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I thank Professor Boju Jiang for pointing out that Theorem 2.3 of [3]
which is quoted as Lemma 1.2 of [1], is false in general. Consequently,
without additional hypotheses, the main results in [1, §2] do not hold in the
generality as stated. Let f, g : M1 → M2 be as in [1, 2.1]. In addition, we
assume that M1, M2 are compact, M1 is triangulable and π1(M1) is finite
so that the universal cover M̃1 is also compact. By a result of Schirmer, we
may assume without loss of generality that the coincidence set of f and g
is given by Cf,g = {x1, . . . , xk} such that each xi is a distinct coincidence
class. It follows from [1, §1] that each root class of η : M̃1 → M2 must lie
entirely inside the fiber p−1

1 (xi) over xi for some i. Following [2, Cor. 5],
the root classes of η have the same root index. Furthermore, η has exactly
|K| = |π1(M2)| root classes if deg η 6= 0. It is shown in the proof of [1,
2.1] that every point of p−1

1 (xi) has the same root index which coincides
with the coincidence index at xi. By summing all the indices, we obtain
deg η = L(f, g) · |π1(M1)|.

C a s e (I): If K is infinite, then deg η = 0 and hence every xi is inessen-
tial. Thus N(f, g) = 0 and f and g are deformable to be coincidence free.

C a s e (II): Suppose that K is finite. It follows that deg η = |K| · ω =
L(f, g) · |π1(M1)| where ω is the root index of a root class of η. If L(f, g) = 0
then deg η = 0 and hence N(f, g) = 0. Again, f and g are deformable to be
coincidence free. Let r = |π1(M2)|/|π1(M1)|. Now suppose that L(f, g) 6= 0.
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If π1(M1) = 1 then M1 = M̃1 and the xi’s have the same coincidence (root)
index. Thus, N(f, g) divides L(f, g). If ω = ±1, then every point in p−1

1 (xi)
is a root class of index ±1. Therefore, N(f, g) = |L(f, g)| = r. Moreover, if
gcd(ω, |π1(M1)|) = 1, it follows that every point in p−1

1 (xi) is a root class,
which implies that the xi’s have the same coincidence index. Therefore,
N(f, g) divides L(f, g).

We now summarize the above in the following

Theorem A. Let f, g : M1 → M2 be maps between closed , connected ,
triangulable and orientable n-manifolds (n ≥ 3) such that |π1(M1)| < ∞
and M2 = M̃2/K where M̃2 is a connected simply connected topological
group and K is a discrete subgroup. If K is infinite or L(f, g) = 0 then
N(f, g) = 0. Hence f and g are deformable to be coincidence free. If K is
finite and we let r = |K|/|π1(M1)|, ω = L(f, g)/r then

(1) π1(M1) = 1 ⇒ N(f, g) divides L(f, g);
(2) ω = ±1 ⇒ N(f, g) = |L(f, g)| = r;
(3) gcd(ω, |π1(M1)|) = 1 ⇒ N(f, g) divides L(f, g) and N(f, g) = r.

Cor. 2.2 of [1] will hold true if |π1(M1)| < ∞. When M1 = M2, r = 1.
Thus, for the fixed point case, we replace 2.3 and 2.4 of [1] by the following

Corollary B. Let M1,M2 be as in Theorem A and M1 = M2 = M.
Let f : M → M be a map. If L(f) = 0 then N(f) = 0 and f is deformable
to be fixed point free. If (i) L(f) = ±1 or (ii) gcd(L(f), |π1(M1)|) = 1, then
N(f) = 1.

It is worthwhile to note that if M1 is compact and M2 is a compact Lie
group, then it can be shown easily, along the lines of [1], that the coincidence
classes of f and g are the root classes of ϕ, where f, g : M1 → M2 and
ϕ : M1 → M2 is given by ϕ(x) = f(x)−1g(x). Furthermore, the coincidence
index of f and g is the same as the root index of ϕ. Hence we have the
following

Theorem C. Let f, g : M1 → M2 be maps from a closed connected
oriented n-manifold M1 (n ≥ 1) to a compact connected Lie group M2 of
the same dimension. If the Lefschetz coincidence number L(f, g) = 0 then
the Nielsen coincidence number N(f, g) = 0. Otherwise, N(f, g) > 0 and
N(f, g) divides L(f, g).

I thank the referee for some helpful suggestions and comments.
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