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Some dynamical properties of S-unimodal maps

by

Tomasz Now i c k i (Warszawa)

Abstract. We study 1) the slopes of central branches of iterates of S-unimodal maps,
comparing them to the derivatives on the critical trajectory, 2) the hyperbolic structure
of Collet–Eckmann maps estimating the exponents, and under a summability condition
3) the images of the density one under the iterates of the Perron–Frobenius operator,
4) the density of the absolutely continuous invariant measure.

1. Introduction. The study of S-unimodal maps of the interval (def-
initions may be found in the next section, for general reference see [CE1,
MS]) as examples of simple dynamical systems with complicated dynamics
is already quite developed during the last ten years. Conditions are known
under which the system exhibits different types of asymptotical behaviour.
It is generally admitted that the crucial role in this system is played by
the critical point, its neighbourhoods and its trajectory. The counterplay
between the contraction near the critical point and the expansion along the
further critical trajectory may be observed in the derivatives of the iterates
at the critical value.

Two conditions on these derivatives seem to be worth studying, both
securing the existence of an absolutely continuous invariant measure (acim
for short). Such a measure is ergodic [BL], and has a density separated from
zero on its support (see [K]). It follows that it has singularities of at least root
type along the critical trajectory. It is interesting to see that under some
relatively weak assumption on the derivatives of the critical trajectory one
can estimate the density of the acim explicitly from above. This estimate is
sharp in the sense that it only allows those singularities (of the type and in
the place) which actually have to appear.

Theorem A. Suppose that a nonflat S-unimodal function f satisfies the
summability condition on the critical trajectory , i.e.
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∞∑
r=0

Dfr(c1)−1/l < ∞ .

Then f has an acim µ with density h such that

h(x) < const
∞∑

r=1

Dfr−1(c1)−1/l|x− cr|−(1−1/l) .

(Here cn = fn(c), where c—the unique critical point of f—is not flat, i.e.
|f ′(x)| = O(1)|x− c|l−1, l > 1, and Dfn = |(fn)′|.)

This condition, the proof of the existence of µ and the property that
µ(A) < const |A|−1/l first appeared in [NS3]. Here we give an independent
proof which yields the estimate of h (see Corollary 4.2 and the following
remarks).

The existence of an ergodic acim µ implies [L] a hyperbolic structure on
the interval in the following sense: for almost all points x of the interval
the limit λx := limn→∞ Dfn(x)1/n exists, equals λf , and log λf > 0 is the
metric entropy of f with respect to µ. On the other hand, by [K] the ex-
istence of some hyperbolic structure (i.e. λx = lim supDfn(x)1/n > 1 on a
set of positive Lebesgue measure) implies the existence of µ. The problem
is therefore to study the uniformity of this hyperbolic structure. Because
of the existence of critical points for the iterates one can only consider this
uniformity on some special sets [N1–N3, NS1].

Theorem B. For a Collet–Eckmann map f , i.e. when

lim inf Dfn(c1)1/n = λC > 1 ,

the uniform hyperbolic structure is bounded from below by λ
1/`
C . In particu-

lar , λf ≥ λ
1/`
C .

For a more precise formulation of this result and the proof see Proposi-
tion 3.2. Such maps were introduced in [CE2] where it was shown that they
have an acim. From this point of view some generalization was studied in
[NS2], where the S-condition was skipped.

The main tools in the present paper are delicate estimates of the mean
slope of some special (central) intervals of monotonicity of the iterates of
f by the derivatives on the critical trajectory. This is described in Propo-
sition 3.1. The estimates of the density follow from a careful study of the
derivatives (Lemma 4.1) and the uniform (in iterates) summability of the
inverses of the mean slopes on some crucial intervals of monotonicity of
iterates of f .

Remarks on Theorem A

R e m a r k 1.1. It is still an open question if the acim µ of an S-unimodal
map may have thicker singularities. If µ(A) < const |A|1/l for any measur-
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able A then by carefully choosing small sets near the critical trajectory and
using Keller’s result that µ(A) > const |A| one obtains

∑
Dfn(c1)−1/(l−1)

< ∞.

R e m a r k 1.2. The same bounds for the density were found by Szewc
[Sz] for Misiurewicz maps [M]. Recently similar bounds (with (1.9)−r instead
of Dfr(c1)−1/l) were found by L.-S. Young [Y] for a subclass of Collet–
Eckmann maps. For Collet–Eckmann maps it was proven in [KN] that the
density is of the form

φ(x)
∞∑

r=1

λ−r|x− cr|−(1−1/l) ,

where φ is of bounded variation and λ is defined by the uniform hyperbolic
structure of the map (compare Theorem B and Proposition 3.2).

2. Definitions. We shall deal with a nonflat S-unimodal function f of
the interval [0, 1] into itself. The nonflatness means that there is a constant
M > 0 such that M < |f ′(x)|/|x − c|l−1 < M−1 for any x ∈ [0, 1] and the
unique critical point c (l > 1). The consequences of nonflatness are stated
in Lemma 2.2. We assume that Sf < 0 where Sf = f ′′′/f ′ − 3

2 (f ′′/f ′)2.
It follows that Sfn < 0 where fn denotes the nth iterate of f ; moreover
(denoting by |I| the length of the interval I), we have

Lemma 2.1 (Consequences of Sf < 0). Let g = fn and assume that
g′|(a,b) 6= 0 and (x, y) ⊂ (a, b). Then

(1) (minimum principle) |g′| has no minimum in (a, b),
(2) (slope comparing)

|g(x, y)|
|(x, y)|

≥ min
{
|g(a, x)|
|(a, x)|

,
|g(a, y)|
|(a, y)|

,
|g(y, b)|
|(y, b)|

}
,

(3) (Koebe Lemma) for any τ > 0 there is a constant C(τ) (C indepen-
dent of n and C → 1 as τ →∞) such that if |g(x, a)| > τ |g(x, b)| then

|g′(x)| > C(τ)|g′(b)| ,

(4) (extending cross-ratio)

|g(a, b)|
|(a, b)|

|g(x, y)|
|(x, y)|

>
|g(a, x)|
|(a, x)|

|g(y, b)|
|(y, b)|

,

and in particular when x = y

|g′(x)| > |(a, b)|
|g(a, b)|

|g(a, x)|
|(a, x)|

|g(x, b)|
|(x, b)|

,
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(5) if a < x < y < b, g′(a) ≥ 0 and g′′(b) = 0 then

g′′(y)
g′(y)3/2

< 2

√
g′(y)−

√
g′(x)

g(y)− g(x)
<

g′′(x)
g′(x)3/2

.

P r o o f may be found in [CE1, MS]. The proof of (5) follows by two
integrations of Sg < 0.

Lemma 2.2 (Consequences of the nonflatness). Assume that f is nonflat.
Then there exists a constant m > 0 such that

(1) m < |f(x, c)|/|(x, c)|l < m−1,
(2) for any y, x with y ∈ (x, c)

|f(x, c)|
|(x, c)|

≥ m
|f(x, y)|
|(x, y)|

,

(3) there is a constant κ < 1 such that if (c, y) ⊂ (c, x) and |(y, x)| <
κ|(c, y)| then |f(y, x)| < |f(c, y)| and

κ
|f(y, x)|
|(y, x)|

<
|f(y, c)|
|(y, c)|

.

P r o o f. (2) follows by comparing both sides with f ′(x). As to (3) it is
enough to observe that by nonflatness we have |f(y, x)| < |f(c, y)| const×
κ(1 + κ)l−1 and by (1), (2)

κ
|f(y, x)|
|(y, x)|

< κ
(1 + κ)`−1

m3

|f(y, c)|
|(y, c)|

.

By ∆n = {∆i
n} we denote the family of all maximal intervals of mono-

tonicity of fn, and ∆n(x) ∈ ∆n is the interval containing x. We are mostly
interested in the intervals from ∆̃n = ∆n+1 \∆n, and especially in ∆̃n(c),
which, when nonempty for some n, contains two intervals (α, c) and (c, α̂),
with α 6= α̂ and f(α) = f(α̂). There is no essential dynamical difference
between these intervals and we shall denote them also by ∆̃n(c).

The images of the intervals from ∆̃n under fn always contain the critical
point c as an endpoint—we say that they are at the c-level. In particular,
fn∆̃n(c) = (cn, c).

There is some relation between ∆n and ∆̃k. Namely, for any I ∈ ∆n

there is a k < n such that I ∈ ∆̃k and fnI = fn−k∆n−k(c). For any J ∈ ∆̃n

one has a k < n such that fkJ = ∆̃n−k(c).
Let ∆̃n(c) ⊂ ∆n(c) = ∆̃k(c). Then

fk(∆̃k(c) \ ∆̃n(c)) = ∆̃n−k(c) ⊂ ∆n−k(c),

fn(∆n(c) \ ∆̃n(c)) = fn−k∆̃n−k(c)
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and

fn∆̃n(c) ⊂ fn−k(∆n−k(c) \ ∆̃n−k(c)) .

In [N2, N3] the (two) intervals ∆̃n(c) were called ∗(n) and the intervals from
∆̃n were called ∗∗(n). We shall use the notation

∑∗ to indicate summation
over all n for which a ∆̃n(c) exists, and

∑∗∗(n) for sums over all intervals
∆̃i

n from ∆̃n for a fixed n.
By Dfn we understand the absolute value |(fn)′|, and by O various

constants independent of iteration and points. We denote fk(x) by xk, in
particular c1 = f(c) is the critical value of f .

3. Central slopes. In this section we estimate the central slopes, i.e.
|fn∆̃n(c)|/|∆̃n(c)|, with the aid of the derivatives at the critical value (Pro-
position 3.1). Together with Corollary 4.1 this gives an independent proof
of the existence of an absolutely continuous invariant measure in case of
summability on the critical trajectory, and estimates its density. Moreover,
we obtain good estimates on different uniform hyperbolic structures in the
case of Collet–Eckmann maps.

Lemma 3.1. Let A = (c, y) = ∆̃m(c) ∈ ∆m+1 \ ∆m. If |fmA|/|fA| >
ηDfm−1(c1) > 0 then for some constant K1 due uniquely to the nonflatness
of f

|fmA|/|A| > K1(ηDfm(c1))1/l .

P r o o f follows from |fA|<O|A|l and

|fmA|l−1=|cm − c|l−1 > ODf(cm) .

Lemma 3.2. Let (c, y) ⊂ (c, x) = ∆̃k(c) = ∆m(c) and A = (c, y), B =
(y, x) ∈ ∆̃m (then fkB = ∆̃m−k(c)).

(1) Suppose that either |fmA| < τ |fmB| for some τ > 1, or |fmA|/|A| <
κ|fmB|/|B| for κ from Lemma 2(3). Then there exist a constant K de-
pending on τ by the Koebe Lemma and a constant K2 depending only on
nonflatness such that for any (c, z) ⊂ (c, y)

|fm(z, y)|/|(z, y)| > K(τ)K2Dfm(c1)1/l .

(2) If |fmA| > τ |fmB| for some τ > 1 then for some constant K3

depending only on nonflatness

|fm−k(fkB)|/|fkB| > C(1)K3Dfm−k(c1)1/l and
m− k > ν(1/τ) where ν(ε) = min{n : |cn − c| < ε} .
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P r o o f. (1) Suppose first that |fmA| < τ |fmB|. We apply the Koebe
Lemma (Lemma 2.1(3)) for fm−1 on fA and obtain

|fm(z, y)|
|f(z, y)|

> C
(

1
τ

)
|fm(c, z)|
|f(c, z)|

,
|fm(c, y)|
|f(c, y)|

> C
(

1
τ

)
Dfm−1(c1) ,

and as (c, y) = A

|fm(z, y)|
|f(z, y)|

> C
(

1
τ

)
|fmA|
|fA|

,
|fmA|
|fA|

> C
(

1
τ

)
Dfm−1(c1) .

If |fmA| > τ |fmB| but |fmA|/|A| < κ|fmB|/|B| then in particular
B < κA and by Lemma 2.2(3)

|fmA|
|fA|

=
|fmA|
|A|

|A|
|fA|

< κ
|fmB|
|B|

|A|
|fA|

=
|fmB|
|fB|

κ
|A|
|fA|

|fB|
|B|

<
|fmB|
|fB|

.

Therefore by Lemma 2.1(2)

|fmA|
|fA|

> Dfm−1(c1) ,

|fm(z, y)|
|f(z, y)|

> min
{
|fmA|
|fA|

,
|fmB|
|fB|

}
=
|fmA|
|fA|

.

In both cases of (1) we obtain by Lemma 3.1

|fmA|/|A| > C(1/τ)KDfm(c1) .

By nonflatness we have |f(y, z)|/|(y, z)| > O|fA|/|A|, hence

|fm(z, y)|
|(z, y)|

=
|fm(z, y)|
|f(z, y)|

|f(z, y)|
|(z, y)|

> C
(

1
τ

)
|fmA|
|fA|

O |fA|
|A|

= C
(

1
τ

)
O|f

mA|
|A|

.

This proves (1) with K(τ) = C(1/τ)2.
In order to prove (2) we see that |fm−k∆̃m−k(c)| = |fmB| < 1/τ , which

implies the estimate on m − k. The other estimate follows again from the
Koebe Lemma and Lemma 3.1.

Proposition 3.1. Let τ > 1. There are constants M (depending only
on nonflatness) and K = K(τ) such that for any n and any (z, y) ⊂ (c, y) =
∆̃n(c) there is a sequence of nonnegative integers (rj)j≥0 such that

|fn(z, y)|
|(z, y)|

> K(τ)Dfr0(c1)1/l
∏
j≥1

MDfrj (c1)1/l ,

∑
j≥0 rj = n and rj > ν(1/τ) for j ≥ 1 (ν was defined in Lemma 3.2(2)).

P r o o f. Let κ be as in Lemma 2.2(3). Let (c, y) ⊂ (c, x) = ∆̃k(c) ∈ ∆n.
If either

τ |fn(y, x)| > |fn(c, y)| or κ
|fn(y, x)|
|(y, x)|

>
|fn(c, y)|
|(c, y)|
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then the proposition follows from Lemma 3.2(1) with r0 = n and rj = 0 for
j ≥ 1. In particular, this proves the proposition for any n < ν(1/τ).

Set O = C(1)K3 from Lemma 3.2(2) and M = κO. We may assume
that the proposition is true for any k < n and we prove it by induction for
n when

τ |fn(y, x)| < |fn(c, y)| and κ
|fn(y, x)|
|(y, x)|

<
|fn(c, y)|
|(c, y)|

.

By Lemma 2.1(2) we have

|fn(z, y)|
|(z, y)|

> min
{
|fn(c, y)|
|(c, y)|

,
|fn(y, x)|
|(y, x)|

}
> κ

|fn(y, x)|
|(y, x)|

.

On the other hand, we have

|fn(y, x)|
|(y, x)|

=
|fn−k(fk(y, x))|

|fk(y, x)|
|fk(y, x)|
|(y, x)|

=
|fn−k∆̃n−k(c)|
|∆̃n−k(c)|

|fk(y, x)|
|(y, x)|

.

As

τ |fn−k∆̃n−k(c)| = τ |fn(y, x)| < |fn(c, y)|

= |fn∆̃n(c)| < |fn−k(∆n−k(c) \ ∆̃n−k(c))| < 1

we may apply Lemma 3.2(2) and estimate the first quotient by
ODfn−k(c1)1/l, and additionally obtain n− k > ν(1/τ).

Using the inductive hypothesis we estimate the second quotient by

K(τ)Dfr0(c1)1/l
∏
j≥1

MDfrj (c1)1/l

(with
∑

j≥1 rj = k − r0 and rj > ν(1/τ)) as (y, x) ⊂ (c, x) = ∆̃k(c).
Therefore

|fn(z, y)|/|(z, y)| > κ|fn(y, x)|/|(y, x)|
> κODfn−k(c1)1/lK(τ)Dfr0(c1)1/l

∏
j≥1

MDfrj (c1)1/l

= K(τ)Dfr0(c1)1/lMDfn−k(c1)1/l
∏
j≥1

MDfrj (c1)1/l ,

which completes the proof as n− k > ν(1/τ).

Corollary 3.1. If f satisfies the summability condition on the critical
trajectory then it does so on the central slopes. In other words,∑

Dfn(c1)−1/l < ∞ implies
∗∑ (

|fn∆̃n(c)|
|∆̃n(c)|

)−1

< ∞ .
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P r o o f. By Proposition 3.1 we can choose τ so large that

dr := (MDfr(c1)1/l)−1 < 1

for r > ν(1/τ). The conclusion follows from Lemma 3.3.

Lemma 3.3. Let (Dn) and (di) be two sequences of positive numbers, with
di < 1 for all i and

∑
di < ∞. Assume that for any n there is a sequence

(rj) of nonnegative integers with
∑

j≥0 rj = n such that

Dn <
∏
j

drj
.

Then ∑
Dn < ∞ .

P r o o f. Take N such that
∑

i>N di < 1. Then∑
Dn ≤

∞∑
j1=1

dj1
1

∞∑
j2=1

dj2
2 . . .

∞∑
jN=1

djN

N

∞∑
k=0

( ∑
n>N

dn

)k

< ∞ .

Proposition 3.2. If f satisfies the Collet–Eckmann condition, i.e.
lim inf Dfn(c1)1/n = λC > 1, then const λ

n/l
C is an asymptotical estimate

for

1) the central slopes: |fn∆̃n(c)|/|∆̃n(c)|,
2) the central periodic orbits: Dfn(p) with fn(p) = p ∈ ∆n(c),
3) the slopes on the c-level : |fn∆̃i

n|/|∆̃i
n|,

4) the intervals of monotonicity on the c-level : |∆i
n|−1, ∆i

n ∈ ∆n\∆n+1,
5) any intervals of monotonicity : |∆i

n|−1,
6) the derivatives at the preimages of the critical point : Dfn(z) with

fn(z) = c,
7) the derivatives at any periodic point : Dfn(p) with fn(p) = p.

The estimate is asymptotical in the following sense. For any λ < λ
1/l
C =:

λ0 there is a constant K(λ) such that any of the above quantities may be
estimated from below by Kλn. In the proof we use Proposition 3.1 for
the central slopes and the relations between different hyperbolic structures
established in [N1–N3].

P r o o f. Let λi, i = 1, . . . , 7, be the estimate of the corresponding term
in the list, for example

λ6 = lim inf min
zn=c

Dfn(z)1/n .

For any λ < λ0 choose τ so that MDfr(c1)1/l > λr for r > ν(1/τ). This
proves λ1 ≥ λ and hence also λ1 ≥ λ0. As |fn∆̃(c)|/|∆̃n(c)| → ∞ one can
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estimate λ2 with the Koebe Lemma by

Dfn(p) > C(1)|fn(p, y)|/|(p, y)| > const λn ,

which gives λ2 ≥ λ0. One can also estimate similarly to the proof of the
Proposition 3.1 that λ2 ≥ λ1. For λ3 ≥ λ1 one uses the method described
in [N2, N3] with ∗(n) and ∗∗(n) intervals. In case of [N3] (f nonsymmet-
ric) one has to revise carefully the proof and use the methods from the
present paper. As the central intervals are part of the intervals on the
c-level we obtain λ3 = λ1. Next, λ4 ≥ λ3 is obvious as the intervals on
the c-level are each a union of two intervals from ∆̃n. Any interval of
monotonicity ∆i

n is an interval on the c-level for some N ≥ n; this proves
λ5 = λ4.

The derivatives at the preimages of the critical points can be estimated
by the slopes on the intervals from ∆̃n, which proves λ6 ≥ λ3. By [N1],
λ6 = λ7, and λ7 ≥ λ5 (it is not explicitly stated but one can deduce it from
the methods used there). Obviously λ2 ≥ λ7. We have therefore

λ0 ≤ λ1 ≤ λ3 ≤ λ4 = λ5 ≤ λ7 = λ6 ≤ λ2 .

The details are omitted.

R e m a r k 3.1. The estimate by λ
1/l
C is sometimes the best available. For

f(x) = 4x(1 − x) we have λC = f ′(0) = 4 and Dfn(p)1/n = 2 = 41/` (by
diffeomorphic conjugation to a tent map with slope 2). The same (with
some constant) holds for |∆i

n|−1 and therefore for any slope starting at the
c-level.

R e m a r k 3.2. The number λx as defined in the Introduction is not
smaller than λ7. This also gives the estimate of the metric entropy of µ.

4. The derivatives. In this section we estimate the derivative at an
arbitrary point by some derivative on the critical trajectory, the distance of
the image of the point to the closest critical value on its branch of mono-
tonicity and some slope. The idea is to use this in the estimation of the
Perron–Frobenius operator which is essentially the sum of the inverses of
the derivatives. What one needs is the summability of the inverses of the
corresponding slopes.

Lemma 4.1. Let (α, β) ∈ ∆n, fk(α) = c, y ∈ (α, β), and |fn(α, y)| ≤
|fn(y, β)|. Then for some constant independent of y, (α, β) and n we have

Dfn(y) ≥ const Dfn−k−1(c1)1/l|yn − cn−k|1−1/l |yk − αk|
|y − α|

.

P r o o f. By the chain rule we have

Dfn(y) = Dfk(y) Df(yk) Dfn−k−1(yk+1) .
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Obviously

Df(yk) =
|Df(yk)|

|f(yk)− c1|1−1/l
|yk+1 − c1|

(
|yn − cn−k|
|yk+1 − c1|

)1/l

|yn − cn−k|−1/l

> OC(1)Dfn−k−1(c1)1/l|yk+1 − c1|
1

|yn − cn−k|1/l
,

by nonflatness and the Koebe Lemma for fn−k−1 on (yk+1, c1).
By Lemma 2.1(4) we have

Dfk(y) >
|yk − αk||βk − yk|

|βk − αk|
|β − α|

|y − α||β − y|

=
|yk − αk|
|y − α|

|βk − yk|
|βk − αk|

|β − α|
|β − y|

>
|yk − αk|
|y − α|

|(βk, yk)|
|(βk, c)|

.

Similarly, using the assumption |βn − yn| > |yn − αn| we have

Dfn−k−1(yk+1) >
|yn − αn||βn − yn|

|βn − αn|
|βk+1 − αk+1|

|yk+1 − αk+1||βk+1 − yk+1|

= |yn − cn−k|
|βn − yn|
|βn − αn|

1
|yk+1 − c1|

|f(βk, c)|
|f(βk, yk)|

>
1
2
|yn − cn−k|

1
|yk+1 − c1|

|f(βk, c)|
|f(βk, yk)|

.

Therefore we use Lemma 2.2(2) on (βk, yk) ⊂ (βk, c) and get

Dfn(y) > const |yn − cn−k|1−1/lDfn−k−1(c1)1/l |yk − αk|
|y − α|

.

R e m a r k 4.1. In this lemma we split any interval (α, β) ∈ ∆n into two
subintervals. The image under fn of the splitting point γ is exactly in the
middle of the image of fn(α, β). We estimate the derivative Dfn(y) using
α or β depending on whether y ∈ (α, γ) or y ∈ (γ, β).

This method is not dynamic because if (α, β) ∈ ∆n ∩ ∆n+1 (i.e. both
fn and fn+1 are monotone on (α, β)) the points γ corresponding to fn

and fn+1 will usually be different. A dynamic method of splitting (α, β)
was used in [KN]. Let m > n be minimal such that (α, β) 6∈ ∆m; then
(α, β) = (α, γ) ∪ (γ, β) and both subintervals are in ∆m. This γ defines a
splitting as long as (α, β) is a maximal interval of monotonicity.

Proposition 4.1. If
∗∑
m

(|fm∆̃m(c)|/|∆̃m(c)|)−1 < ∞
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then there exists a constant K such that for any n

∗∗(n)∑
∆̃i

n∈∆̃n

(|fn∆̃i
n|/|∆̃i

n|)−1 ≤ K .

P r o o f. Let N be such that
∗∑

m>N

(|fm∆̃m(c)|/|∆̃m(c)|)−1 ≤ 1/4

and δ such that if |fm∆̃m(c)| < δ then m > N . Set K = 2/δ. We prove the
lemma by induction. Split the sum (∗∗) into two parts depending on the
length of fn∆̃n:

∗∗(n)∑
∆̃i

n∈∆̃n

(
|fn∆̃i

n|
|∆̃i

n|

)−1

=
∗∗(n)∑

|fn∆̃i
n|≥δ

(
|fn∆̃i

n|
|∆̃i

n|

)−1

+
∗∗(n)∑

|fn∆̃i
n|<δ

(
|fn∆̃i

n|
|∆̃i

n|

)−1

.

If the length is greater than δ then the corresponding part of the sum is
smaller than

∑
∆̃i

n/δ < 1/δ. This proves the lemma for initial n’s.
Observe that for any ∆̃i

n ∈ ∆̃n there exists a k < n such that fk∆̃i
n =

∆̃n−k(c). If we estimate the second part of the sum then

|fn−k∆̃n−k(c)| = |fn∆̃i
n| < δ

and hence n−k > N . Moreover, the slope |fk∆̃i
n|/|∆̃i

n|may be estimated by
the slope |fk∆̃j

k|/|∆̃
j
k| of one of the two intervals from ∆̃k (Lemma 2.1(2))

which have a common endpoint with ∆̃i
n. Obviously any such interval ∆̃j

k

may be used at most twice.
The other part of the sum can hence be estimated by

∗∗(n)∑
|fn∆̃i

n|<δ

(
|fn∆̃i

n|
|∆̃i

n|

)−1

=
∗∗(n)∑

|fn∆̃i
n|<δ

(
|fn−kfk∆̃i

n|
|fk∆̃i

n|
|fk∆̃i

n|
|∆̃i

n|

)−1

<

∗∑
n−k>N

2
∗∗(k)∑

∆̃j
k
∈∆̃k

(
|fn−k∆̃n−k(c)|
|∆̃n−k(c)|

|fk∆̃j
k|

|∆̃j
k|

)−1

= 2
∗∑

n−k>N

(
|fn−k∆̃n−k(c)|
|∆̃n−k(c)|

)−1 ∗∗(k)∑
∆̃j

k
∈∆̃k

(
|fk∆̃j

k|
|∆̃j

k|

)−1

< 2 · 1
4

∗∗(k)∑
∆̃j

k
∈∆̃k

(
|fk∆̃j

k|
|∆̃j

k|

)−1

,
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where the number 2 appears as we may select twice the “worse” of the two
possible ∆̃j

k. By previous considerations and induction we finish the proof
with

∗∗(n)∑
∆̃i

n∈∆̃n

(
|fn∆̃i

n|
|∆̃i

n|

)−1

<
1
δ

+ 2 · 1
4
K =

K

2
+

K

2
= K .

Corollary 4.1. Let (Kn) be a sequence such that

∗∗(n)∑
∆̃i

n∈∆̃n

(
|fn∆̃i

n|
|∆̃i

n|

)−1

≤ Kn .

Then for the iterates of the Perron–Frobenius operator L one has

Ln(1)(x) ≤ 2
n−1∑
r=0

Kn−rDfr(c1)−1/l |x− cr+1|−(1−1/l) .

P r o o f. Use Lemma 4.1. By definition Ln(1)(x) =
∑

fny=x Dfn(y)−1.
The conclusion follows by comparing |yk − αk|/|y − α| with the slope of fk

on one of the two intervals from ∆̃k with endpoint α (and αk = c).

Corollary 4.2. Under the summability condition on the critical trajec-
tory (see Lemma 3.1) the same estimate for Ln holds with Kn = K.

P r o o f. Use Corollaries 3.1 and 4.1.

R e m a r k 4.2. One may also use [NS3] where it was proven that un-
der the summability condition one has |f−k(c − ε, c + ε)|/ε < const with
a uniform constant. This corresponds to

∑
|y − α|/|yk − c| < const, uni-

formly.

R e m a r k 4.3. Corollary 4.2 gives a natural (and independent of [NS3])
proof of the existence of an invariant density and the bounds on its singu-
larities.

P r o o f. Consider ( 1
n

∑
k<n Lk1) and use compactness.

R e m a r k 4.4. In the situation of Corollary 4.1 one can also estimate
the derivative of Ln1. Namely, since on any branch of monotonicity (α, β)
one has by Lemma 2.1(5)∣∣∣∣D2fn(y)

Dfn(y)2

∣∣∣∣ <
2

min{|fn(α, y)|, |fn(y, β)|}
,

it follows that
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|(Ln1)′(x)| =
∣∣∣∣ ∑

fny=x

D2fn(y)
Dfn(y)2

1
Dfn(y)

∣∣∣∣
< 2

n−1∑
r=0

Kn−r Dfr(c1)−1/l |x− cr+1|−(2−1/l) .
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Systems, Birkhäuser, Boston 1980.

[CE2] —, —, Positive Liapounov exponents and absolute continuity for maps of the
interval , Ergodic Theory Dynamical Systems 3 (1983), 13–46.

[K] G. Kel l e r, Exponents, attractors and Hopf decomposition for interval maps, ibid.
10 (1990), 717–744.

[KN] G. Kel l e r and T. Nowick i, Spectral theory, zeta functions and the distribution
of periodic points for the Collet–Eckmann maps, Comm. Math. Phys. 149 (1992),
31–69.

[L] F. Ledrappier, Some properties of absolutely continuous invariant measures on
an interval , Ergodic Theory Dynamical Systems 1 (1981), 77–93.

[MS] W. de Melo and S. van Str ien, One Dimensional Dynamic, book manuscript.
[M] M. Mis iurewicz, Absolutely continuous invariant measures for certain maps of

an interval , Publ. Math. I.H.E.S. 53 (1981), 17–51.
[N1] T. Nowick i, On some dynamical properties of S-unimodal maps of an interval ,

Fund. Math. 126 (1985), 27–43.
[N2] —, Symmetric S-unimodal mappings and positive Liapunov exponents, Ergodic

Theory Dynamical Systems 5 (1985), 611–616.
[N3] —, A positive Liapunov exponent for the critical value of an S-unimodal mapping

implies uniform hyperbolicity , ibid. 8 (1988), 425–435.
[NS1] T. Nowick i and S. van Str i en, Hyperbolicity properties of multimodal Collet–

Eckmann maps without Schwarzian derivative conditions, Trans. Amer. Math.
Soc. 321 (1990), 793–810.

[NS2] —, —, Absolutely continuous invariant measures for C2 unimodal maps satisfying
Collet–Eckmann conditions, Invent. Math. 93 (1988), 619–635.

[NS3] —, —, Invariant measures exist under a summability condition for unimodal
maps, ibid. 105 (1991), 123–136.

[Sz] B. Szewc, Perron–Frobenius operator in spaces of smooth functions on an inter-
val , Ergodic Theory Dynamical Systems 4 (1984), 613–641.

[Y] L.-S. Young, Decay of correlations for certain quadratic maps, Comm. Math.
Phys. 146 (1992), 123–138.

INSTITUTE OF MATHEMATICS

WARSAW UNIVERSITY

BANACHA 2

02-097 WARSZAWA, POLAND

Received 2 September 1991;
in revised form 8 June 1992


