Corrections to "On the computation of the Nielsen numbers and the converse of the Lefschetz coincidence theorem"

(Fund. Math. 140 (1992), 191-196)

by

Peter Wong (Lewiston, Me.)

I thank Professor Boju Jiang for pointing out that Theorem 2.3 of [3] which is quoted as Lemma 1.2 of [1], is false in general. Consequently, without additional hypotheses, the main results in [1, §2] do not hold in the generality as stated. Let $f, g: M_1 \to M_2$ be as in [1, 2.1]. In addition, we assume that M_1, M_2 are compact, M_1 is triangulable and $\pi_1(M_1)$ is finite so that the universal cover \widetilde{M}_1 is also compact. By a result of Schirmer, we may assume without loss of generality that the coincidence set of f and g is given by $C_{f,g} = \{x_1, \ldots, x_k\}$ such that each x_i is a distinct coincidence class. It follows from [1, §1] that each root class of $\eta : \widetilde{M}_1 \to M_2$ must lie entirely inside the fiber $p_1^{-1}(x_i)$ over x_i for some i. Following [2, Cor. 5], the root classes of η have the same root index. Furthermore, η has exactly $|K| = |\pi_1(M_2)|$ root classes if deg $\eta \neq 0$. It is shown in the proof of [1, 2.1] that every point of $p_1^{-1}(x_i)$ has the same root index which coincides with the coincidence index at x_i . By summing all the indices, we obtain deg $\eta = L(f,g) \cdot |\pi_1(M_1)|$.

Case (I): If K is infinite, then deg $\eta = 0$ and hence every x_i is inessential. Thus N(f,g) = 0 and f and g are deformable to be coincidence free.

Case (II): Suppose that K is finite. It follows that deg $\eta = |K| \cdot \omega = L(f,g) \cdot |\pi_1(M_1)|$ where ω is the root index of a root class of η . If L(f,g) = 0 then deg $\eta = 0$ and hence N(f,g) = 0. Again, f and g are deformable to be coincidence free. Let $r = |\pi_1(M_2)|/|\pi_1(M_1)|$. Now suppose that $L(f,g) \neq 0$.

¹⁹⁹¹ Mathematics Subject Classification: Primary 55M20.

 $Key\ words\ and\ phrases:$ fixed points, coincidences, roots, Lefschetz number, Nielsen number.

If $\pi_1(M_1) = 1$ then $M_1 = \widetilde{M}_1$ and the x_i 's have the same coincidence (root) index. Thus, N(f,g) divides L(f,g). If $\omega = \pm 1$, then every point in $p_1^{-1}(x_i)$ is a root class of index ± 1 . Therefore, N(f,g) = |L(f,g)| = r. Moreover, if $gcd(\omega, |\pi_1(M_1)|) = 1$, it follows that every point in $p_1^{-1}(x_i)$ is a root class, which implies that the x_i 's have the same coincidence index. Therefore, N(f,g) divides L(f,g).

We now summarize the above in the following

THEOREM A. Let $f, g: M_1 \to M_2$ be maps between closed, connected, triangulable and orientable n-manifolds $(n \geq 3)$ such that $|\pi_1(M_1)| < \infty$ and $M_2 = \widetilde{M}_2/K$ where \widetilde{M}_2 is a connected simply connected topological group and K is a discrete subgroup. If K is infinite or L(f,g) = 0 then N(f,g) = 0. Hence f and g are deformable to be coincidence free. If K is finite and we let $r = |K|/|\pi_1(M_1)|, \omega = L(f,g)/r$ then

- (1) $\pi_1(M_1) = 1 \Rightarrow N(f,g)$ divides L(f,g);
- (2) $\omega = \pm 1 \Rightarrow N(f,g) = |L(f,g)| = r;$
- (3) $gcd(\omega, |\pi_1(M_1)|) = 1 \Rightarrow N(f, g)$ divides L(f, g) and N(f, g) = r.

Cor. 2.2 of [1] will hold true if $|\pi_1(M_1)| < \infty$. When $M_1 = M_2$, r = 1. Thus, for the fixed point case, we replace 2.3 and 2.4 of [1] by the following

COROLLARY B. Let M_1, M_2 be as in Theorem A and $M_1 = M_2 = M$. Let $f: M \to M$ be a map. If L(f) = 0 then N(f) = 0 and f is deformable to be fixed point free. If (i) $L(f) = \pm 1$ or (ii) $gcd(L(f), |\pi_1(M_1)|) = 1$, then N(f) = 1.

It is worthwhile to note that if M_1 is compact and M_2 is a compact Lie group, then it can be shown easily, along the lines of [1], that the coincidence classes of f and g are the root classes of φ , where $f, g : M_1 \to M_2$ and $\varphi : M_1 \to M_2$ is given by $\varphi(x) = f(x)^{-1}g(x)$. Furthermore, the coincidence index of f and g is the same as the root index of φ . Hence we have the following

THEOREM C. Let $f, g: M_1 \to M_2$ be maps from a closed connected oriented n-manifold M_1 $(n \ge 1)$ to a compact connected Lie group M_2 of the same dimension. If the Lefschetz coincidence number L(f,g) = 0 then the Nielsen coincidence number N(f,g) = 0. Otherwise, N(f,g) > 0 and N(f,g) divides L(f,g).

I thank the referee for some helpful suggestions and comments.

References

 P. Wong, On the computation of the Nielsen numbers and the converse of the Lefschetz coincidence theorem, Fund. Math. 140 (1992), 191–196.

Corrections

- [2] R. Brooks, Certain subgroups of the fundamental group and the number of roots of f(x) = a, Amer. J. Math. 95 (1973), 720–728.
- [3] R. Brooks and P. Wong, On changing fixed points and coincidences to roots, Proc. Amer. Math. Soc. 115 (1992), 527–533.

DEPARTMENT OF MATHEMATICS BATES COLLEGE LEWISTON, MAINE 04240 U.S.A.

> Received 24 April 1992; in revised form 22 May 1992