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Partitions of compact Hausdorff spaces
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Abstract. Under the assumption that the real line cannot be covered by ω1-many
nowhere dense sets, it is shown that (a) no Čech-complete space can be partitioned into
ω1-many closed nowhere dense sets; (b) no Hausdorff continuum can be partitioned into
ω1-many closed sets; and (c) no compact Hausdorff space can be partitioned into ω1-many
closed Gδ-sets.

Introduction. W. Sierpiński [S] proved in 1918 that no Hausdorff con-
tinuum (i.e., compact connected space) can be partitioned into countably
many closed sets. On the other hand, it is trivial to find continua (e.g.,
the unit interval!) which can be partitioned into ω1-many closed sets if the
continuum hypothesis (CH) is assumed. This led Steve Watson [W] to ask if
there is a ZFC example (i.e., one which does not require any special axioms
of set theory):

Question 1. Is there, in ZFC, a Hausdorff continuum which is the union
of ω1-many disjoint closed sets?

Another partition problem concerning compact Hausdorff spaces is due
to Dow and Porter [DP]. Motivated by Arkhangel’skĭı’s result [A1] that a
first-countable compact Hausdorff space is either countable or has cardinal-
ity c, they investigate the possible cardinalities of first-countable H-closed
spaces. (A space is H-closed if it is closed in every Hausdorff space in which
it is embedded.) They show that the existence of a first-countable H-closed
space of cardinality λ is equivalent to the existence of a compact Hausdorff
space which can be partitioned into λ-many closed Gδ-sets, and point out
that it is consistent with c > ω1 that there is a first-countable H-closed
space of cardinality ω1. They leave open the possibility of a ZFC example
of such a space:
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Question 2. Is there, in ZFC, a compact Hausdorff space which can be
partitioned into ω1-many closed Gδ-sets? (Equivalently, is there in ZFC a
first-countable H-closed space of cardinality ω1?)(1)

Finally, we consider partitions of compact Hausdorff spaces (and, more
generally, Čech-complete spaces) into closed nowhere dense sets. The Baire
category theorem says there are no countable such partitions, even ignoring
the adjective “closed”. What about partitions of size ω1?

Question 3. Is there, in ZFC, a compact Hausdorff (or Čech-complete)
space which can be partitioned into ω1-many closed nowhere dense sets?

The Štěpánek–Vopěnka Theorem [SV] says that any nowhere separa-
ble metric space is the union of not more than ω1-many nowhere dense
sets. This theorem implies, e.g., that the complete metric space ωω

1 , where
ω1 carries the discrete topology, can be partitioned into ω1-many nowhere
dense sets; but the members of the partition given by the proof are not
closed. There are also ZFC examples of compact Hausdorff spaces which
can be partitioned into ω1-many nowhere dense sets (folklore, I believe; see
also Example 3.4), but again members of the partition are not closed. So
requiring the members of the partition to be closed is crucial for Question 3.
Note that the adjective “nowhere dense” is also crucial, because there are of
course compact Hausdorff spaces and complete metric spaces of cardinality
ω1 (the ZFC examples having isolated points).

In this note we show that the answer to Questions 1–3 is “no”: there are
no such ZFC examples. This follows from:

Theorem 0.1. If the real line is not the union of ω1-many nowhere dense
sets, then:

(a) no Čech-complete (e.g., compact Hausdorff or completely metrizable)
space is the union of ω1-many disjoint closed nowhere dense sets;

(b) no Hausdorff continuum is the union of ω1-many disjoint closed sets;
(c) no compact Hausdorff space is the union of ω1-many disjoint closed

Gδ-sets.

Thus (a), (b), and (c) hold in, e.g., any model of Martin’s Axiom plus
the negation of the continuum hypothesis. The proof of (a) and (b) does
not extend to higher cardinals, but we do not know if the results do. In par-
ticular, we do not know if there is a ZFC example of a Hausdorff continuum
which can be partitioned into ω2-many closed sets, or a compact Hausdorff
space which can be partitioned into ω2-many closed nowhere dense sets. See
Section 3 for more discussion of these and other questions.

(1) I am indebted to Doug Mooney and Jack Porter for informing me of [DP] and this
problem.
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However, (c) does extend to higher cardinals, as does (a) in some special
cases.

Theorem 0.2. If the real line is not the union of κ-many nowhere dense
sets, then

(d) no compact Hausdorff space is the union of λ-many disjoint closed
Gδ-sets, where ω1 ≤ λ ≤ κ;

(e) no compact ordered space is the union of ≤κ-many disjoint closed
nowhere dense sets;

(f) no Čech-complete space with a dense set of Gδ-points (e.g., no com-
pletely metrizable space) is the union of ≤κ-many disjoint closed nowhere
dense sets.

1. Partitions into closed nowhere dense sets and closed Gδ-sets.
In this section we prove Theorem 0.2, and all of Theorem 0.1 except for part
(b), which is postponed until the next section.

Recall that a space X is Čech-complete if it is a Gδ-set in its Stone–Čech
compactification βX; equivalently, there is a sequence Un, n < ω, of open
covers of X such that if Kn, n < ω, is a decreasing sequence of closed
sets with Kn ⊆ Un ∈ Un for each n, then Kω =

⋂
n<ω Kn is compact

and the Kn’s form an outer network for Kω (i.e., every open set containing
Kω contains some Kn). Compact Hausdorff spaces are Čech-complete, and
a metrizable space is completely metrizable iff it is Čech-complete. Čech-
complete spaces are Baire spaces, and are hereditary with respect to closed
subsets and Gδ-subsets.

For the sake of completeness, we include a proof of the following essen-
tially known and elementary lemma:

Lemma 1.1. Let Un, n < ω, be a sequence of open covers of X which
witness that X is Čech-complete. Then each non-empty open subset of X
contains a compact Gδ-set L which, for each n, is contained in some member
of Un.

P r o o f. Let V be a non-empty open subset of X. Inductively define a
sequence Vn, n < ω, of open sets with cl(Vn+1) ⊆ Vn ⊆ Un ∈ Un for each n.
Then L =

⋂
n<ω Vn is the desired set.

Theorem 1.2. If the real line is not the union of ω1-many nowhere dense
sets, then no Čech-complete space is the union of ω1-many disjoint closed
nowhere dense sets.

P r o o f. Suppose the Čech-complete space X is the union of (non-empty)
disjoint closed nowhere dense sets Cα, α < ω1. Call a subset A of X big if
A meets uncountably many Cα’s; otherwise A is small .
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We first establish that every (non-empty) open subset of X contains a
(non-empty) small closed Gδ-set. (Henceforth let us assume that named
subsets of X are non-empty unless stated otherwise.) Suppose V is an open
set which does not contain such. Let K0 be a compact Gδ-subset of V .
Then K0 is big; hence K0 \C0 contains a compact Gδ-set K1. Similarly, K1

contains a compact Gδ-set K2 missing C1, K2 contains a compact Gδ-set K3

missing C2, and so forth. Let Kω =
⋂

n<ω Kn. Then Kω is also a compact
Gδ-set, hence contains a compact Gδ-set Kω+1 missing Cω. Clearly we can
continue on to construct a decreasing sequence Kα, α < ω1, of compact Gδ-
sets such that Kα+1 misses Cα for each α < ω1. Then

⋂
{Kα : α < ω1} = ∅,

contradiction.
Let {Un}n<ω be a collection of open covers of X that witness that X is

Čech-complete; for convenience, assume U0 = {X}. Let Kn be the collection
of all closed subsets of X, with non-empty interiors, that are contained in
some member of Un.

Let K ∈ Kn. Let L0 and R0 be disjoint members of Kn+1 contained
in K. Then int(L0) contains a small compact Gδ-set M . Since the traces
of the Un’s on M witness that M is Čech-complete, by Lemma 1.1, M
contains a (small) compact Gδ-set N which, for each j, is contained in some
member of Uj . For j > 0, one can find disjoint Lj , L

′
j ∈ Kn+j+1 with

Lj ∪L′
j ⊆ Lj−1, and

⋂
j<ω Lj = N . As N meets only countably many Cα’s,

one can now define disjoint Rj , R
′
j ∈ Kn+j+1 with Rj∪R′

j ⊆ Rj−1 such that
Cα ∩ (

⋂
j<ω Rj) = ∅ whenever Cα ∩N 6= ∅.

Now we use the construction of the previous paragraph repeatedly to
define {Kσ : σ ∈ 2<ω} satisfying:

(a) n = dom σ ⇒ Kσ ∈ Kn;
(b) σ ⊆ τ ⇒ Kσ ⊇ Kτ ;
(c) if σ ∈ 2<ω, there is some τ ⊇ σ such that, if

Cα ∩Kτ∧〈0〉 ∩Kτ∧〈0,0〉 ∩ . . . 6= ∅ ,

then
Cα ∩Kτ∧〈1〉 ∩Kτ∧〈1,1〉 ∩ . . . = ∅ .

To start, let K∅ = X. Let Ln, L′
n, Rn, R′

n be as above with K = K∅.
If n > 0 and τ ∈ ωn is constant 0 (resp., 1), let Kτ = Ln−1 (resp., Rn−1),
and let Kτ∧〈1〉 (resp., Kτ∧〈0〉) be L′

n (resp., R′
n).

At this point, for each σ ∈ 2<ω, either Kσ is undefined, or Kσ,Kσ∧〈0〉,
and Kσ∧〈1〉 are all defined, or Kσ is defined but neither Kσ∧〈0〉 nor Kσ∧〈1〉
are defined. Call σ’s with the latter property ends. Call ∅ the initial base.

Let m be least such that some % ∈ ωm is an end. Call % the new base,
and define Kσ for extensions σ of % as we did above for ∅. More precisely, let
Ln, L′

n, Rn, R′
n be as above with K = K%. If n > 0 and τ ∈ ωn is constant 0
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(resp., 1), let K%∧τ = Ln−1 (resp., Rn−1), and let K%∧τ∧〈1〉 (resp., K%∧τ∧〈0〉)
be L′

n (resp., R′
n).

Note that all ends other than % are still ends, and of course there are
many more ends. Continue in like manner, each time choosing as the new
base an end with least possible domain, until Kσ is defined for all σ. Note
that each end eventually becomes the new base, and that at each stage, if
Kσ is first defined at that stage, then either σ, σ∧〈0〉, or σ∧〈1〉 is an end. It
follows that conditions (a)–(c) above are satisfied.

For each f ∈ 2ω, let Kf =
⋂

n<ω Kf |n. For α < ω1, let

Nα = {f ∈ 2ω : Kf ∩ Cα 6= ∅} .

Since the Kf |n’s form an outer network for Kf , it follows that each Nα is
closed in 2ω. Since each Kf is non-empty, and the Cα’s cover X, 2ω =⋃
{Nα : α < ω1}.

We arrive at a contradiction by showing that each Nα is nowhere dense.
(This is a contradiction because, if the Cantor set is the union of κ-many
nowhere dense sets, so is R—to see this, note that both have a co-countable
subset homeomorphic to the irrationals.) Suppose on the contrary that
int(Nα) 6= ∅ for some α. Then for some σ ∈ 2ω, Kf∩Cα 6= ∅ whenever σ ⊆ f .
Let τ be an extension of σ guaranteed by (c) above. By the conclusion of
(c), Kf ∩Cα = ∅ for some f ⊇ τ . This contradiction completes the proof.

A number of similar results may be proved using minor modifications
of the above technique. We will use the following lemma, which is essen-
tially a statement of the hypotheses necessary to carry out the Cantor tree
construction of the above proof.

Lemma 1.3. Let C be a closed cover of the space X. Suppose there are
collections Kn, n < ω, of non-empty closed subsets of X satisfying :

(I) X ∈ K0;
(II) if Kn ∈ Kn for each n, and {Kn}n<ω is decreasing , then {Kn}n<ω

is an outer network for the set Kω =
⋂

n<ω Kn;
(III) if K ∈ Kn, then there exist disjoint L0, R0 ⊆ K, and disjoint

Lj , L
′
j , Rj , R

′
j ∈ Kn+j+1 for j > 0, such that :

(i) Lj , L
′
j , Rj , R

′
j ∈ Kn+j+1 for j ∈ ω;

(ii) Lj ∪ L′
j ⊆ Lj−1 and Rj ∪R′

j ⊆ Rj−1 for j > 0;
(iii) if C ∈ C and C ∩ ∂Lω 6= ∅, then C ∩ ∂Kω = ∅.

Then the real line R is the union of ≤ |C| nowhere dense sets.

P r o o f. As in the proof of Theorem 1.2, use the Kn’s to construct Kσ’s,
σ ∈ 2<ω, satisfying:

(a) dom σ = n ⇒ Kσ ∈ Kn;
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(b) σ ⊆ τ ⇒ Kσ ⊇ Kτ ;
(c) if σ ∈ 2<ω, there is some τ ⊇ σ such that, if

C ∩ ∂(Kτ∧〈0〉 ∩Kτ∧〈0,0〉 ∩ . . .) 6= ∅ ,

then
C ∩ ∂(Kτ∧〈1〉 ∩Kτ∧〈1,1〉 ∩ . . .) = ∅ .

For each C ∈ C, let

N(C) = {f ∈ 2ω : C ∩ ∂Kf 6= ∅} .

If f 6∈ N(C), then C ∩ (Kf |n \Kω) = ∅ for some n ∈ ω. Then C ∩ ∂Kg = ∅
for all g ⊇ f |n; hence each N(C) is closed. The proof that each N(C) is
nowhere dense and that 2ω =

⋃
{N(C) : C ∈ C} is the same as before.

Our first use of the lemma will be to show

Theorem 1.4. If the real line is not the union of κ nowhere dense sets,
then no Čech-complete space with a dense set of Gδ-points (in particular , no
completely metrizable space) is the union of κ disjoint closed nowhere dense
sets.

P r o o f. Suppose C is a disjoint cover of cardinality κ of a Čech-complete
space X by closed nowhere dense sets. Let Kn be as in the proof of The-
orem 1.2. Since members of Kn have non-empty interiors, they contain
Gδ-points and hence small closed Gδ-sets. Thus Lj ’s and Rj ’s satisfying the
conditions of Lemma 1.3 may be constructed in the same way as in Theo-
rem 1.2. By Lemma 1.3, the real line is the union of ≤ |C| nowhere dense
sets, contradiction.

Theorem 1.5. If the real line is not the union of κ-many nowhere dense
sets, and ω < λ ≤ κ, then no compact Hausdorff space is the union of
λ-many closed Gδ-sets.

P r o o f. Suppose C is a partition of the compact Hausdorff space X into
λ closed Gδ-sets, ω < λ ≤ κ. We may assume that λ is the least cardinal
of any uncountable partition of any compact Hausdorff space into closed
Gδ-sets. Let K be the collection of all big closed subsets of X, where a
set is called big if it meets λ-many members of C. Let Kn = K for all n.
The theorem will follow if we can show that C and {Kn}n<ω satisfy the
conditions of Lemma 1.3. Conditions (I) and (II) are obvious.

We show (III) holds. Let K ∈ K. Since K is compact and big, there is
C# ∈ C such that every neighborhood of C# ∩K in the subspace K is big.
Clearly, we can construct a descending sequence {Un}n<ω of relatively open
(in K) neighborhoods of C# ∩K satisfying:

(i)
⋂

n<ω Un = C# ∩K;
(ii) cl(Un+1) ⊆ Un for all n;
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(iii) Un \ Un+1 is big for all n.

(Minimality of λ is used to obtain (iii).)
Let L0 = cl(U2) and K0 = cl(U0) \ U1. For j > 0, let Lj = cl(U3j+2)

and L′
j = cl(U3j)\U3j+1, and let Kj and K ′

j be arbitrary disjoint big closed
subsets of Kj−1. Since Lω = C# ∩K, it is easy to see that these K’s and
L’s satisfy condition (III).

A. V. Arkhangel’skĭı [A2] has shown that no compact Hausdorff space can
be partitioned into more than c closed Gδ-sets. Thus we have the following
corollary:

Corollary 1.6. If the real line is not the union of fewer than c nowhere
dense sets, then every partition of a compact Hausdorff space into closed
Gδ-sets is either countable or has cardinality c. (Equivalently , every first
countable H-closed space is either countable or has cardinality c.)

Theorem 1.7. If the real line is not the union of κ nowhere dense sets,
then no compact ordered space is the union of ≤ κ disjoint closed nowhere
dense sets.

P r o o f. Apply Lemma 1.3 with C being an assumed disjoint cover of
a compact ordered space X by ≤ κ closed nowhere dense sets, and each
Kn the collection of all non-degenerate closed intervals of X. Since the
boundaries of intervals meet at most two members of C, the Lj ’s and Rj ’s
satisfying condition (III) are easily constructed.

2. Partitions of continua. The purpose of this section is to prove

Theorem 2.1. If the real line is not the union of ω1-many nowhere dense
sets, then no Hausdorff continuum is the union of ω1-many disjoint closed
sets.

We give two proofs. The first is a reasonably direct application of
Lemma 1.3. For the second, we prove the following intermediate result
which may be of independent interest; this result is due in part to D. P. Bel-
lamy:

Theorem 2.2. If there is a Hausdorff continuum which is the union of
κ-many disjoint closed sets, then there is one which is the union of κ-many
disjoint closed nowhere dense sets.

Theorem 2.1 is an immediate corollary of Theorems 2.2 and 1.2.

P r o o f o f T h e o r e m 2.1. Let C be a disjoint cover of a Hausdorff
continuum X by ω1-many closed sets. Call a subcontinuum K of X big
if K meets uncountably many members of C. Note that if K is small (=
not big), then K is contained in some member of C (by Sierpiński’s theo-
rem).
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Fact 1. For each big subcontinuum K of X and for each finite subcol-
lection F of C, there are disjoint big subcontinua L and R of K that miss
every member of F .

To see this, choose C(0), C(1) ∈ C \F meeting K. Let U(0) and U(1) be
relatively open sets in K containing C(0) ∩ K and C(1) ∩ K, respectively,
whose closures are disjoint and miss

⋃
F . Let x(e) ∈ C(e) ∩K, e < 2, and

let M(e) be the component of X(e) in cl(U(e)). By [E; Lemma 6.1.25], M(e)
meets the boundary of cl(U(e)), hence M(e) is big. Finally, take L = M(0)
and R = M(1).

Fact 2. Each big subcontinuum K of X contains a decreasing sequence
{Kn}n<ω of big subcontinua such that each Kn \Kn+1 contains a big sub-
continuum and

⋂
n<ω Kn is small.

Suppose the big subcontinuum K fails to satisfy the conclusion of Fact 2.
Let C = {Cα : α < ω1}. Use Fact 1 to construct a decreasing sequence
{Ln}n<ω of big subcontinua of K such that each Ln \ Ln+1 contains a
subcontinuum and Ln ∩ Cn = ∅. Then L′ =

⋂
n<ω Ln is big, and also

does not satisfy the conclusion of Fact 2. Construct a decreasing sequence
{Lω+n}n<ω of big subcontinua of L′ such that each Lω+n \Lω+n+1 contains
a big subcontinuum and Lω+n ∩ Cω+n = ∅. Clearly we can continue this
process, defining a decreasing sequence {Lα : α < ω1} of big subcontinua of
K such that Lα ∩ Cα = ∅. Then

⋂
{Lα : α < ω1} misses every C ∈ C. This

contradiction completes the proof of Fact 2.

Now let K be the collection of all big subcontinua of X, and let Kn = K
for all n. It is easy to see from Facts 1 and 2 that C and Kn, n < ω, satisfy
the conditions of Lemma 1.3; thus the real line is the union of |C| = ω1

nowhere dense sets.

We now work towards proving Theorem 2.2. A naive attempt towards
proving it might go as follows. Suppose C is a closed partition of a Hausdorff
continuum X. Remove from X the interiors of all members of C. We
might hope that what remains is still connected, and that the traces of the
members of C on the remainder are nowhere dense. Neither of these hopes
are justified, but both problems can be fixed. The second problem is fixed
by iterating the process until what is left of each C is nowhere dense. We
will need the following definition:

Definition 2.3. Let C be a closed partition of a compact Hausdorff
space X. If x ∈ X, let C(x) be the member of C containing x. Inductively
define X(α) and rank(x) as follows:

(i) X(0) = X;
(ii) rank(x) = 0 iff x ∈ int(C(x));
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(iii) if X(β) and rank(x) = β has been defined for all β < α, then
X(α) = X \ {x ∈ X : rank(x) < α};

(iv) if x ∈ X(α), then rank(x) = α iff x ∈ intX(α)[C(x) ∩X(α)];
(v) X(∞) =

⋂
{X(α) : α an ordinal};

(vi) rank(x) = ∞ iff x ∈ X(∞).

For convenience, we say α < ∞ for each ordinal α.

Lemma 2.4. (a) If β is an ordinal , then rank(x) ≤ β iff for some neigh-
borhood N of x, rank(y) < β for each y ∈ N \ C(x).

(b) Each X(α) is closed.
(c) For limit α, X(α) =

⋂
β<α X(β).

(d) There is an ordinal α such that X(α) = X(β) = X(∞) for all β > α.
(e) For each C ∈ C, C ∩X(∞) is nowhere dense in X(∞).

P r o o f. Straightforward.

Lemma 2.5. Let X be a compact Hausdorff space, C a closed partition of
X, and Y a closed subspace of X. Let y ∈ Y . Then the rank of y in Y with
respect to the partition C|Y = {C ∩ Y : C ∈ C} is not greater than the rank
of y in X with respect to C.

P r o o f. Straightforward induction, using Lemma 2.4(a).

The following is a key lemma which shows that, for a continuum, the
members of C will not disappear in the process of removing interiors:

Lemma 2.6. Let C be a closed partition of a Hausdorff continuum X.
Then each C ∈ C contains some point x with rank(x) = ∞ (i.e., C ∩X(∞)
6= ∅).

P r o o f. If not, then we can find some ordinal γ and some C ∈ C such
that rank(x) < γ for each x ∈ C. Assume γ is the least such ordinal for any
counterexample, i.e., for any Hausdorff continuum and closed partition, each
member of the partition has points of rank ≥ β for any β < γ. Then γ is not
a limit ordinal (else Xγ ∩C =

⋂
β<γ Xβ ∩C 6= ∅, and C contains a point of

rank ≥ γ). Let γ = α+1. By Lemma 2.4(a), there is a closed neighborhood
N of C such that rank(x) < α for any point x ∈ N \C. Choose p ∈ C, and
let Y be the component of p in N . By [E; Lemma 6.1.25], Y ∩∂N 6= ∅. Thus
Y ∩ C ′ 6= ∅ for some C ′ ∈ C, C ′ 6= C. By Lemma 2.5, each point of Y ∩ C ′

has rank < α in Y with respect to C|Y . This contradicts the minimality
of γ.

P r o o f o f T h e o r e m 2.2. Let X be a Hausdorff continuum, and C a
closed partition of X. Let

Z = {(x, y) ∈ X2 : rank(x) = ∞ or rank(y) = ∞} .
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By Lemma 2.6, D = {(C1 × C2) ∩ Z : C1, C2 ∈ C} is a partition of Z
into non-empty closed sets. That Z is connected follows from the fact that
Z =

⋃
{({x} ×X) ∪ (X × {x}) : rank(x) = ∞}.

It remains to show that each member of D is nowhere dense in Z. Sup-
pose on the contrary that (x1, x2) ∈ (U1×U2)∩Z ⊆ (C1×C2)∩Z, where U1

and U2 are open in X. By Lemma 2.4(e), there is a point y ∈ U1 \ C1 with
rank(y) = ∞. Then (y, x2) ∈ [(U1×U2)∩Z]\ [(C1×C2)∩Z], contradiction.

3. Questions, remarks, and an example. The following question
was mentioned in the introduction:

Question 3.1. Is there in ZFC a compact Hausdorff space (or Hausdorff
continuum) that can be partitioned into ω2 closed nowhere dense sets? (We
do not know the answer for any ωα, α ≥ 2, either.)

It is conceivable that the answer could be “yes” for the compact Haus-
dorff case but “no” for the continuum case. We note also that any model
in which there is no such ω2-partitionable compact Hausdorff space (resp.,
Hausdorff continuum) must also be a model with no ω1-partitionable ones,
because of

Theorem 3.2. Let X be a compact Hausdorff space which can be parti-
tioned into κ nowhere dense closed sets, and let p ∈ X. Let λ > κ. Then
Y = X × (λ + 1) and Z = Y/[{p} × (λ + 1)] can be partitioned into λ-many
nowhere dense closed sets. If X is connected , so is Z.

P r o o f. Straightforward.

Question 3.3. Is it true that some compact Hausdorff space (resp., Haus-
dorff continuum) can be partitioned into ω1-many closed nowhere dense sets
(resp., closed sets) if and only if the unit interval [0, 1] can be so partitioned?

By Theorem 1.2, any model in which there is a compact Hausdorff space
which is partitionable into ω1-many closed nowhere dense sets, yet [0, 1] is
not so partitionable, would have to satisfy the following statement:

(∗) [0, 1] is the union of ω1-many nowhere dense sets, but is not the union
of ω1-many disjoint closed sets.

Miller [M] has constructed a model of (∗). We do not know if there
is a compact Hausdorff space in Miller’s model which is partitionable into
ω1-many closed nowhere dense sets.

Fremlin and Shelah [FS] showed that [0, 1] is the union of ω1-many
nowhere dense sets iff [0, 1] can be partitioned into ω1-many (nowhere dense)
Gδ-sets. This suggests the question (asked by Fremlin in conversation with
the author) whether [0, 1] not the union of ω1-many nowhere dense sets
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implies that no compact Hausdorff space can be partitioned into ω1-many
nowhere dense Gδ-sets. The following example shows that the answer is
“no”.

Example 3.4. There is a Hausdorff continuum X which is the union of
ω1-many disjoint nowhere dense Gδ-sets. (A d d e d i n p r o o f. S. Todor-
čević has kindly pointed out to the author that an example with these
properties is given by Theorem 6.16 of [T].)

P r o o f. Let T be an Aronszajn tree such that each node has (countably)
infinitely many successors (recall that a tree T is Aronszajn if its height is
ω1, each level is countable, and it has no uncountable chains; see, e.g., [K;
Theorem 5.9]). Call p ⊆ T a path if p is a totally ordered subset of T such
that {s ∈ T : s < t} ⊆ p whenever t ∈ p. Let Y = {χp : p is a path} viewed
as a subspace of 2T , where χp is the characteristic function of p. Then Y
is closed in 2T , hence is compact. Note that a typical basic (cl)open set
containing χp can be obtained as follows: Let t ∈ p, and let F be a finite
subset of T \ p; then V (t, F ) = {χq : t ∈ q and q ∩ F = ∅} is a clopen
neighborhood of p. Note also that because each node of T has infinitely
many successors, it follows that Y has no isolated points. (Considering this
“space of paths” of a tree is due to Todorčević [T], and is closely related to
a topology on trees considered by Nyikos [N].)

For α < ω1, let Lα = {χp : p has order-type α}. Clearly, Lα is nowhere
dense. Note that each

⋃
β≤α Lβ is closed in Y , hence each

⋃
β≥α Lβ is a

Gδ-set. Also,
⋃

β>α Lβ is the union of the countable collection {V (t, ∅) :
{s∈T :s<t} has order-type α} of clopen sets. It follows that each Lα is Gδ.

Finally, let X = Y × [0, 1]/Y × {1} (i.e., X is the cone over Y ). Then
X is a Hausdorff continuum, and {Y × {1}} ∪ {Lα × [0, 1) : α < ω1} is a
partition of X into ω1-many nowhere dense Gδ-sets.
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