction: Gul’ko compacta X are characterized by the
property that Cp(X) is a Lindelöf Σ-space.

Our next result provides information about the Lindelöf property in the
function spaces Cp(X) on compacta whose ω1th derived set is empty. Some
results in this direction were obtained by Pol [12].

Before stating the result let us recall that, given a topological space E,
the Gδ-modification of E is the set E equipped with the topology generated
by all countable intersections of open sets in E.

2.3. Theorem. Let X be a compact scattered space with the ω1th derived
set empty. Then the following properties are equivalent.

(a) Cp(X) is Lindelöf ,
(b) the Gδ-modification of Cp(X,D) is Lindelöf ,
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(c) X is ℵ0-monolithic.

Let us recall that X being scattered, the weak topology on the function
space coincides on norm-bounded sets with the pointwise topology (see [14]).
Hence, in Theorem 2.3 we could as well consider the Banach function space
C(X) equipped with the weak topology.

2.4. R e m a r k. Assuming Martin’s Axiom and the negation of the Con-
tinuum Hypothesis, the implication (a)⇒(c) was proved by Reznichenko for
arbitrary compact Hausdorff spaces (see [17], [1; Ch. IV, §8]).

3. A stable class S of Lindelöf spaces. In [16], for any infinite
cardinal τ , the author introduced two classes of topological spaces, D(τ)
and L(τ), which are in duality with respect to the Cp-operation. The classes
D(τ) and L(τ) extended some earlier constructions of Gul’ko [5], [6], and
the ideas developed by Gul’ko in these papers were basic in investigation of
properties of the classes.

The class S we consider is contained in the intersection D(ℵ0) ∩ L(ℵ0).
The properties of S we need could be derived from the general results in
[16]. However, in the case of S, the proofs can be made more direct and
clear, and we decided to include them for the reader’s convenience.

3.1. Definition. The class S consists of all topological spaces X satis-
fying the following two conditions:

(a) for every n ∈ N, the space Xn is Lindelöf and has countable tightness,
(b) if Fn ⊂ Xn for n = 1, 2, . . . is a sequence of closed subsets, then there

exists a mapping r : X → X such that r(X) has a countable network and
(r × . . .× r)(Fn) ⊂ Fn for every n ∈ N.

3.2. Theorem. If X ∈ S then Cp(X) ∈ S.

P r o o f. Let Xm = X ⊕ . . .⊕X be the discrete union of m copies of X.

Claim 1. If Fnm ⊂ (Xm)n are closed sets, n, m ∈ N, then there exists a
mapping r : X →X such that r(X) has a countable network and (rm × . . .
. . .× rm)(Fnm) ⊂ Fnm, where the rm : Xm → Xm are induced by r.

Indeed, consider (Xm)n as a finite discrete union of clopen subspaces
Xnmk, each homeomorphic to Xn, and set Fnmk = Fnm ∩ Xnmk. Let π :
N× N× N → N be a bijection such that π(n, m, k) ≥ n for every n, m, k in
N. Then we can consider each Fnmk as a closed subset of Xπ(n,m,k). Now
Claim 1 follows from condition (b) of Definition 3.1.

For any x = (x1, . . . , xn) ∈ Xn and an n-tuple I = (I1, . . . , In) of open
intervals in the real line with rational ends, let

W (x, I) = {f ∈ Cp(X) : f(xi) ∈ Ii for i = 1, . . . , n} .
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If f ∈ Cp(X), x ∈ cl(A) and f(xi) ∈ Ii for every i then there exists y ∈ A
with f(yi) ∈ Ii for all i and therefore we have

Claim 2. Let n ∈ N, A ⊂ Xn and I be a fixed n-tuple as above. Then
W (x, I) ⊂

⋃
{W (y, I) : y ∈ A} for any x ∈ cl(A).

Given n ∈ N, denote by Bn the countable family of all n-tuples I =
(I1, . . . , In) of open intervals in the real line with rational ends.

We pass to the proof that Cp(X) meets the conditions of Definition 3.1.
Let Hm ⊂ (Cp(X))m be a sequence of closed subsets. Observe that

(Cp(X))m can be identified with Cp(Xm), where Xm was defined at the
beginning of the proof. For any n, m in N and I ∈ Bn denote by Unm(I) the
family of all sets W (x, I) with x ∈ (Xm)n, disjoint from Hn. Let

Fnm(I) = {x ∈ (Xm)n : W (x, I) ∈ Unm(I)} .

By Claim 2, each Fnm(I) is closed in (Xm)n. Therefore Claim 1 provides
us with a mapping r : X → X such that r(X) has a countable network and
(rm × . . .× rm)(Fnm(I)) ⊂ Fnm(I) for any n, m in N and I ∈ Bn.

Let r∗ : Cp(X) → Cp(X) be the dual mapping f → r∗(f) = f ◦ r, for
f ∈ Cp(X). Notice that r∗ × . . .× r∗ = r∗m.

We show that r∗m(Hm) ⊂ Hm for every m ∈ N. Suppose on the contrary
that there exists f ∈ Hm with r∗m(f) 6∈ Hm. Then there exists an open set
U in Cp(Xm) containing r∗m(f) and disjoint from Hm. We can assume that
U = W (x, I) for some n ∈ N, x ∈ (Xm)n and I ∈ Bn. Since W (x, I) ∩Hm

= ∅, we have x ∈ Fnm(I), and therefore (rm × . . . × rm)(x) ∈ Fnm(I). It
follows that W ((rm × . . . × rm)(x), I) ∩ Hm = ∅. But r∗m(f) ∈ W (x, I) if,
and only if, f ∈ W ((rm× . . .× rm)(x), I). Therefore f 6∈ Hm, contradicting
our choice of f . This proves that r∗m(Hm) ⊂ Hm.

Since Cp(rm(X)) has a countable network (because rm(X) has one, see
[1]) and we can identify r∗m(Cp(X)) with Cp(rm(X)), we have verified con-
dition (b) of Definition 3.1 for Cp(X).

We now check (a), i.e. we prove that each finite product (Cp(X))m =
Cp(Xm) is Lindelöf.

Fix m ∈ N, and let U be an open cover of Cp(Xm) consisting of basic
neighbourhoods W (x, I) defined above. For each n, and I ∈ Bn, let

Un(I) = {W (x, I) : x ∈ (Xm)n and W (x, I) ∈ U} ,

An(I) = {x ∈ (Xm)n : W (x, I) ∈ Un(I)} .

Applying Claim 1 to cl(An(I)) we get a mapping r : X → X whose image
r(X) has a countable network and Sn(I) = (rm × . . . × rm)(cl(An(I))) ⊂
cl(An(I)) for each n. The sets Sn(I) have countable networks, and therefore
there are countable sets Bn(I) dense in Sn(I). Since (Xm)n has countable
tightness, each x ∈ Bn(I) is in the closure of a countable subset of An(I),
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and therefore, by Claim 2, each W (x, I) with x ∈ Bn(I) is covered by a
countable subfamily of Un(I).

Therefore, to complete the proof we verify that the countable collection

W = {W (x, I) : x ∈ Bn(I), n ∈ N, I ∈ Bn}
covers Cp(Xm).

Let f ∈ Cp(Xm). There exists W (x, I) ∈ U with r∗m(f) ∈ W (x, I), i.e.
f ∈ W ((rm × . . .× rm)(x), I). There exists n such that x ∈ An(I) and then
(rm× . . .×rm)(x) ∈ Sn(I). Since Bn(I) is dense in Sn(I), applying Claim 2
again, we conclude that W ((rm × . . . × rm)(x), I) is covered by elements
W (y, I) with y ∈ Bn(I), and therefore f is in the union of the family W.

Finally, the countable tightness of the finite powers (Cp(Xm))n follows
from the Arkhangel’skĭı–Pytkeev theorem [1; Ch. II, §1], since all finite
powers (Xm)n are Lindelöf.

3.3. R e m a r k. It was proved in [16] that all Corson compacta are in
S. In particular, all iterated function spaces Cp(X), CpCp(X), . . . for X a
Corson compactum are Lindelöf.

This is closely related to the well-known results of Gul’ko [1], [4–6] con-
cerning retraction systems on Corson compacta.

4. The compacta XA associated with ladder systems on ω1 and
the proof of Theorem 2.1. Given a countable limit ordinal α, a ladder
on α is a set Sα = {α(1), α(2), . . .} of isolated ordinals from α such that
α(1) < α(2) < . . . and α = supi α(i). Let A be a set of countable limit
ordinals. An A-ladder system on ω1 is a collection 〈Sα : α ∈ A〉, where Sα

is a ladder on α. With each A-ladder system on ω1 we associate a compact
space XA in the following standard way: we give the set ω1 a locally compact
topology by making the points in ω1 \ A isolated and taking as a base of
neighbourhoods of a point α ∈ A the sets {α}∪ (Sα \F ), where F is a finite
set, and we let XA be the one-point compactification of this space, ω1 being
the point at infinity.

4.1. Proposition. XA is a Corson compactum if and only if A is a
nonstationary set in ω1.

P r o o f. Suppose A is a nonstationary set in ω1. Then there exists a
closed (in the order topology) unbounded set B in ω1 with A ∩ B = ∅.
Without loss of generality we may assume that 1 ∈ B. Then for every
α ∈ ω1 there exists β(α) ∈ B such that β(α) ≤ α < β(α)+, where β(α)+ is
the ordinal in B next to β(α).

Let α ∈ A and Sα be a ladder on α. For any m ∈ N set Sm
α = {α(n) :

n ≥ m}. Define

U = {{α} : α 6∈ A} ∪ {(β(α), β(α)+) ∩ Sm
α : α ∈ A, m ∈ N} .
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It is easy to check that U is a point-countable family of clopen sets such
that for any pair of distinct points in XA there is a set in U containing
exactly one of them. By a Rosenthal-type characterization theorem [1], [9]
we conclude that XA is a Corson compactum.

Now let A be a stationary set in ω1. Assume on the contrary that XA

is a Corson compactum and therefore it has a point-countable family U
consisting of open Fσ-sets such that given two points in X, some element
in U contains exactly one of them. For every α ∈ A fix Uα ∈ U such that
α∈Uα. We may assume that the sets Uα are distinct for distinct ordinals α.
For each α ∈ A there exists h(α) ∈ Uα such that h(α) < α, since α is
nonisolated in XA. By the pressing-down lemma we have h(α) = α0 for all
α in a stationary subset A′ of A. The point α0 belongs to every Uα with
α ∈ A′, hence U is not point-countable.

4.2. Proposition. XA is in the class S if and only if ω1 \ A is a
stationary set in ω1.

P r o o f. Since XA is a compactum with countable tightness each finite
power of XA has countable tightness (by Malykhin’s theorem [8]) and the
Lindelöf property. Hence we need only verify condition (b) of Definition 3.1
for XA.

Let ω1 \ A be a stationary set in ω1 and Fn ⊂ (XA)n be a sequence of
closed subsets.

Let L(ω1) be the set ω1 ∪ {ω1} with the topology where all points in ω1

are isolated and the neighbourhoods of ω1 contain all but countably many
points in L(ω1). The space L(ω1) is the Gδ-modification of XA, i.e. open
sets in L(ω1) are countable intersections of open sets in XA. In particular,
each Fn is closed in L(ω1)n.

The mapping rβ : L(ω1) → L(ω1) defined by

rβ(α) =
{

α if α < β ,
ω1 otherwise,

is a continuous retraction. By Gul’ko’s theorem [1; IV.3.12] the set

Cn = {β ∈ ω1 : (rβ × . . .× rβ)(Fn) ⊂ Fn}

is closed and unbounded in ω1 for every n ∈ N. Hence there exists β ∈
(
⋂

n Cn) \ A, ω1 \ A being stationary. Notice that the same rβ considered
as a mapping from XA into itself is continuous if, and only if, β 6∈ A.
Furthermore, the image of rβ is countable, so r = rβ satisfies 3.1(b). This
proves the “if” part of the proposition.

To check the reverse implication, assume that there exists a closed un-
bounded set C in ω1 contained in A. Without loss of generality we can
assume that 1 ∈ C.
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For any α, let α+ be the successor of α in C and let β1(α), β2(α), . . .
enumerate the points in the interval [α, α+).

Define a sequence of closed subsets of X2 by

F0 = {(1, 1)} and Fn = cl({(α, βn(α)) : α ∈ C}), for n ∈ N .

Since C ⊂ A, every infinite sequence in C converges in XA to ω1. It
follows that Fn ∩ ({α} ×XA) = {(α, βn(α))} for α ∈ C.

Assume that r : XA → XA is continuous and (r× r)(Fn) ⊂ Fn for every
n = 1, 2, . . . We show that r is the identity map. We have r(1) = 1 because
(r × r)(F0) ⊂ F0. Suppose that r(γ) = γ for all γ < β. If β ∈ C then β is
an accumulation point of [1, β), and therefore r(β) = β. Let β 6∈ C. Then
β = βn(α) for some α ∈ C and n ∈ N. Observe that α < β and r(α) = α.
Hence (r × r)(Fn) ⊂ Fn implies r(βn(α)) = βn(α). This completes the
inductive proof of the “only if” part of the proposition.

4.3. Corollary. If A is a bistationary set in ω1 then all iterated func-
tion spaces Cp(XA), CpCp(XA), . . . are Lindelöf , but XA is not a Corson
compactum.

5. Proof of Theorem 2.3. For any Y closed in X the restriction
operator R(f) = f |Y maps continuously Cp(X) onto Cp(Y ); in particular,
if Cp(X) is Lindelöf, so is Cp(Y ). By a result of Pol [12], we infer that if
Cp(X) is Lindelöf and Y is separable, then Y is metrizable. This gives the
implication (a)⇒(c).

The implication (b)⇒(a) was proved in [13].
To show (c)⇒(b), let X be a compact ℵ0-monolithic scattered space.

Denote by X(α) the αth derived set of X (see [14]). Since X(ω1) = ∅, there
is a countable ordinal α such that X(α) is finite; we then call α the height
of X. We can restrict ourselves to the case where X(α) is a singleton {x∗}.
We can also concentrate on the space

C0
p(X,D) = {f ∈ Cp(X,D) : f(x∗) = 0}

instead of Cp(X,D), the latter being the union of two disjoint closed copies
of the former.

Now observe that a base of the Gδ-modification of C0
p(X,D) consists of

the sets

U(A,ϕ) = {f ∈ C0(X,D) : f |A = ϕ} ,

where A is a countable subset of X and ϕ : A → D is a function. We prove
that C0(X,D) is a Lindelöf space in the Gδ-topology by induction on the
height of X.

The case α = 0 is evident.



94 G. A. Sokolov

Let α be a limit ordinal. Then there exists a sequence αn < α converging
to α, and we have C0(X,D) =

⋃
n E(αn), where

E(αn) = {f ∈ C0(X,D) : f |X(α) ≡ 0} .

Let Zn be the factor space obtained by collapsing the set X(α) to a point
z∗n. Clearly, E(αn) is homeomorphic to

C0(Zn,D) = {f ∈ C0(Z,D) : f(z∗n) = 0} .

Furthermore, Z
(α)
n = ∅ and Zn is ℵ0-monolithic as a continuous image of

the ℵ0-monolithic space X. By the inductive assumption, each E(αn), and
therefore C0

p(X,D), is Lindelöf.
Let α = β + 1. The derived set X(β) is homeomorphic to the one-point

compactification of some discrete space Γ . Write X(β) = {x∗}∪{xγ : γ ∈ Γ}
and let

Cn = {f ∈ C0(X,D) : |{γ ∈ Γ : f(xγ) = 1}| ≤ n}, n = 1, 2, . . . ,

Eγ = {f ∈ C1 : f(xγ) = 1} .

Obviously, C0(X,D) =
⋃

n Cn, hence it is sufficient to prove that Cn is
Lindelöf for every n. The case n = 0 is similar to the case just considered
and by the inductive assumption Eγ is Lindelöf for every γ ∈ Γ . Next, note
that Cn is the continuous image of (C1)n under the mapping (f1, . . . , fn) →
max(f1, . . . , fn). So it remains to prove that C1 is a Lindelöf space in the
Gδ-topology.

Let U be an open cover of C1. We have already noticed that the subspace
C0 of C1 is Lindelöf; let U ′ = {Vn : n ∈ N} be a subfamily of U covering C0.
We may assume that Vn = U(An, ϕn) for n ∈ N. As every Eγ is Lindelöf
for γ ∈ Γ we need only prove that

⋃
U ′ covers all Eγ except possibly for

a countable set. Suppose on the contrary that there are fγ ∈ Eγ with
fγ 6∈

⋃
n Vn for γ ∈ Γ ′ ⊂ Γ , Γ ′ being uncountable. Let A =

⋃
n An and

let γ ∈ Γ ′ be such that xγ 6∈ cl(A). Then there is a clopen neighbourhood
W of xγ such that W ∩ cl(A) = ∅. Let gγ = fγχX\W , where χX\W is the
characteristic function of the set X \ W . Since gγ ∈ C0, we have gγ ∈ Vn

for some n. But by the assumption gγ coincides with fγ on An and hence
fγ ∈ U(An, ϕn) = Vn. This contradiction proves the claim.

6. Open problems. Is there a compact space X such that Cp(X) is
Lindelöf but CpCp(X) is not? The same question can be posed for X being
scattered ℵ0-monolithic.

The answer is unknown even for XA from Section 4 with A an arbitrary
set.

Gul’ko [4] proved that if X is the Σ-product of the real lines then Cp(X)
is Lindelöf. The uncountable Σ-product X is not Lindelöf and can be em-
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bedded as a closed subspace in CpCp(X). Therefore the compactness re-
quirement in the above question is essential.
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