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Open subspaces of countable dense homogeneous spaces

by

Stephen Wat s on (North York, Ont.) and Petr S imon (Praha)

Abstract. We construct a completely regular space which is connected, locally con-
nected and countable dense homogeneous but not strongly locally homogeneous. The
space has an open subset which has a unique cut-point. We use the construction of a
C1-diffeomorphism of the plane which takes one countable dense set to another.

1. Introduction and history. In the 1895 volume of Mathematische
Annalen, Georg Cantor and Paul Stäckel, colleagues at Halle, wrote con-
secutive articles. In Cantor’s paper [8], an argument, the “back-and-forth”
variation of which has become standard (see, for example, [11]), was used to
show, among other things, that, for any countable dense subsets A and B of
the real line R, there is a homeomorphism h : R → R which takes A onto B
in a monotonic manner. In Stäckel’s paper [33], an ordinary induction was
used to show that, for any countable dense subsets A and B of the complex
plane C, there is an analytic function h : C → C which takes A into B.
An English language translation and slight simplification of Stäckel’s proof
was given by Burckel and Saeki in 1983 [7]. These two papers represent
the two main lines of inquiry into mappings of one countable dense set into
another.

In 1925, Franklin [21], unaware of Stäckel’s work, showed that, for any
countable dense subsets A and B of R, there is a function f : C → C which
is analytic on a neighborhood of R and which takes A onto B in a monotonic
manner. He did this using Cantor’s back-and-forth technique and Stäckel’s
construction of a sequence of analytic functions converging uniformly on
each closed disk (but using real coefficients). Unfortunately, he defined an
equation between an infinite polynomial in x and an infinite polynomial
in y and had to resort to the implicit function theorem to get a solution.
Franklin also pointed out that the analytic homeomorphisms of C are the
nonconstant linear transformations and thus that h cannot, in general, be
taken to be a bijection.

In 1957, Erdős [13], [22] (see also [36]) asked whether there is a nonlinear
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real-analytic h : R → R such that h−1(Q) = Q. In 1958, Melzak [26] an-
swered Erdős without realizing it by showing that Franklin’s proof can take
care of countably many pairs An and Bn at once. In 1963, Neumann and
Rado [28], without being aware of either Franklin or Stäckel showed that
there is a nonpolynomial analytic h : C → C which is an order-preserving
bijection on R such that h(Q) = Q. Neumann and Rado unfortunately
relied on the field structure of Q but at least improved Melzak’s result by
getting h to be analytic everywhere. In 1970, Barth and Schneider [5] ex-
tended the result of Neumann and Rado to get h(A) = B for arbitrary
countable dense subsets of R but used some less elementary complex anal-
ysis. Their result answered another 1957 question of Erdős. Barth and
Schneider knew of Franklin and Neumann and Rado but remained unaware
of Stäckel.

Meanwhile, the problem for countable dense subsets of the complex plane
continued to attract interest. In 1967, Erdős [12] asked if, whenever A and
B are countable dense subsets of C, there is an analytic h : C → C such that
h−1(B) = A. The same year, Maurer [25] showed that one can get h(A) = B
by defining y as an infinite polynomial of x by a simple back-and-forth
argument which recovered the simplicity of Stäckel’s method. Nevertheless,
Maurer was unaware of Stäckel, Franklin and Neumann and Rado. In 1972
and 1974, Maurer’s technique was applied to countable dense sets of R
independently by Sato and Rankin [32] and Nienhuys and Thiemann [29]
to obtain the result of Barth and Schneider: If A and B are countable
dense subsets of R, then there is an analytic h : C → C which is an order-
preserving bijection on R such that h(A) = B. This problem even appeared
in the American Mathematical Monthly in 1975 [23].

In 1972, Barth and Schneider [4] answered Erdős’ 1967 question by using
a little more complex analysis and showed that one can get h−1(B) = A.
In 1976, Dobrowolski [10] showed that, although analytic homeomorphisms
have been ruled out, one can find real-analytic isomorphisms of R2 which
map one arbitrary countable dense set to another. It is a C1-diffeomorphism
which we will need in this paper. In 1987, Morayne [27] showed that one can
get analytic homeomorphisms of C2 taking one countable dense subset of
C2 to another. He also showed that one can get analytic homeomorphisms
of C2 taking one countable dense subset of R2 to another (thus providing
another proof of Dobrowolski’s theorem).

The study of the existence of homeomorphisms taking one countable
dense set to another was extended to more general spaces by Fort [20] in
1962. He showed that the product of countably many manifolds with bound-
ary (for example, the Hilbert cube) admit such homeomorphisms. In 1972,
the abstract study was begun by Bennett [6] who called such spaces “count-
able dense homogeneous” or “CDH”. Bennett established two key results.
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In 1954, Ford [19] had defined a space X to be strongly locally homogeneous
(SLH) if there is a base of open sets U such that, for each x, y ∈ U , there
is a homeomorphism of X which takes x to y but is the identity outside U .
Bennett showed, first, that CDH connected first countable spaces are ho-
mogeneous and, second, that SLH locally compact separable metric spaces
are CDH. Bennett also asked a series of questions: (1) “Are CDH continua
locally connected?”, (2) “Are CDH continua n-homogeneous?” and (3) “Is
the product of CDH spaces CDH?”. Fitzpatrick [14], in the same year, an-
swered question (1) by showing that CDH connected locally compact metric
spaces are locally connected. Ungar [37], in 1978, showed that, for compact
metric spaces, CDH is equivalent to n-homogeneous, answering question (2).
Question (3) was answered in 1980 with a counterexample by Kuperberg,
Kuperberg and Transue [24].

Bennett’s influential theorems above have led to a series of results: In
1969, de Groot [9] weakened locally compact to complete (see proof on p. 317
of [2]) in Bennett’s second theorem. In 1974, Ravdin [30] replaced SLH by
“locally homogeneous of variable type” (which implies “representable” which
is apparently weaker than SLH) for complete separable metric spaces. In
1974, Fletcher and McCoy [18] showed that “representable” complete sep-
arable metric spaces are CDH while in 1976, Bales [3] showed that “repre-
sentable” is equivalent to SLH in any case.

In 1982, van Mill [38] put an end to the sequence of weakenings of Ben-
nett’s second theorem by constructing a subset of R2 which is connected
locally connected and SLH but not CDH. In 1989, Saltsman [31] showed
that the subspace of the plane consisting of those points whose coordi-
nates are either both rational or both irrational is such a subset (this sub-
space had been studied in the early 1980’s by Eric van Douwen). In 1985,
Steprans and Zhou [35] contributed another lower bound by constructing a
separable manifold (thus SLH and locally compact) which is not CDH (see
also [39]).

Meanwhile, in 1984, Fitzpatrick and Lauer [17] showed that the assump-
tion of first countability in Bennett’s first theorem was unnecessary.

Ungar raised a new question in 1978: Is each open subspace of a CDH
space CDH? Jan van Mill also raised a question in 1982: Are connected
CDH spaces SLH? In 1985, Fitzpatrick and Zhou [15] answered these two
questions negatively for the class of Hausdorff spaces. Unfortunately, their
spaces were not regular.

In this paper, we construct a completely regular space which answers
the last two questions and which uses the classical tradition of constructing
smooth functions on R2 which take one countable dense set to another. In
fact, we need the construction of a C1-diffeomorphism of the plane which
takes one countable dense set to another.
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We finish this section with a short list of open problems:

1. (a) Are CDH connected metric spaces SLH?
(b) Are CDH continua SLH?
(c) Are CDH connected compact Hausdorff spaces SLH?

2. (a) Are open subsets of CDH metric spaces CDH?
(b) Are open subsets of CDH compact Hausdorff spaces CDH?
(c) Are open subsets of CDH continua CDH (or even homogeneous)?

3. Are CDH connected spaces 2-homogeneous?

(Added in proof : W. L. Saltsman has recently constructed, under CH, a
connected CDH subset of the plane which is not SLH.) We also warmly
recommend the article by Ben Fitzpatrick and Zhou Hao-Xuan in Open
Problems in Topology [16].

2. The example

Theorem 1. There is a completely regular connected locally connected
space which is CDH and which has an open subset with a unique cut-point.

P r o o f. The space is the Euclidean plane with a topology which is larger
than the Euclidean topology. Whenever z : [0, 1] → R2 is a continuously
differentiable simple closed curve (that is, z(0) = z(1) = p for some p) and
z′(0) = −z′(1) 6= 0, we write R2− rng(z) as the free union of two nonempty
open sets and denote the one with compact closure as A(z). We let each
A(z)− {z(0)} be closed and denote the new topology by τ .

This topology is completely regular since for any such curve z0, there is
another such curve z1 “inside” z0 and a homotopy m : [0, 1] × [0, 1] → R2

such that m0 = z0, m1 = z1, m({0, 1} × [0, 1]) = p and m is one-to-one.
Let π be the projection of an ordered pair onto the second coordinate. The
real-valued continuous function π ◦ m−1 can be extended to a function t
which is zero outside z0 and one inside z1. We also define t(p) = 1. Thus t
is the continuous real-valued function which witnesses complete regularity
for these additional sub-basic open sets. The reader may wish to compare
this construction with that of Fitzpatrick and Lauer [17]. Indeed, if we had
chosen instead to construct a larger topology in which we remove the simple
closed curves but not their interiors (or simply remove arcs), we would have
a Hausdorff space with all the other properties of τ but this topology would
not be completely regular. The space defined in this paper can be viewed
as “fattening up” the sets which can be removed in order to “squeeze in”
the necessary continuous real-valued functions.

If h : R2 → R2 is a one-to-one onto mapping with continuous nonzero
partial derivatives, then elementary considerations (see pp. 71 and 107 of
[1]) imply that h is a homeomorphism and that h−1 also has continuous
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nonzero partial derivatives. Continuously differentiable simple closed curves
z : [0, 1] → R2 are preserved by h and z′(0) = −z′(1) 6= 0 implies h(z)′(0) =
−h(z)′(1) 6= 0 by a simple calculation. Thus if h is a C1-diffeomorphism,
then h−1 is also a C1-diffeomorphism and the set of new base elements is
closed under h and h−1. Thus we deduce that h is a homeomorphism.

A countable set is dense in τ if and only if it is dense in the Euclidean
topology. Using Dobrowolski’s result that there is a C1-diffeomorphism
which takes arbitrary countable dense sets to arbitrary countable dense sets,
we conclude that the plane with the topology τ is CDH.

Let U = {(a, b) ∈ R2 : |b| > a2} ∪ {(0, 0)}. The open set U has a
point (0, 0) whose removal leaves the set disconnected. We shall prove that
(R2, τ) is connected. We will then deduce that, since each open ball of R2

is C1-diffeomorphic to R2, U is connected. This also implies that U has no
other cut points and also that τ is a locally connected topology. We can
then deduce that U is not CDH and so that CDH is not open hereditary.
Furthermore, the plane with the topology τ is not SLH answering van Mill’s
question.

3. The proof of connectedness. We prove a lemma which is clearly
sufficient:

Lemma 1. Let e denote the usual Euclidean topology of the plane R2.
Let τ be another topology. If τ satisfies the following :

(1) (∀V ∈ τ) V ⊂ cle(inte(V )),
(2) (∀x ∈ R2)(∀V ∈ τ) x ∈ V ⇒ limr→0+ µ(inte(V ) ∩B(x, r)) = πr2,

where µ denotes Lebesgue measure and B(x, r) denotes {y ∈ R2 : d(x, y)<r},
then (R2, τ) is connected.

P r o o f. Aiming for a contradiction, assume that A and B are disjoint
nonempty τ -open subsets which cover R2. By (1), inte(A) 6= ∅ 6= inte(B),
hence there are a1 ∈ inte(A) and b1 ∈ inte(B) and 0 < r1 < 1 such that
B(a1, r1) ⊂ inte(A) and B(b1, r1) ⊂ inte(B).

Let f : [0, 1] → [0, 1] be defined by

f(t) =
µ(inte(A) ∩B((1− t)a1 + tb1, r1))

πr2
1

.

We can check that f(0) = 1 and f(1) = 0 and that f is continuous. Hence
there is some t1 ∈ (0, 1) with f(t1) = 1/2. Let x1 = (1− t1)a1 + t1b1.

The ball B(x1, r1) cannot be contained in A, because otherwise it is
contained in inte(A), which is impossible by f(t1) = 1/2 < 1. The ball
B(x1, r1) cannot be contained in B, because then it would be disjoint from
inte(A), which is again impossible by f(t1) = 1/2 > 0. But by (1), we now
have inte(A) ∩ B(x1, r1) 6= ∅ and inte(B) ∩ B(x1, r1) 6= ∅. Therefore there
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are a2 ∈ inte(A)∩B(x1, r1), b2 ∈ inte(B)∩B(x1, r1) and r2 < 1/2 such that
B(a2, r2) ⊂ inte(A) ∩ B(x1, r1) and B(b2, r2) ⊂ inte(B) ∩ B(x1, r1). Apply
the same reasoning as before and continue. As a result, one finds a nested
sequence {B(xn, rn) : n ∈ ω} of open balls with a one-point intersection z
such that

(∀n ∈ ω)
µ(inte(A) ∩B(xn, rn))

πr2
n

=
1
2

.

Since A ∪ B = R2, let us assume that z ∈ A (the other case is analogous).
Choose some τ -neighborhood V of z such that V ⊂ A. By (2), there is some
R > 0 such that

(∀r > 0) r < R ⇒ µ(inte(V ) ∩B(z, r))
πr2

>
7
8

.

Choose n ∈ ω large enough to make sure that d(z, xn) < R/2 and rn < R/2.
Let r = d(z, xn) + rn. Since z ∈ B(xn, rn), d(z, xn) < rn and consequently
rn > r/2. Now B(z, r)− inte(V ) ⊃ B(xn, rn)− inte(V ) and so

µ(B(z, r)− inte(V )) ≥ µ(B(xn, rn)− inte(V )) ≥ µ(B(xn, rn)− inte(A)) .

Thus we can calculate
µ(B(z, r)− inte(V ))

πr2
≥ µ(B(xn, rn)− inte(A))

πr2
≥

1
2πr2

n

πr2
>

1
2 ·

1
4r2

r2
=

1
8

.

Notice that r < R and that therefore

1 =
µ(B(z, r))

πr2
=

µ(B(z, r) ∩ inte(V ))
πr2

+
µ(B(z, r)− inte(V ))

πr2
>

7
8

+
1
8

= 1 ,

which is a contradiction and completes the proof.

The first author wishes to thank Zhou Hao-Xuan for suggesting this
problem. This space was first presented in Chengdu, China in August, 1986
by the first author. The connectedness was first proved by the second author.
Connectedness was also proved independently by Jo Heath, Ben Fitzpatrick
and Michael Wage. The open subspace was found while discussing the space
with E. K. van Douwen and Alan Dow.
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