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Measures on compact HS spaces
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Mirna D ž amon j a and Kenneth Kunen (Madison, Wis.)

Abstract. We construct two examples of a compact, 0-dimensional space which
supports a Radon probability measure whose measure algebra is isomorphic to the measure
algebra of 2ω1 . The first construction uses ♦ to produce an S-space with no convergent
sequences in which every perfect set is a Gδ . A space with these properties must be
both hereditarily normal and hereditarily countably paracompact. The second space is
constructed under CH and is both HS and HL.

0. Introduction. All spaces considered here are Hausdorff. A perfect
set is a non-empty closed set with no isolated points.

Suppose X is compact and supports a Radon probability measure µ
such that the measure algebra of (X,µ) is not separable; does this imply
that X can be mapped continuously onto [0, 1]ω1? This question is open
in ZFC. In particular, Haydon asked whether such an implication might
follow from something like MA + ¬CH; see Fremlin [2] for more discussion.
Under CH, there is a counterexample which is, in addition, a compact L-
space (hereditarily Lindelöf (HL) but not hereditarily separable (HS)); see [4,
6]. In this paper, we show that, assuming♦, there is another counterexample
which is an S-space (HS, but not HL). The space also has the property that
every perfect set is a Gδ, whereas no point is a Gδ. Also, assuming just CH,
we construct a third counterexample which is both HS and HL.

Neither of the above mentioned examples could be constructed in ZFC,
since under MA + ¬CH, there are neither compact L-spaces (Juhász) nor
compact S-spaces (Szentmiklóssy) (see [8]). Furthermore, under MA +
¬CH, the measure algebra of any compact HL (equivalently, HS) Radon
measure space is separable (Fremlin [2]).

The following theorem details the properties of the S-space. The HS +
HL example is a modification of the S-space, and is described in §4.
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0.1.Theorem. If♦ holds, then there is a compact , 0-dimensional , hered-
itarily separable space X and a Radon probability measure µ on X such that

1. X has weight ω1, and every point in X has character ω1.
2. There are no convergent sequences in X.
3. Every perfect subset of X is a Gδ set.
4. The measure algebra of (X,µ) is isomorphic to the measure algebra

of 2ω1 with the usual product measure.

We do not need to state in the Theorem that X cannot be mapped onto
[0, 1]ω1 , since that follows from hereditary separability. Likewise, Part (1) of
the Theorem implies that X is not hereditarily Lindelöf, since in a hereditar-
ily Lindelöf space, every point is a Gδ. Also, (1) implies that the cardinality
of X is 2ω1 .

Our proof is patterned after the result, announced by Fedorchuk in [1],
that under ♦, there is a compact S-space of size 2ω1 , although we do not
follow exactly the method indicated in [1]. By induction on α ≤ ω1, we
shall construct a closed Xα ⊆ 2α. If α < β, then Xα will be the projection
of Xβ . The X of the Theorem will be Xω1 . To make sure that the space
is hereditarily separable, we shall use ♦ to capture all candidates for an
ω1 left-separated sequence. This method will also capture all ω-sequences
as well, so that Part (2) of Theorem 0.1 will essentially come for free. To
guarantee Part (3), we use ♦ a second time to control the perfect sets.

A complete probability measure µ on X is said to be Radon if it is
defined on the Borel sets and has the property that the measure of each
Borel set is the supremum of the measures of its compact subsets. Since
X will be compact and 0-dimensional, we may define such a measure by
its values on the clopen sets, as we now explain. The Baire sets in X are
the least σ-algebra containing the clopen sets, and the Borel sets in X are
the least σ-algebra containing the open sets. Suppose that µ is a finitely
additive probability measure defined on the clopen subsets of X. Then,
in the standard way, µ defines an outer measure, from which we define
an extension of µ to a countably additive probability measure µ̂ on some
σ-algebra, S. S certainly contains all Baire sets. It need not contain all
Borel sets, but if it does, then µ̂ is automatically a Radon measure.

So, why should all Borel sets be µ̂-measurable? In an HL space (as in §4),
this is trivial, since the Borel and Baire sets coincide. In fact, for any
compact X, X is HL iff all closed sets are Gδ sets iff all Borel sets are
Baire. Also, for any compact X, a closed set is Baire iff it is a Gδ. In our
particular space, (1) says that each point is a non-Gδ and hence non-Baire.
However, (4) implies that the measure algebra is non-atomic, so that points
have measure 0; in particular, they are µ̂-measurable. Now, suppose K is
any closed set, and let I be the set of isolated points of K. By HS, I is
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countable, and hence µ̂-measurable (and of measure 0). By (2), either I
is finite and K = I or I is infinite and K\I is perfect, and hence a Gδ
by (3). In either case, K is the union of a measurable set and a Baire set,
and hence measurable. A subtle point: of course, we must verify (4), or at
least that µ̂ gives points measure 0, without needing that every Borel set is
µ̂-measurable; but we do that in §1.

Since the measure is determined by its values on the clopen sets, it is
easily constructed by induction. When we construct Xα, we also decide
what the measure is of all its clopen subsets. Then when we get to X =
Xω1 , we will also have µ and hence µ̂, and as we pointed out above, µ̂ will
almost automatically be a Radon measure. We still have to ensure that the
resulting measure algebra is isomorphic to the measure algebra of 2ω1 . To
do that, we shall simply make it everywhere non-separable; the isomorphism
will then follow by Maharam’s Theorem [7]. However, doing this requires
an additional complication on the construction of the Xα, which makes
verifying that we can get an S-space somewhat harder. We comment on
this further at the end of §3.

We proceed by listing a number of requirements on theXα and µα which,
if met, guarantee that the resulting (X,µ) satisfies Theorem 0.1. In §1, we
describe the basic requirements, which guarantee that X will have every
point of character ω1 and a Baire measure µ such that the resulting measure
algebra is isomorphic to the measure algebra of 2ω1 . In §2, we describe some
additional requirements on the construction which will guarantee the rest of
the properties of X. In §3, we verify that all the requirements of §§1, 2 can
be simultaneously fulfilled, thus proving Theorem 0.1; we also explain there
why a space with the properties of Theorem 0.1 must be hereditarily normal
and hereditarily countably paracompact. In §4, we explain how to use CH
and modify the construction to get a space which is both HS and HL.

There is a somewhat simpler class of compact S-spaces [3, 5, 8] which
require only CH to construct; but these have points of countable character,
so we could not use them to prove Theorem 0.1.

1. The basic stuff. For α ≤ β, define πβα : 2β → 2α by πβα(f) = f �α.
We shall choose Xα for α ≤ ω1 and Aα, Bα for α < ω1 so that:

R1.1. Xα is a closed subset of 2α, and πβα(Xβ) = Xα whenever α < β
≤ ω1.

R1.2. For α < ω1, Aα and Bα are closed in Xα, Aα ∪ Bα = Xα, and
Xα+1 = Aα × {0} ∪Bα × {1}. Here, we identify 2α+1 with 2α × {0, 1}.

R1.3. For n < ω, Xn = An = Bn = 2n. For α ≥ ω, Aα and Bα have no
isolated points.
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We remark that this may be viewed as an inductive construction. The
choice of Aα and Bα determines Xα+1 from Xα, and, by R1.1, Xγ is de-
termined from the earlier Xα at limit γ. R1.3 avoids some trivialities; it
implies that for α ≥ ω, Xα has no isolated points; also, Xω = 2ω.

We also choose µα for α < ω1 so that:

R1.4. µα is a finitely additive probability measure on the clopen subsets
of Xα, and µα = µβ(πβα)−1 whenever α < β ≤ ω1.

Again, this may be viewed as an inductive construction. For limit γ, µγ
is determined from the earlier µα. As described in the introduction, each
µα extends to a µ̂α on some σ-algebra, Sα, which contains all the Baire sets.
For α < ω1, the Baire and Borel sets coincide, but this need not hold for
α = ω1.

At a successor stage, in the case that µ̂α(Aα ∩ Bα) > 0, there is some
freedom in defining µα+1, in that the measure on Aα∩Bα can be distributed
arbitrarily over (Aα ∩ Bα) × {0} and (Aα ∩ Bα) × {1}. For the purpose of
this paper, the equitable distribution will work. That is,

R1.5. For each α < ω1, and each Borel D ⊆ Aα ∩Bα, µ̂α+1(D × {0}) =
µ̂α+1(D × {1}) = 1

2 µ̂α(D) .

In terms of the clopen sets, this defines µα+1 from µα. Specifically, every
clopenK ⊆ Xα+1 can be written uniquely asK = K0×{0}∪K1×{1}, where
K0 is a relatively clopen subset of Aα and K1 is a relatively clopen subset of
Bα. Then µα+1(K) = µ̂α(K0)+µ̂α(K1)− 1

2 µ̂α(K0∩Bα)− 1
2 µ̂α(K1∩Aα). In

the special case that K is the inverse projection of a clopen set L ⊂ Xα, then
L = K0 ∪K1 and K0 ∩Bα = K1 ∩Aα = K0 ∩K1, so µα+1(K) = µ̂α(K0) +
µ̂α(K1)− µ̂α(K0∩K1) = µ̂α(K0∪K1) = µα(L). Thus, µα+1 = µα(πα+1

α )−1.
This shows that condition R1.4 gets preserved at successor stages. It is also
easy to verify:

1.1. Lemma. Requirements R1.1–1.5 imply that

1. For α ≤ ω, µ̂α is the usual product measure on Xα.
2. For all α, µ̂α gives each non-empty clopen set positive measure.
3. For all α ≥ ω, µ̂α gives each point measure 0.

R1.1–R1.5 do not prevent us from choosing Aα ∩ Bα to be of measure
0 (or even a singleton) for all α ≥ ω. In that case, the measure algebra on
X = Xω1 would be isomorphic to the measure algebra of 2ω. To prevent
this, we shall demand

R1.6. For each α < ω1 and each closed J ⊆ Xα, if µ̂α(J) > 0, then there
is a β ≥ α such that µ̂β((πβα)−1(J) ∩Aβ ∩Bβ) > 0.
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1.2. Lemma. Requirements R1.1–1.6 imply that the measure algebra
of (X, µ̂) is isomorphic to the measure algebra of 2ω1 (with the usual product
measure).

P r o o f. Let B be the measure algebra; so, elements of B are equivalence
classes of µ̂-measurable subsets of X. For each b ∈ B, let B �b be the algebra
{a ∈ B : a ≤ b} (so, b is the 1 of B � b). By Maharam’s Theorem [7], the
lemma will follow if we can show that for all b 6= 0, B �b is not separable.

For α < ω1, let Bα be the subalgebra of B generated by all (πω1
α )−1(H),

for H a Borel (= Baire) subset of Xα. Then B is an ascending union,
B =

⋃
α Bα. If B � b were separable, we may fix α < ω1 such that b ∈ Bα

and B �b = Bα �b. Then, there is a closed J ⊆ Xα such that µ̂α(J) > 0 and
[J ] ≤ b; applying R1.6 and R1.5 to this J yields a contradiction.

The following requirement implies (actually is equivalent to) that every
point in Xω1 has character ω1.

R1.7. For each α < ω1 and each y ∈ Xα, there is a β with α ≤ β < ω1

and Aβ ∩Bβ ∩ (πβα)−1{y} 6= ∅.

1.3. Lemma. Requirements R1.1–1.7 imply that every point in Xω1 has
character ω1.

P r o o f. If x ∈ Xω1 had countable character, then there would be an
α < ω1 such that (πω1

α )−1{x�α} = {x}. Applying R1.7 to y = x�α yields a
contradiction.

Requirements R1.1–R1.7 are consistent with having Aα = Bα = Xα for
all α, whence X will simply be 2ω1 with the usual product measure. We
cannot get an S-space unless Aα ∩ Bα is nowhere dense in Xα for all but
countably many α.

2. How to use ♦. We begin with some notation on sequences. Suppose
that y⇀ = 〈yξ : ξ < β〉 is a β-sequence of distinct points in some space. Then
a point x is a limit point of y⇀ iff for all neighborhoods U of x, ∃ξ(yξ ∈ U

∧ x 6= yξ). Now, suppose that Y
⇀

= 〈Yξ : ξ < β〉 is a β-sequence of disjoint
sets. We shall call x a strong limit point of Y

⇀

iff for all neighborhoods U
of x, ∃ξ(Yξ ⊆ U ∧ x 6∈ Yξ). This implies that however we choose points
yξ ∈ Yξ, x will be a limit point of 〈yξ : ξ < β〉.

For ordinals α < β, if f
⇀

= 〈fξ : ξ < β〉 is a β-sequence in 2β , we shall
use f

⇀

� α for the α-sequence in 2α, 〈fξ �α : ξ < α〉. Assuming ♦, we can fix
fα

⇀

for each α ∈ [ω, ω1), such that fα
⇀

is an α-sequence in 2α and such that
whenever g⇀ is an ω1-sequence in 2ω1 , {α : g⇀ � α = fα

⇀

} is stationary.
For each β ≤ ω1, we may postulate
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R2.1(β). For all α ≤ β: If the fαξ , for ξ < α, are all distinct points in
Xα, h ∈ Xβ , and h �α is a limit point of fα

⇀

, then h is a strong limit point
of 〈(πβα)−1(fαξ ) : ξ < α〉.

The reason that ♦ is relevant to capturing sequences in 2ω1 is given
by the following lemma, which states that some basic properties of such
sequences reflect on a club (closed-unbounded set).

2.1. Lemma. Suppose that f
⇀

is an ω1-sequence of distinct points in 2ω1 .
Then there is a club C ⊆ ω1 such that for all γ ∈ C,

1. The fξ �γ for ξ < γ are all distinct.
2. If η ≥ γ, then fη �γ is a limit point of f

⇀

� γ.

P r o o f. Let Fn(γ, 2) be the set of finite partial functions from γ to 2,
and, for s ∈ Fn(γ, 2), let Zs be the basic clopen subset of 2γ , {f ∈ 2γ : f �
dom(s) = s}. To achieve (1), make sure that whenever γ ∈ C,

∀ξ < η < γ ∃s ∈ Fn(γ, 2)(fξ ∈ Zs ∧ fη 6∈ Zs) .

To achieve (2), make sure that whenever γ ∈ C and s ∈ Fn(γ, 2),

sup{ξ < γ : fξ ∈ Zs} < γ ⇔ sup{ξ < ω1 : fξ ∈ Zs} < γ .

In particular, if η ≥ γ, s ∈ Fn(γ, 2), and fη ∈ Zs, then sup{ξ < ω1 : fξ ∈
Zs} ≥ η, so there are unboundedly many ξ < γ such that fξ ∈ Zs.

2.2. Lemma. Assuming the requirements R1.1–1.6 and R2.1(ω1), X is
hereditarily separable.

P r o o f. If not, then let f
⇀

be a left-separated ω1-sequence in X. Let
C be as in Lemma 2.1 and fix γ ∈ C such that f

⇀

� γ = fγ
⇀

. Let h = fγ .
By Lemma 2.1, h � γ is a limit point of f

⇀

� γ, h is a strong limit point of
〈(πω1

α )−1(fγξ ) : ξ < γ〉, and hence a limit point of 〈fξ : ξ < γ〉, which is

impossible if f
⇀

is left-separated.

By a sequence we mean an ω-sequence. One could ensure that the space
has no convergent sequences by a similar use of ♦ to capture ω-sequences,
but it turns out that this comes for free because of the way we captured
ω1-sequences.

2.3. Lemma. Assuming R1.1–R1.7 and R2.1(ω1), there are no conver-
gent sequences in X.

P r o o f. Suppose x⇀ is a discrete sequence in X and y is a limit point of
x
⇀. Let f

⇀

be any ω1-sequence of points in X such that fn = xn for n < ω
and fξ(0) 6= y(0) for all ξ ≥ ω. Fix an α < ω1 such that πω1

α (f
⇀

) = fα
⇀

and
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note that y � α is a limit point of fα
⇀

. Then every point in (πω1
α )−1(y � α)

is a strong limit point of 〈(πω1
α )−1(fαξ ) : ξ < α〉, and hence a limit point

of 〈fξ : ξ < α〉. Since we have separated the fξ for ξ ≥ ω away from y at
coordinate 0, every point in (πω1

α )−1(y � α) is a limit point of x⇀. By R1.7,
(πω1
α )−1(y �α) will not be a singleton, so x⇀ does not converge to y.

We shall now replace requirement R2.1 by a somewhat more complicated
requirement on the Aα and Bα, so that it will be clear that this is something
which may be ensured during the inductive construction. First, note that
there is no problem at limits.

2.4. Lemma. If γ is a limit and R2.1(β) holds for all β < γ, then R2.1(γ)
holds as well.

However, there is a problem at successors. Suppose R2.1(β) holds and
h ∈ Xβ+1. If h � β 6∈ Aβ ∩ Bβ , then R2.1(β + 1) will hold at the point
h, since at h, the projection πβ+1

β is locally a homeomorphism. But, if
h �β ∈ Aβ ∩ Bβ , then R2.1(β + 1) will fail, for example, if for some α < β,
the fαξ , for ξ < α, are all distinct points in Xα and each (πβα)−1(fαξ ) meets
both Aβ and Bβ . To avoid this, we assume

R2.2. For all α ≤ β < ω1: If the fαξ , for ξ < α, are all distinct points
inXα, h ∈ Aβ∩Bβ , and h is a strong limit point of 〈(πβα)−1(fαξ ) : ξ < α〉, and
U is any neighborhood of h, then ∃ξ((πβα)−1(fαξ ) ⊆ U∧(πβα)−1(fαξ )∩Aβ = ∅)
and ∃ξ((πβα)−1(fαξ ) ⊆ U ∧ (πβα)−1(fαξ ) ∩Bβ = ∅).

2.5. Lemma. Assuming the requirements R1.1–1.6 and R2.2, X is hered-
itarily separable and has no convergent sequences.

P r o o f. By induction on β, verify R2.1(β), and then apply Lemmas 2.2
and 2.3.

We may now regard R2.1 as obsolete, having been replaced by R2.2.
We must still make sure that each perfect set F becomes a Gδ. To do

this, we arrange for F to become (πω1
α )−1(H) for some α < ω1 and some

perfect H in Xα.
If K is a closed subset of a space Z and g : Z → Y , we shall call g

irreducible on K iff g(L) is a proper subset of g(K) for all proper closed
subsets L of K. Note that if F is a closed subset of Z, then F ⊆ g−1(g(F ));
and if g is irreducible on g−1(g(F )), then F = g−1(g(F )).

So, we shall arrange that for every perfect F , there will be an α < ω1 such
that πω1

α is irreducible on (πω1
α )−1(πω1

α (F )). Then F = (πω1
α )−1(πω1

α (F ))
will be a Gδ. As in the usual inductive construction of the projective cover,
irreducibility of πω1

α can be guaranteed during the inductive construction
by a condition on the Aα and Bα, which we now explain. If A ⊆ H ⊆ Y ,
where Y is any space, A is called regular closed in H iff A = clH(intH(A));
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here clH and intH denote the closure and interior operators relative to the
subspace H. We call A,B ⊆ H complementary regular closed sets in H iff
they are each regular closed in H, A ∪B = H, and A ∩B is nowhere dense
in H; this implies that A∩B is the common boundary of A and B in H, and
that the natural projection from A× {0} ∪B × {1} onto H is irreducible.

2.6. Lemma. Suppose H is closed in Xα and , for all β ≥ α, Aβ ∩
(πβα)−1(H) and Bβ ∩ (πβα)−1(H) are complementary regular closed subsets
of (πβα)−1(H). Then πω1

α is irreducible on (πω1
α )−1(H).

P r o o f. By induction on β ≤ ω1, show that πβα is irreducible on
(πβα)−1(H).

Using ♦, we can fix closed sets Fα in 2α, for α < ω1, such that for every
closed F in 2ω1 , {α : πω1

α (F ) = Fα} is stationary. Once we have constructed
Xα, where ω ≤ α < ω1, we shall define Qα to be Fα if Fα is perfect and a
subset of Xα, and set Qα = Xα otherwise. So, Qα is always a perfect subset
of Xα.

We now note that the property of not having isolated points is reflected
on a club:

2.7. Lemma. If F is a perfect subset of 2ω1 , then there is a club C such
that for all α ∈ C, πω1

α (F ) is a perfect subset of 2α.

R2.3. If α ≥ ω then for all β ≥ α
a. Aβ ∩Bβ ∩ (πβα)−1(Qα) is nowhere dense in (πβα)−1(Qα).
b. Aβ ∩ (πβα)−1(Qα) and Bβ ∩ (πβα)−1(Qα) are complementary

regular closed subsets of (πβα)−1(Qα).

Actually, R2.3a is redundant, given R2.3b, but when we actually verify
in §3 that R2.3 can be accomplished, it will be easier to handle R2.3a before
considering R2.3b.

It is clear from the preceding lemmas that

2.8. Lemma. Assuming R1.1–R1.3 and R2.3, all perfect subsets of X are
Gδ.

3. Putting it together. We are now done with the proof of Theo-
rem 0.1, assuming that the construction can be made to meet all of our
requirements. Examining them, it appears that only R1.6, R1.7, R2.2, and
R2.3 are non-trivial; the rest just detail how the finalX and µ are completely
determined by the choice of Aα and Bα for ω ≤ α < ω1. Let Sα = Aα ∩Bα.
Then R1.6 and R1.7 only involve what happens eventually, and only involve
the Sα; they ensure that every closed set of positive measure gets split (so
the measure algebra will be non-separable) and that every point eventually
gets split (so points get uncountable character). R2.3a must be met at every
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stage α, but only involves Sα. Finally, R2.2 and R2.3b must also be met at
each stage, and actually involve Aα and Bα, so we consider them last, after
fixing Sα.

Partition ω1\ω into two disjoint uncountable sets, EVEN and ODD . We
shall handle R1.6 in EVEN and R1.7 in ODD . Applying CH, for β ∈ EVEN ,
choose δβ ≤ β and a closed Jβ ⊆ 2δβ so that for each α < ω1 and each closed
J ⊆ 2α, there is a β ≥ α such that β ∈ EVEN and δβ = α and Jβ = J .
Again applying CH, for β ∈ ODD , choose δβ ≤ β and pβ ∈ 2δβ so that for
each α < ω1 and each p ∈ 2α, there is a β ≥ α such that β ∈ ODD and
δβ = α and pβ = p.

These choices are made ahead of time, before constructing the Xα. Once
Xβ is constructed, let Kβ = (πβδβ

)−1(Jβ) if Jβ ⊆ Xδβ
, and set Kβ = Xβ

otherwise. Use Nα to denote the set {fαξ : ξ < α}.
Now, determine Sβ as follows.
For β ∈ EVEN , choose Sβ so that

Σ1. If µ̂β(Kβ) > 0, then µ̂β(Kβ ∩ Sβ) > 0.
Σ2. For all α ∈ (ω, β], Sβ ∩ (πβα)−1(Qα) is nowhere dense in (πβα)−1(Qα).
Σ3. For all α ∈ (ω, β], Sβ ∩ (πβα)−1(Nα) = ∅.

It is clear that Σ1 will guarantee requirement R1.6 and Σ2 will guarantee
R2.3a for β ∈ EVEN . Σ3 will make it possible to choose Aβ and Bβ later.
First, we must see that such a choice of Sβ is possible. For each α ∈ (ω, β],
choose a countable Dα ⊆ (πβα)−1(Qα) which is dense in (πβα)−1(Qα). For
each α ∈ (ω, β], let Eα = Nα ∩ Xα. Let L = Kβ if µ̂β(Kβ) > 0; set
L = Xβ otherwise. Let M = L \

⋃
α∈ [ω,β)(Dα ∪ (πβα)−1(Eα)). M is a

positive measure set minus a countable union of measure 0 sets (since by
Lemma 1.1, points have measure 0). Thus, M has positive measure, and we
may choose Sβ to be any closed subset of M of positive measure.

For β ∈ ODD , choose Sβ as follows: If pβ ∈ Xδβ
, choose Sβ to be any

singleton from (πβα)−1{pβ}. If not, set Sβ to be any singleton. It is clear
that this choice will guarantee requirement R1.7. It also guarantees R2.3a
for β ∈ ODD , since (πβα)−1(Qα) has no isolated points.

P r o o f o f T h e o r e m 0.1. As noted above, we are done provided we
can show that at each stage β we can can satisfy R2.2 and R2.3b. We already
have Sβ , and we must find Aβ and Bβ . Fix a strictly decreasing sequence
of clopen sets in Xβ , 〈Vn : n ∈ ω〉, such that V0 = Xβ and

⋂
n∈ω Vn = Sβ .

If φ : ω → ω is any strictly increasing function with φ(0) = 0, we may
set Aβ = Sβ ∪

⋃
n(Vφ(2n)\Vφ(2n+1)) and Bβ = Sβ ∪

⋃
n(Vφ(2n+1)\Vφ(2n+2)).

With any choice of φ, Aβ ∩Bβ = Sβ , and the “trivial” conditions R1.2 and
R1.3 are met. We shall show that if φ grows “fast enough”, both R2.2 and
R2.3b will be met—essentially by the same argument.
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To handle R2.3b, fix, for each α ≤ β, a countable dense subset Tα of Sβ∩
(πβα)−1(Qα). Since Sβ ∩ (πβα)−1(Qα) is nowhere dense in (πβα)−1(Qα), there
is for each element t of Tα a sequence st

⇀ of distinct points in (πβα)−1(Qα)\Sβ
converging to t. Note that R2.3b will hold if for all α ≤ β and t ∈ Tα, both
Aβ \Bβ and Bβ \Aβ contain infinitely many elements of st

⇀.
To simplify the notation, we re-index all the 〈(πβα)−1(fαξ ) : ξ < α〉 for

α < β which are relevant to R2.2, as well as all the sequences st
⇀ just chosen.

We then have countably many sequences, Y i
⇀

(i ∈ ω). Each Y i
⇀

is a sequence
of disjoint closed sets (identifying each of the sequences of points st

⇀ with
the corresponding sequence of singletons). Since the notion of strong limit
point does not depend on the order type of the sequence, we may as well
assume that each Y i

⇀

is an ω-sequence, so Y i
⇀

= 〈Y ij : j < ω〉. If i ∈ ω and
U is a clopen subset of Xβ , let R(i, U) be the assertion that for each point
h ∈ Sβ , if h is a strong limit point of Y i

⇀

, and U is a neighborhood of h,
then there are infinitely many n such that

∃j(Y ij ⊆ U ∩ (Vφ(2n)\Vφ(2n+1))) ∧ ∃j(Y ij ⊆ U ∩ (Vφ(2n+1)\Vφ(2n+2))) .

Then both R2.2 and R2.3b will hold if R(i, U) holds for each i, U . To
accomplish this we shall, for each i, U , find a ψi,U : ω → ω such that R(i, U)
holds whenever φ(l + 1) ≥ ψi,U (φ(l)) for all but finitely many l; this will
be sufficient to be able to define φ, since there are only countably many i
and U .

So, fix i and U . We must find ψ = ψi,U such that for each point h ∈ Sβ ,
if h is a strong limit point of Y i

⇀

, and U is a neighborhood of h, then for
each m, ψ(m) > m and

∃j(Y ij ⊆ U ∩ (Vm\Vψ(m))) .

Now, fix m, and assume that there is some h ∈ U ∩ Sβ such that h is a
strong limit point of Y i

⇀

, since otherwise our condition is vacuous. Then, fix
j with Y ij ⊆ (U ∩ Vm) and h 6∈ Y ij . Note that Y ij ∩ Sβ = ∅; this is obvious

when Y i
⇀

comes from one of the st
⇀ (since none of the points in st

⇀ is in Sβ),
or when β ∈ ODD (since then Sβ = {h}). When β ∈ EVEN , it follows
from item Σ3 in our choice of Sβ above. By compactness, there must be an
r > m such that Y ij ∩ Vr = ∅, and we choose such an r for ψ(m).

If we only wanted to construct an S-space, then we could have made all
the Sβ singletons. That would simplify the proof—especially in the above
discussion of R2.2, where the U could always be one of the Vn, and φ could
be chosen by a simple diagonal argument. Making all the Sβ singletons
would also force the measure algebra to be separable.

It is not clear whether one could do the above construction under CH,
without♦. Even without the measure, it is already a well-known open ques-
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tion whether CH alone implies the existence of a compact S-space of size
greater than ω1.

In answer to a question of Peter Nyikos, we now show that our space
is hereditarily normal. It is also hereditarily countably paracompact. Fur-
thermore, both of these properties follow from the properties of the space
stated in Theorem 0.1.

3.1. Theorem. Suppose that X is compact , X has no uncountable dis-
crete subsets and no convergent sequences, and every perfect subset of X is a
Gδ. Then X is hereditarily normal and hereditarily countably paracompact.

The proof of Theorem 3.1 seems somewhat simpler if we follow M. E. Ru-
din and express our properties in terms of “shrinkings” of countable (or
finite) covers.

3.2. Lemma. A space Z is normal and countably paracompact iff for all
β ≤ ω and all open covers of Z, {Un : n < β}, there are closed Hn ⊆ Un
such that {Hn : n < β} covers Z.

From Lemma 3.2, it is easy to prove the following well-known result.

3.3. Lemma. Suppose that the space Z has a locally finite cover by closed
sets, each of which is normal and countably paracompact in its relative topol-
ogy. Then Z is normal and countably paracompact.

Now, note, as we did in §0, that the hypotheses on X in Theorem 3.1
imply that every infinite closed subset of X is the union of a perfect set,
which we denote now by ker(X), and a countable set of isolated points. If
X is finite, let ker(X) = ∅. Then ker(X) is always a Gδ.

3.4. Lemma. If X is as in Theorem 3.1 and p ∈ X, then X\{p} is normal
and countably paracompact.

P r o o f. Applying Lemma 3.2, let β ≤ ω and let {Un : n ≤ β} be an
open cover of X\{p}. If p ∈ ker(X\Un) for each n, then {p} would be the
intersection of countably many Gδ sets and hence a Gδ, which is impossible,
since p would then be the limit of a convergent sequence. So, fix i such that
p is isolated in X\Ui. Let U ′

i = Ui ∪ {p}, and let U ′
n = Un for n 6= i. Then

the U ′
n form an open cover of X, which is compact, so we may shrink the

U ′
n to closed H ′

n in X and then let Hn = H ′
n ∩X\{p}.

Since normality and countable paracompactness are hereditary to closed
subsets, we now know that whenever K is closed in X, K\{p} is normal
and countably paracompact. Actually, the proof of 3.4 shows that K\{p} is
countably compact, although we do not need that fact here.

P r o o f o f T h e o r e m 3.1. It is enough to prove that X\H is normal
and countably paracompact whenever H is closed. Since ker(H) is a Gδ,
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we may find a countable locally finite (in X\H) cover of X\H by closed
(in X\H) sets, where each set in the cover is of the form K or K\{p},
with K closed in X. Thus, by Lemma 3.3, X\H is normal and countably
paracompact.

Actually, X\H is countably compact iff ker(H) is clopen.

4. Getting the HS+HL space. To make the space HL also, we simply
make every closed set a Gδ—not just the perfect sets. This time, we only
need CH.

4.1. Theorem. If CH holds, then there is a compact 0-dimensional ,
hereditarily separable and hereditarily Lindelöf space X and a Radon proba-
bility measure µ on X such that the measure algebra of (X,µ) is isomorphic
to the measure algebra of 2ω1 with the usual product measure. X,µ also
have the property that all measure 0 sets are second countable in their rela-
tive topology.

To prove this theorem, we modify the construction from the previous
proof. HS+HL is guaranteed by a similar use of irreducible maps, as ex-
plained by the next lemma.

4.2. Lemma. Assume just R1.1 (X is closed in 2ω1 and Xα is its pro-
jection on 2α). Then

(a) X is HL iff for all closed H ⊆ X, there is an α < ω1 for which
H = (πω1

α )−1(πω1
α (H)).

(b) X is HL+HS iff for all closed H ⊆ X, there is an α < ω1 for which
πω1
α is irreducible on (πω1

α )−1(πω1
α (H)).

P r o o f. Part (a) follows from the fact that HL is equivalent to all closed
sets being Gδ sets (for compact X).

For the ⇐ of Part (b), irreducibility implies that H = (πω1
α )−1(πω1

α (H)),
so X is HL by Part (a). Since the irreducible preimage of a separable space
is separable, all closed subsets of X are separable, which implies that X
is HS, since X is first countable.

For the ⇒ of Part (b), assume X is HS+HL. Let H be closed in X, and
let E be a countable dense subset of H. Applying Part (a), we may fix
α < ω1 such that H = (πω1

α )−1(πω1
α (H)) and {e} = (πω1

α )−1(πω1
α (e)) for all

e ∈ E. If F is any closed subset of H such that πω1
α (F ) = πω1

α (H), then for
each e ∈ E, πω1

α (e) ∈ πω1
α (F ), so e ∈ F ; hence E ⊆ F , so F = H. Thus, πω1

α

is irreducible on H = (πω1
α )−1(πω1

α (H)).

Now, to prove Theorem 4.1, we delete R1.7 (which gave points uncount-
able character), and replace it by R4.1 below, which will have just the oppo-
site effect. We also delete R2.1–R2.2, which relied on ♦. Requirement R2.3,
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which guaranteed irreducibility of maps, remains the same as it was, but
the Qα will have a different meaning.

Using CH, choose, for all countable α ≥ ω, an ordinal δα ≤ α and a
Borel set, Jα ⊆ 2δα , so that for all γ < ω1 and each Borel set J ⊆ 2γ , there
is an α ≥ γ such that δα = γ and Jα = J .

Once we have defined Xα, where ω ≤ α < ω1, we define the following
subsets of Xα:

Cα = (παδα
)−1(Jα) if Jα ⊆ Xδα ; Cα = ∅ otherwise.

Kα = Cα if Cα is closed; Kα = Xα otherwise.
Qα = Kα \

⋃
{O : O is open ∧ µα(Kα ∩O) = 0}.

Nα = (Kα \Qα) ∪ Cα if µα(Cα) = 0; Nα = (Kα \Qα) otherwise.

Then we require

R4.1. For any β ≥ α ≥ ω, Aβ ∩Bβ ∩ (πβα)−1(Nα) = ∅.
4.3. Lemma. Assume the requirements R1.1–R1.6, R2.3, and R4.1. Let

H be a closed subset of X. Then there is an α < ω1 such that πω1
α is

irreducible on (πω1
α )−1(πω1

α (H)).

P r o o f. For each γ < ω1, let Hγ = πω1
γ (H). Then the µγ(Hγ) form a

non-increasing sequence of real numbers, so we may fix a γ < ω1 such that
for all α ≥ γ, µα(Hα) = µγ(Hγ). Now fix an α ≥ γ such that δα = γ and
Jα = Hγ . Then Kα = Cα = (παγ )−1(Hγ). Then Hα is a closed subset of
Kα with the same measure, so Qα ⊆ Hα ⊆ Kα. Now, πω1

α is irreducible on
(πω1
α )−1(Qα) (by R2.3b and Lemma 2.6), and πω1

α is 1-1 on (πω1
α )−1(Hα\Qα)

(by R4.1). Thus, πω1
α must be irreducible on (πω1

α )−1(Hα) as well.

Including the Cα in Nα ensures that all measure 0 sets will be second
countable.

P r o o f o f T h e o r e m 4.1. By Lemmas 4.2 and 4.3, we are done,
provided all the requirements can be met. But the proof of this is exactly
as for Theorem 0.1, except that now ODD = ∅ and EVEN = ω1 \ ω.

We remark that the space in [6] also needed only CH and satisfied every-
thing in Theorem 4.1 except being HS. The construction in [6] did not use
irreducibility, but rather established HL by making the measure 0 ideal and
the first category ideal coincide; this was accomplished by taking Aβ = Xβ

for all β. The requirement of separability forces there to be a first-category
set of measure 1.
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