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On soluble groups of automorphisms
of nonorientable Klein surfaces

by

Grzegorz Gromadzk i (Bydgoszcz)

Abstract. We classify up to topological type nonorientable bordered Klein surfaces
with maximal symmetry and soluble automorphism group provided its solubility degree
does not exceed 4. Using this classification we show that a soluble group of automorphisms
of a nonorientable Riemann surface of algebraic genus q ≥ 2 has at most 24(q−1) elements
and that this bound is sharp for infinitely many values of q.

1. Introduction. By a Klein surface we mean in this paper a compact
nonorientable surface X equipped with a dianalytic structure, and by an
automorphism a conformal or anticonformal homeomorphism [1]. The alge-
braic genus q of a Klein surface X is defined as the genus of its canonical
double Riemann cover [1] and it turns out that for a Klein surface of topo-
logical genus g, with k (k ≥ 0) boundary components, q = g + k − 1. It is
well known [12] that a group of automorphisms of a compact Klein surface
X of algebraic genus q ≥ 2 has at most 84(q− 1) elements. Although this
bound is known to be attained for infinitely many values of q, none of the
corresponding groups can be soluble and none of the corresponding surfaces
can have boundary. If X has nonempty boundary then |G| ≤ 12(q − 1).
If G is soluble then |G| ≤ 48(q − 1). This case for Riemann surfaces was
studied in [6], [7] (see also [8]). Here we study soluble groups of automor-
phisms of nonorientable Riemann surfaces (i.e. nonorientable Klein surfaces
without boundary). We show that the bound in this case is 24(q− 1). We
also find an infinite series of q for which this bound is attained. Looking for
the values of q for which this bound is attained we discovered a somewhat
surprising fact: a soluble group of order 24(q − 1) acts as a group of auto-
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morphisms on a nonorientable Riemann surface of algebraic genus q if and
only if it can be viewed as an M∗-group acting on a nonorientable bordered
Klein surface with maximal symmetry of algebraic genus q′ = 2q− 1, hav-
ing k = q − 1 boundary components (see Section 3 for definitions), which
prompted the study those surfaces and groups. We classify topological types
of nonorientable Klein surfaces with maximal symmetry and with soluble
automorphism group provided its solubility degree does not exceed 4. No-
tice that a group of automorphisms of a nonorientable Riemann surface can
be viewed as a group of conformal automorphisms of an orientable Riemann
surface of the same algebraic genus. Thus the bound 48(q−1) for the order
of a soluble group of automorphisms of an orientable Riemann surface is not
attained in the nonorientable case. It is worth noting that this is in marked
contrast with the corresponding results for the maximal groups of automor-
phisms of compact Klein surfaces for which absolute bounds 84(q − 1) in
case of surfaces without boundary and 12(q−1) in case of bordered surfaces
are attained in both the orientable and nonorientable cases (see [20] and [22]
respectively).

2. Preliminaries. We shall prove the announced results by means of
NEC-groups. An NEC-group is a discrete subgroup Λ of the group G of
isometries of the non-Euclidean plane C+ (including those which reverse
orientation: reflections and glide reflections) with compact quotient space
C+/Λ. Let G+ denote the subgroup of index 2 in G consisting of orientation
preserving isometries. An NEC-group Λ contained in G+ is called a Fuchsian
group, and a proper NEC-group in the other case. In what follows Λ+ =
Λ∩G+ is the canonical Fuchsian subgroup of an NEC-group Λ. NEC-groups
were first studied by Wilkie [23] who associated with every such group a
signature, which is a sequence τ of numbers and symbols of the form

(2.1) τ = (g;±; [m1, . . . ,mr]; {(n11, . . . , n1s1), . . . , (nk1, . . . , nksk
)}) .

The numbers mi (mi ≥ 2) are called the proper periods, the brackets
(ni1, . . . , nis) (nij ≥ 2) are the period cycles and g ≥ 0 the orbit genus. It
turns out that a signature determines an algebraic presentation of the group
[13], [23]. Namely, the group Λ with signature (2.1) has the presentation
with the following generators:

(2.2)

(i) xi , i = 1, . . . , r,

(ii) ci,j , i = 1, . . . , k, j = 0, . . . , si ,

(iii) ei , i = 1, . . . , k,

(iv) ai, bi , i = 1, . . . , g if the sign is “ + ” ,

di , i = 1, . . . , g if the sign is “− ” ,
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subject to the relations:

(i) xmi
i = 1 , i = 1, . . . , r,

(ii) ci,si
= e−1

i ci,0ei , i = 1, . . . , k,

(iii) c2
i,j−1 = c2

i,j = (ci,j−1ci,j)nij = 1 , i = 1, . . . , k, j = 1, . . . , si ,

(iv) x1 . . . xre1 . . . ek[a1, b1] . . . [ag, bg] = 1 if the sign is “ + ” ,

x1 . . . xre1 . . . ekd2
1 . . . d2

g = 1 if the sign is “− ” .

In the whole paper these generators will be called the canonical gener-
ators of Λ. Every NEC-group has a fundamental region whose hyperbolic
area depends only on the signature of the group and for an NEC-group Λ
with signature (2.1) it is given by

µ(τ) = µ(Λ)(2.3)

= 2π
(
αg + k − 2 +

r∑
i=1

(1− 1/mi) +
k∑

i=1

si∑
j=1

(1− 1/nij)/2
)

,

where α = 1 if the sign is “−” and α = 2 in the other case.
It is known that a group Λ with presentation (2.2) can be realized as an

NEC-group with signature (2.1) if and only if the right hand side of (2.3) is
a positive rational.

If Γ is a subgroup of finite index in an NEC-group Λ, then it is also an
NEC-group and the following Hurwitz–Riemann formula holds:

(2.4) [Λ : Γ ] = µ(Γ )/µ(Λ) .

An NEC-group with signature

(2.5) (g;±; [−], {(−), k. . . , (−)})

will be called a surface group of genus g with k boundary components,
bordered if k > 0, unbordered if k = 0, and orientable or nonorientable
according as the sign is “+” or “−”. If Γ is bordered or nonorientable then
the number q = αg + k− 1, where α = 1 if the sign is “−” and α = 2 if the
sign is “+”, is called the algebraic genus of Γ . If k = 0 and the sign is “+”
then the algebraic genus q is, by definition, equal to the orbit genus g.

If Λ is a proper NEC-group with signature (2.1) then, by [21], Λ+ has
signature

(2.6) (g;±; [m1,m1, . . . ,mr,mrn11, . . . , nksk
]; {−}) .

It is known [19] that a compact Klein surface of genus q≥2 can be repre-
sented as C+/Γ , where Γ is a surface group of algebraic genus q. Moreover,
given a bordered Klein surface so represented, a finite group G is a group
of its automorphisms if and only if G = Λ/Γ for some NEC-group Λ [15].
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Observe that a surface group Γ of algebraic genus q has area 2π(q− 1).
Therefore from the Hurwitz–Riemann formula it follows that the problem
of finding an upper bound for the order of a group of automorphisms (lying
in a certain family F of finite groups) of a Klein surface of algebraic genus
q ≥ 2 is equivalent to the problem of finding a lower bound for the area of
NEC-groups Λ for which there exists a surface group Γ which is a normal
subgroup of Λ (with Λ/Γ ∈ F).

We shall need the following result due to Singerman [20].

Theorem 2.1. A necessary and sufficient condition for a finite group G
to act as a group of automorphisms on a nonorientable Riemann surface X
of algebraic genus q (q ≥ 2) is that there exists a proper NEC-group Λ and
a homomorphism θ from Λ onto G with θ(Λ+) = G and with Γ = Ker θ
being an unbordered surface group. The algebraic genus q of X equals that
of Γ and can be calculated using the Hurwitz–Riemann formula.

The next result follows easily from Macbeath’s result in [13] that the only
elements of finite order in an NEC-group Λ are those that are conjugate to
nontrivial powers of cij , ci,j−1cij , xi.

Theorem 2.2. Let Λ be an NEC-group and let θ be a homomorphism
from Λ onto a finite group G. Then Γ = Ker θ is an unbordered surface
group if and only if θ preserves proper periods and period cycles, i.e.

θ(xi) has order mi for i = 1, . . . , r,

θ(cij) has order 2 for i = 1, . . . , k; j = 0, . . . , si,

θ(ci,j−1cij) has order nij for i = 1, . . . , k; j = 1, . . . , si.

3. On known results concerning nonorientable bordered Klein
surfaces with maximal symmetry and with a soluble M∗-group of
automorphisms. As was announced in the introduction there is a connec-
tion (see Section 5 for details) between nonorientable Riemann surfaces with
a soluble group of automorphisms of greatest possible order and bordered
nonorientable Klein surfaces with maximal symmetry and a soluble group
of automorphisms.

It was shown by May [14] (see also [18]) that a group of automorphisms
of a compact Klein surface X of algebraic genus q ≥ 2 has at most 12(q−1)
elements and that this bound is attained for infinitely many values of q
[15]. The problem of the classification of topological types (called species)
of the corresponding Klein surfaces, which for obvious reasons are said to
have maximal symmetry , seems to be enormous, though some parts of it are
more approachable. Recently for instance May [17] has classified topologi-
cally such surfaces with supersoluble groups of automorphisms. The prob-
lem of such a classification of nonorientable surfaces with soluble groups of
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automorphisms was posed in [16]. In the next section we solve it for groups
whose derived length does not exceed 4.

By an M∗-group we mean the automorphism group of a Klein surface
with maximal symmetry. It was shown in [10] that a finite group G is an
M∗-group if and only if it can be generated by three elements a, b, c of
order 2 such that ab and bc have orders 2 and 3 respectively. The order
s of ac is said to be an index of G, and the corresponding surface X with
maximal symmetry on which G acts has k = |G|/(2s) boundary components.
Moreover, Singerman [22] showed that in that case X is nonorientable if and
only if ab and bc generate the whole group G.

Summing up, we see that the problem of the topological classification of
nonorientable bordered Klein surfaces with maximal symmetry is equivalent
to the following purely group-theoretical one:

Given s find all possible orders of groups G that can be generated by three
elements a, b and c of order 2 such that ab, bc and ac have orders 2, 3 and
s respectively and in addition ab and ac generate the whole group G.

Let Ω be a group with the presentation

〈u, v, w | u2, v2, w2, (uv)2, (vw)3〉
and let Ω0 be its subgroup generated by uv and vw. Then Ω0 and Ω are
known to be isomorphic to the modular and extended modular group and
so in particular the first is known to be the free product of two cyclic groups
of orders 2 and 3 generated by uv and vw respectively. The importance of
Ω in the study of M∗-groups follows from

Lemma 3.1. A finite group G of order greater than 6 is an M∗-group if
and only if it is a homomorphic image of Ω.

P r o o f. The necessity is obvious. So let G ∼= Ω/K be a factor group
of order greater than 6. Then it is easy to see that if some of u, v, w, uv,
vw belong to K then |Ω/K| ≤ 6. So the images ũ, ṽ and w̃ of u, v and w
respectively make G an M∗-group.

Corollary 3.2. Let H be a normal subgroup of an M∗-group G of index
greater than 6. Then G/H is also an M∗-group. Moreover , if G acts on a
nonorientable Klein surface then so does G/H.

It was shown by May [14] that there is a dianalytic structure making a
real projective plane with three boundary components a Klein surface with
maximal symmetry, having S4 as the automorphism group. This surface X−

3

has the important property that every nonorientable Klein surface X with
maximal symmetry and with a soluble group of automorphisms is its full
cover [10]. So, in particular, if G is the automorphism group of X then there
exists a normal subgroup H of G such that G/H ∼= S4 and X/H = X−

3 .
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In particular, the index of G must be a multiple of 4 since the index of
S4 corresponding to its action on X−

3 is 4. Starting with this surface May
proved in [15] the following

Proposition 3.3. Given an odd number m there exists a nonorientable
Klein surface with maximal symmetry of algebraic genus qm = 2m3 + 1
whose automorphism group Gm is a soluble M∗-group of derived length 4.

On the other hand, it is known [16] that there are no other topologically
different nonorientable Klein surfaces, with maximal symmetry and with
soluble automorphism group, of algebraic genus q in the range 2 ≤ q ≤ 40.
In the next section we shall show that the surfaces from Proposition 3.3 are
the only ones with soluble automorphism group of derived length 4.

Proposition 3.4. Let G be a soluble group of derived length 3 acting
as an M∗-group on a nonorientable bordered Klein surface X with maximal
symmetry. Then G = S4, it has index 4, and X is a real projective plane
with 3 boundary components.

P r o o f. Let G = Ω/K. Since G has three generators a, b and c of order
2 such that ab and bc have orders 2 and 3 respectively and they generate
the whole group G, G/G′ ∼= Z2. By Lemma 1 in [10], G′ is generated by
two elements of order 3. Thus either |G′/G′′| = 9 or |G′/G′′| = 3. But the
former case is impossible since G/G′′ would then have order 18, and so it
would be an M∗-group by Corollary 3.2, a contradiction since on the other
hand 12 divides the order of any M∗-group. So |G/G′′| = 6 and thus by
Lemma 4.2.11 in [4], G/G(3) = G has order 12, 24 or 48. Therefore the
result follows from Theorem 8 in [16].

4. Classification of bordered nonorientable Klein surfaces with
maximal symmetry and with soluble automorphism group of de-
rived length 4

Proposition 4.1. Let G be a soluble group of derived length 4 acting
as the automorphism group on a nonorientable bordered Klein surface with
maximal symmetry. Then G has index 4m and order 24m3 for some odd
integer m.

P r o o f. Let G be a soluble M∗-group of derived length n (n ≥ 4)
acting on a nonorientable bordered Klein surface with maximal symmetry
and let H = G(3) be the third derived group of G. By Proposition 3.4,
G/H = S4 and it still acts as an M∗-group on a nonorientable Klein surface
with maximal symmetry. Let us represent G and S4 as quotients Ω/K and
Ω/L respectively. We shall see how the groups K and L look like. Clearly
H = L/K has derived length n− 3.
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We know that uw induces in Ω/L an element of order 4. As Ω/L is
isomorphic to S4, uvw represents in Ω/L an element of order 3. Thus the
element A of Ω represented by (uvw)3 belongs to L. Denote by N the
normal closure in Ω of A. Then by [9], Ω/N ∼= S4 and so L = N . Now let
B = uAu, C = vwuAuwv and denote by M the subgroup of Ω generated
by A, B and C. Then it is easy to check, using the defining relations for Ω,
that Ω acts on M as follows:

(4.1)

uAu = B , uBu = A , uCu = (ACB)−1 ,

vAv = B−1 , vBv = A−1 , vCv = C−1 ,

wAw = A−1 , wBw = C−1 , wCw = B−1 .

Thus M is a normal subgroup of Ω and so M = N . Therefore L = 〈A,B, C〉.
We claim that L is free. Indeed, consider the automorphism φ of Ω

induced by the assignment

φ(u) = uv, φ(v) = v, φ(w) = w .

Then φ(A) = A′ = (uw)3, φ(B) = B′ = v(wu)3v, φ(C) = C ′ = wv(uw)3vw
and so L = 〈A,B, C〉 and L′ = 〈A′, B′, C ′〉 are isomorphic. Moreover,
Ω/L′ ∼= Ω/L ∼= S4. Observe that L′ is a subgroup of Ω0 which is the
free product of two cyclic groups of orders 2 and 3 generated by uv and vw
respectively. Clearly none of the conjugates of uv and vw belongs to L′ since
otherwise Ω/L′ would be of order ≤ 6. Therefore by the Kurosh subgroup
theorem L′ is free and so is L. It turns out that A, B and C freely generate
L, i.e. L has rank 3. Indeed, looking at the proof of Proposition 3.3 given in
[15] we see that the third derived group G

(3)
m of Gm is isomorphic to (Zm)3

and it is a homomorphic image of L.
From (4.1) we see that the images of A, B and C in H have the same

order, say m.
Now if G = Ω/K has derived length 4, then H = L/K is abelian and so

we have to study subgroups K of L which are normal in the whole group Ω
and have L/K abelian. We first show that m is odd. Indeed, assume that
this is not the case and consider a subgroup H ′ of H of odd order such that
H/H ′ is a 2-group. Clearly H ′ is a normal subgroup of G and G/H ′ has
order 24 · 2α, where α ≥ 1. By Corollary 3.2, G/H ′ acts as an M∗-group
on a nonorientable bordered Klein surface of algebraic genus q = 2α+1 + 1,
which contradicts Theorem 6 of [16].

Now we show that |H| = m3. It suffices to show that for any prime
p and for an integer α such that m = pαs, where p and s are relatively
prime, p3α divides |H|. Assume that this is not the case for some p. Since
H is abelian, H = Hp ⊕Hp′ where Hp is a Sylow p-subgroup of H. Clearly
Hp′ is a normal subgroup of G and G/Hp′ has order 24 · pN , for some
N ≥ 1. By Corollary 3.2, G/Hp′ acts as an M∗-group on a nonorientable
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bordered Klein surface with maximal symmetry. For notational simplicity
assume that Hp′ = 1, i.e. assume that G already has order 24 · pN . Then
H = Zpα ⊕ Zpβ ⊕ Zpδ , where 0 ≤ α ≤ β ≤ δ. By our assumption α 6= δ.
Let Hδ = {x ∈ H : xpδ−1

= 1}. Then Hδ is a normal subgroup of G

and either H̃ = H/Hδ = Zp or H̃ = Zp ⊕ Zp. Represent G̃ = G/Hδ as a
quotient Ω/K1. Then K1 < L and either L/K1 = Zp ⊕ Zp or L/K1 = Zp.
Let Ã, B̃ and C̃ denote the images of A, B and C respectively in L/K1.
If one of A, B, C belongs to K1 then, by (4.2), so do the other ones.
So Ã 6= 1, B̃ 6= 1 and C̃ 6= 1. There are integers α, β and δ in the
range 0 ≤ α, β, δ < p not all equal to 0 such that (Ã)α(B̃)β(C̃)δ = 1.
Clearly either α 6= 0 or β 6= 0 since otherwise C̃ = 1 as p is prime. Since
A−βC−δB−α = Bαv(AαBβCδ)vB−α ∈ K1 we can assume, without loss of
generality, that α 6= 0. Then since p is an odd prime, Ã = (B̃)b(C̃)c for
some integers b and c with 0 ≤ b, c < p.

Now AC−bB−c = w(A−1BbCc)w ∈ K1 and thus (B̃)b−c = (C̃)b−c. So
either b = c or B̃ = C̃. We claim that the first case implies the second and
that the latter is impossible. Indeed, if b = c then

1 = (Ã)−(b+1)(Ã)b(B̃)b(C̃)b = (Ã)−(b+1)(ÃC̃B̃)b

and thus B−(b+1)C−b = u(A−(b+1)(ACB)b)u ∈ K1. So since B−(b+1)CBb

is equal to (B−(b+1)C−b)w(B−(b+1)C−b)w and the latter belongs to K1 we
obtain B̃ = C̃ as desired.

Now it is easy to check that

B4 = (BC−1)(v(C−1B)v)(A(BC−1)A−1)((uv)(CB−1)(uv)−1) .

So if B̃ = C̃ then the right hand side belongs to K1. Hence B4 ∈ K1 and
since p is odd also B ∈ K1, a contradiction. Thus |H| = m3.

Finally, notice that CB = (wu)4 and C̃B̃ has order m. So G has index
4m. This completes the proof of our proposition.

Combining Propositions 3.3 and 4.1 we obtain

Theorem 4.2. There exists a nonorientable bordered Klein surface with
maximal symmetry of algebraic genus q with k boundary components and
with soluble M∗-group of automorphisms of derived length 4 if and only if
q = 2m3 + 1, and k = 3m2 for some odd integer m.

5. Nonorientable Riemann surfaces with a soluble group of
automorphisms of maximal possible order

Theorem 5.1. Let G be a soluble group acting as a group of automor-
phisms on a nonorientable Riemann surface X of algebraic genus q ≥ 2.
Then |G| ≤ 24(q− 1).
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P r o o f. By Theorems 2.1 and 2.2 there exists a proper NEC-group Λ
and an epimorphism θ : Λ → G preserving proper periods and period cycles
such that θ(Λ+) = Γ . Let Γ = Ker θ. By (2.3), µ(Γ ) = 2π(q−1) and by the
Hurwitz–Riemann formula |G| = µ(Γ )/µ(Λ) = 2π(q − 1)/µ(Λ). Therefore
the proof will be complete when we show that µ(Λ) ≥ π/12.

Let τ be the signature of Λ and assume that τ has the general form (2.1).
Since Λ is a proper NEC-group, either k 6= 0 or g 6= 0. Moreover, we can
assume that αg + k − 1 = 0 since otherwise either µ(τ) = 0 or µ(τ) ≥ π/2.
So we have either g = 1, α = 1, k = 0, or g = 0, k = 1. In the first case
r ≥ 2 since otherwise µ(τ) < 0. However, if r ≥ 3 then µ(τ) ≥ π/2 whilst if
r = 2 then µ(τ) = 0 for m1 = m2 = 2 and µ(τ) ≥ π/3 otherwise.

So we can assume that g = 0 and k = 1. Now if r ≥ 3 then µ(τ) ≥ π. If
r = 2 and either m1 6= 2 or m2 6= 2 then µ(τ) ≥ π/3 whilst if m1 = m2 = 2
then the period cycle is nonempty and in this case µ(τ) ≥ π/2. So let r = 1.
Then if s ≥ 3, µ(τ) ≥ π/2. If s = 2 then µ(τ) = 0 if m1 = n1 = n2 = 2
and µ(τ) ≥ π/6 otherwise. Thus let r = s = 1. Then µ(τ) < 0 for m1 = 2,
µ(τ) ≥ π/3 for m1 ≥ 4 and µ(τ) = π/12 for m = 3, n = 4, i.e. for
τ = (0; +; [3]; {(4)}).

Therefore let r = 0. Then µ(τ) ≥ π/2 if s ≥ 5. If s = 4 and n1 = n2 =
n3 = n4 = 2 then µ(τ) = 0, whilst µ(τ) ≥ π/6 otherwise. If s ≤ 2 then
µ(τ) < 0. Thus we can assume that s = 3, i.e.

τ = (0; +; [−]; {(n1, n2, n3)}) .

Clearly the presentation of an NEC-group with the above signature does
not depend on the ordering of n1, n2, n3 and the reader can easily check
that, up to this ordering, the only NEC signatures τ of the above form for
which µ(τ) < π/12 are τn = (0;+; [−]; {(2, 3, n)}) where n = 7, 8, 9, 10, 11,
and µ(τ12) = π/12.

An NEC-group Λn with signature τn is generated by three reflections c0,
c1, c2 subject to the relations (c0c1)2 = (c1c2)3 = (c0c2)n = 1 and Λ+ is
generated by c0c1, c1c2. By Theorem 2.2, a= θ(c0), b= θ(c1) and c= θ(c2)
are of order 2, and ab, bc and ac have orders2,3 and n respectively. Therefore
G, the group generated by a, b, c, is an M∗-group with index n. Now since
Γ is nonorientable, ab and bc generate G. Thus G acts as an M∗-group
with index n on a nonorientable Klein surface with maximal symmetry.
From the remark preceding Proposition 3.3 we know that 4 divides n. So
n 6= 7, 9, 10, 11 and it remains to rule out the case n = 8.

Notice first that in that case G(3) 6= 1, since otherwise G = S4, by
Proposition 3.4, and so ac would be an element of order 4. Let G̃ = G/G(4).
Then |G̃| > 24. If some of a, b, c, ab, bc, ac, (ac)2, (ac)4 belongs to G(4)

then |G̃| ≤ 24. So G̃ is a soluble group of derived length 4 acting as an
M∗-group with index 8 on a nonorientable bordered Klein surface with
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maximal symmetry, a contradiction with Proposition 4.1 that turns out to
be crucial here. This finishes the proof.

R e m a r k. We have observed in the proof of the above theorem that if
G is a group of order 24(q− 1) that acts as a group of automorphisms on a
nonorientable Riemann surface of algebraic genus q then G = Λ/Γ , where
Γ is an unbordered nonorientable surface group with area 2π(q− 1) and Λ
is an NEC-group with signature

τ = (0; +; [3]; {(4)}) or (0; +; [−]; {(2, 3, 12)}) .

Now we rule out the first case.

Proposition 5.2. There is no factor group G = Λ/Γ such that G is
soluble, Γ is a nonorientable unbordered surface group, and Λ is an NEC-
group with signature τ = (0; +; [3]; {(4)}).

In the proof of 5.2 we shall need the following technical

Lemma 5.3 ([5]). A finite nilpotent group G cannot be generated by three
elements a, b and c of order 2 such that ab and bc generate the whole G and
ab, bc and ac have orders 2, k and l respectively , where k and l are greater
than 2.

P r o o f o f 5.2. Assume on the contrary that such a factor exists and
denote by θ the canonical projection ΛtoG. Let G have the smallest pos-
sible order. By Theorem 2.1, G = θ(Λ+) ∼= Λ+/Γ+ and by (2.6), Λ+ has
signature (0;+; [3, 3, 4]; {−}). So G/G′∼=Z3. Let G′=Λ1/Γ for some NEC-
group Λ1. Then Λ/Λ1

∼=Z3 and so by Theorem 2.5 in [3], Λ1 has signature
(0;+; [−]; {(4, 4, 4)}). By Theorem 2.1 the images of c0c1 and c1c2 generate
G′. On the other hand, G′ is generated by elements of order 2. So, in particu-
lar, either G′/G′′∼=Z2 or G′/G′′∼=Z2 ⊕ Z2. In the former case G/G′′∼=D3.
By Theorem 2.1, G is generated by θ(x) and θ(c0c1). So θ(c0)θ(c1) 6∈ G′′

and thus θ(c0c1) induces in G/G′′ an element of order 3 since none of θ(c0),
θ(c1) belongs to G′′ as c0 and c1 are conjugate in Λ. On the other hand,
c0c1 is an element of order 4 and hence the order of θ(c0c1) divides 4, a
contradiction. Therefore G/G′′∼= Z2 ⊕ Z2. Inspecting the derived series of
the three nonabelian groups of order 12 we see that G/G′′∼=A4.

We claim that G′′ is abelian. Indeed, assume that G(3) 6=1. Then |G|>
|G/G(3)|. If one of θ(c0), θ(c1) belongs to G(3) then, since c0 and c1 are
conjugate, so does the other and hence G/G(3)∼=Z3. Thus θ(c0), θ(c1) 6∈G(3).
We shall see that θ(c0c1)2 6∈G(3). Indeed, if this were not so then the images
a, b and c of θ(x), θ(c0) and θ(c1) in G/G(3) would have orders 3, 2 and 2
respectively, bc would have order 2 and in addition a and bc would generate
G/G(3). Using the defining relations for Λ we see that (c0c1x)3 = 1. So abc
has order 3. But the group generated by two elements of orders 2 and 3
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whose product has order 3 is obviously isomorphic to A4, a contradiction.
Thus bc has order 4 and so by Theorems 2.1 and 2.2, G/G(3) = Λ/Γ1 for
some nonorientable surface group, which contradicts the minimality of G.
So G′′ is abelian.

Now we show that G′ is a 2-group. In fact, G′ = Λ1/Γ ∼= Λ+
1 /Γ+.

By (2.6), Λ+
1 has signature (0;+; [4, 4, 4]; {−}). We already know that

G′/G′′ ∼= Z2 ⊕ Z2. Let G′′ = Λ2/Γ+ for some NEC-group Λ2 contained
in Λ+

1 . Then Λ+
1 /Λ2

∼= Z2 ⊕ Z2 and so, by Corollary 2.3 in [2] and by the
Hurwitz–Riemann formula, Λ2 has signature (0; +; [2, 2, 2, 2, 2, 2]; {−}). So,
in particular, G′′ is generated by elements of order 2 and since it is abelian
we deduce that G′ is a 2-group.

Now from G′ = Λ1/Γ and from Theorems 2.1 and 2.2 we see that G′ has
three elements A, B and C of order 2, AB, BC and AC have order 4 and
any two of AB, BC, AC generate G′. We claim that this is impossible.

Indeed, assume that H is a 2-group so generated of smallest possible
order. It is easy to see that there are no such groups of orders 8 and 16.
Thus |H| ≥ 32. Let H0 be a normal subgroup of H of order 2. By the
minimality of H at least one of A, B, C, (AB)2, (BC)2, (AC)2 belongs
to H0. But if one of A, B, C belongs to H0 then clearly |H/H0| ≤ 8, a
contradiction. Now if (AB)2 ∈ H0 then, since AB and BC generate H,
one of (BC)2, (AC)2 belongs to H0, by Lemma 5.3, and so |H/H0| ≤ 8, a
contradiction again. This completes the proof.

Combining Theorems 2.1, 2.2, Proposition 5.2 and the remark preceding
it we obtain at once the following

Corollary 5.4. Let G be a soluble group of order 24(q − 1) acting as
a group of automorphisms on a nonorientable Riemann surface of algebraic
genus q. Then G is an M∗-group with index 12 acting on a nonorientable
bordered Klein surface with maximal symmetry of algebraic genus q′ = 2q−
1, having k = q− 1 boundary components.

We know from Proposition 2.4 that there is no soluble group of derived
length 3 acting as an M∗-group with index 12 on a nonorientable bordered
Klein surface with maximal symmetry. Moreover, by Theorem 4.2, such a
group G of derived length 4 exists if and only if its order is assumed to be
24 · 33. So we have the following

Theorem 5.5. (1) A soluble group of derived length d ≤ 3 acting as a
group of automorphisms on a nonorientable Riemann surface of algebraic
genus q ≥ 2 has strictly fewer than 24(q− 1) elements.

(2) For d = 4 the bound 24(q− 1) is attained if and only if q = 33 + 1.

Using a construction of Singerman (see Section 5 of [20]) one can easily
prove the following
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Theorem 5.6. For any odd integer m and for q = 27m28 +1 there exists
a nonorientable Riemann surface of algebraic genus q admitting a soluble
group of automorphisms of derived length 5 and of order 24(q− 1).

Finally, observe that starting with the above result and iterating the
construction of Singerman, one can show that the bound 24(q−1) is attained
for soluble groups of any derived length d ≥ 5 for infinitely many values of q.

We finish the paper with the following problems concerning Theorem 5.5
(see [8] and [11] for results concerning orientable Riemann surfaces).

Problems. (1) Given d ≤ 3, find a bound for the order of a soluble
group of derived length d acting on a nonorientable Riemann surface of
algebraic genus q ≥ 2.

(2) Find a bound for the order of a soluble group of derived length 4
acting on a nonorientable Riemann surface of algebraic genus q ≥ 2, q 6=
33 + 1.

Acknowledgment. I would like to thank the referee for some helpful
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