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Abstract. We review the known facts and establish some new results concerning
continuous-restrictions, derivative-restrictions, and differentiable-restrictions of Lebesgue
measurable, universally measurable, and Marczewski measurable functions, as well as
functions which have the Baire properties in the wide and restricted senses. We also
discuss some known examples and present a number of new examples to show that the
theorems are sharp.

1. Introduction. “Measurability” means measurability with respect to
one of the σ-algebras:

L
ր

U
ր ց

B (s)
ց ր

Br
ց

Bw

where B = the Borel sets and U , L, and (s) represent the universally measur-
able, Lebesgue measurable, and Marczewski measurable sets, respectively.
Br represents the sets with the Baire property (restricted sense) and Bw

represents the sets with the Baire property (wide sense). The classes B,
L, Bw, and Br are well known and definitions can be found in [10], and
elsewhere. A set M ∈ U if M is measurable with respect to the completion
of every Borel measure on the space [15]. A set M ∈ (s) if every perfect
subset of the space has a perfect subset which is a subset of or misses M
(see [15] and [19]). The properties B, U , (s), Br, and Bw have meaning in
any complete separable metric space without isolated points, and L has its
usual meaning in the reals, R. λ will be used to denote Lebesgue measure.

The σ-ideals associated with these σ-algebras are the countable sets,
the universal null sets, U0, the Lebesgue null sets, L0, the Marczewski null
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sets, (s0), the perfectly meagre or always first category sets, AFC, and
the first category sets, FC. The σ-ideals consist of the sets, every subset
of which belongs to the corresponding σ-algebra, and these classes are of
course related as follows:

L0
ր

U0
ր ց

count (s0)
ց ր

AFC
ց

FC

2. Lebesgue measurable functions. The best known theorem of the
type we are interested in is the following:

Theorem 1. If f : R → R is L-measurable, then

1) there exists a non-L0 set M (indeed , for every ε > 0, there exists M
with λ(M c) < ε) such that f |M is continuous [12],

2) there exists a co-L0 set M and a continuous (a.e. differentiable) F :
R → R such that f |M = F ′|M [13],

3) there exists a perfect set P such that f |P

(i) is monotonic [7],
(ii) is C∞ (relative to P ) [11],
(iii) = g|P for some C1 g : R → R [1].

R e m a r k s. Parts 1) and 2) are sometimes referred to as “Lusin’s 1st
and 2nd Theorems”. Part 3) was originally proved for continuous functions,
but the proofs for the measurable case follow easily from part 1) and the
results indicated in the references given.

Example 1.1. It is well known that you cannot make the set M of part
1) be co-L0, even for a B1 (Baire-1) function. For example, if C1, C2, . . .
is a sequence of disjoint Cantor sets such that λ[(C1 ∪ C2 ∪ . . .)c] = 0, and
f(x) = 1/n for x ∈ Cn, and f(x) = 0 otherwise, then f is such a B1

function. This example also shows that you cannot make the set M of part
1) be co-(s0) because if M is co-(s0), M intersects every Cantor set. This
means that M would be dense in every Cn and also dense in (C1∪C2∪ . . .)c,
so that f |M could not be continuous at the elements of M ∩ Cn.

Example 1.2. It is known that you can make the set M of part 1) be
dense in R because of Blumberg’s Theorem [2] but that you cannot make M
simultaneously dense and non-L0 because of the example described above.
Ceder has actually shown (see the proof of Example 2 of [6]) that you cannot
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make the set M of part 1) simultaneously dense and of cardinality c (you
can obtain this for Bw- and (s)-measurable f , as we will see below).

Example 1.3. It is known that you cannot make the set M of part 1)
non-FC, even (assuming CH) for a U -measurable f such as that described
in Example 1 of [4]. That same example shows that you cannot make the
set M of part 2) be non-FC. If such an M and F existed, f |M could be
extended to a Borel function g : R → R. Then g could be restricted to a
co-FC set N so that g|N is continuous (this follows from Theorem 2 below).
But it would follow that M ∩ N is non-FC and f |(M ∩ N) = g|(M ∩ N) is
continuous. This is a contradiction.

Example 1.4. Known continuous badly non-differentiable functions,
such as the almost nowhere approximately differentiable functions of Jar-
ńık [8], show that you cannot make the set P of part 3) be non-L0 or non-FC.

Notation. Before discussing the next two examples, we need to de-
fine certain notations. Cn denotes the n times continuously differentiable
functions as usual. Dn denotes the n times differentiable functions. “D1”
(with the quotes) denotes the functions which are differentiable in the ex-
tended sense, i.e. allowing ±∞ as possible derivative values (continuity of
the function is required). “C1” denotes those “D1” functions f such that
the extended real-valued function f ′ is continuous in the extended sense.
In general, “Dn” denotes those functions f in Cn−1 such that f (n−1) is in
“D1”, and “Cn” denotes those functions f in “Dn” such that f (n) is contin-
uous in the extended sense. If 0 < α ≤ 1, then Lipα denotes those functions
f such that {[f(x) − f(y)]/[|x − y|α]} is a bounded set, and C1+α denotes
those functions f in C1 such that f ′ is in Lipα. These properties are related
as follows:

C1+1 → C1+α Lip1 → Lipα

ր ց ր ց
C2 → D2 → “D2” → C1 → D1 → “D1” → C

ց ր ց ր
“C2” “C1”

where C denotes the continuous functions. Note that C2 and C1+1 are not
the same. No implications between these properties not indicated in the
diagram hold.

Example 1.5. The question of whether the function g of 3)(iii) could
be made to be C2, even for continuous f , was stated in [1]. A. Olevskĭı
announced that he had obtained a solution to this problem in his lecture
at the 14th Summer Symposium in Real Analysis held in June, 1990. In
particular, he announced that there exists a Lip1 f : R → R such that for
every 0 < α < 1 and every g ∈ C1+α, the intersection f ∩ g is countable.
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[17] is a summary of Olevskĭı’s talk and includes a sketch of how that ex-
ample is to be constructed. Let r(x) = 1 for 0 < x < 1/2 and r(x) = −1
for 1/2 < x < 1, and let r be periodically extended to R. Then, for small
enough q ∈ (0, 1) and for rapidly increasing integers {vn}, the function

F (x) =
x∫

0

∑

n∈N

qnr(vnt) dt

will have the desired properties. N is the set of positive integers. The com-
plete proof of this has not appeared yet, but this author was able to work
out a proof to his own satisfaction that the example works, for example,
when q = 0.1 and vn = nn!. We also noticed in the process that F has no
uncountable intersection with any D2 g : R → R, but that F does have a

perfect intersection with a “C2” g : R → R. We now prove this latter fact.
We will be primarily interested in the derivative function f(x) = F ′(x),
which is the function defined by the infinite sum inside the integral sign
above. This function is defined only at the x’s outside of the countable set
of numbers {k/nn! : k an integer, n ∈ N}. For each n ∈ N, we will find it
convenient to notice that the graph of f lies in the union of a certain col-
lection of 2(nn!) disjoint “boxes” (interiors of rectangles with sides parallel
to the axes).

For n = 1, for example, it is easy to see that the graph of f lies in the
union of the two boxes (0, .5)×(8/90, 10/90) and (.5, 1)×(−8/90, −10/90).
We denote the ordinates of the middles of these two boxes with the generic
notation m1 = ±.1. The height of both boxes is h1 = 2/90 and the width
of both boxes is w1 = 1/2.

For n = 2, 22!/11! = 24 disjoint boxes are chosen from each of the two
boxes of Stage 1, as indicated in Figure 1.

Fig. 1

b0

.1

b1
0

.25 .5 1.0

−.1



Restrictions of measurable functions 89

We denote the (4 different) ordinates of the middles of the resulting 48
boxes by the generic notation m2 = m1 ± (.1)2. The height of all 24 boxes
is h2 = 2(.1)2/9 and the width of all 24 boxes is w2 = 1/(2 · 4!).

In general, at Stage n, nn!/(n − 1)n−1! disjoint boxes are chosen from
each of the 2(n − 1)n−1! boxes of Stage n − 1 in a similar fashion to the
above. We denote the (2n different) ordinates of the middles of the re-
sulting 2(nn!) boxes by the generic notation mn = mn−1 ± (.1)n. The
height of all 2(nn!) boxes is hn = 2(.1)n/9 and the width of all boxes is
wn = 1/(2nn!). Notice that as n increases, the boxes are getting very nar-
row, in that limn→∞ hn/wn = +∞.

If for each n, Bn denotes the union of the 2(nn!) boxes of Stage n, then
the graph of f is equal to the set

⋂
n∈N

Bn.
Now we will describe a perfect set P ⊆ [0, 1] and a “C2” function G such

that F (x) = G(x) for each x ∈ P . We will actually describe the derivative
g = G′ of G.

First, we pick two boxes b0 and b1 (with X-projections I0 and I1, re-
spectively) from among the 24 boxes constructed inside the box (0, .5) ×
(8/90, 10/90) in Stage 2 above (see Figure 1). Box b0 will be the “upper”
box to the left of but closest to the vertical line through the point x = .25
and box b1 will be the “lower” box to the right of but closest to the same
vertical line. In this first step, we can see that I0 = [.25 − 2/48, .25 − 1/48]
and I1 = [.25 + 1/48, .25 + 2/48].

Let s2 denote the slope of the slanted line extending from the lower left
corner of the box b0 to the upper right corner of the box b1. Notice that
s2 = c(22!)(.1)2, for a negative constant c, and that the slope of a line
between any point of box b0 and any point of box b1 is less than s2.

Also notice that because of the symmetry and the fractal nature of the
graph of f , it is true that if 0 < ε < 1/24, u = (.25 − 1/24) − ε, and
v = (.25 + 1/24) + ε, then

v∫

u

f(x) dx =
v∫

u

m1 dx, where m1 = .1 .

Next, we will pick boxes b00 and b01 (with X-projections I00 and I01,
respectively) to be two of the 33!/22! (notice that this is an even integer)
boxes constructed at Stage 3 above inside box b0. Box b00 will be the “upper”
box to the left of but closest to the vertical line through the midpoint of
I0 and box b01 will be the “lower” box to the right of but closest to the
same vertical line. Boxes b10 and b11 (with X-projections I10 and I11,
respectively) will be chosen in a similar fashion inside box b1.

Now, suppose n > 3 and we have described Id and bd for every binary
sequence d ∈ {0, 1}n. We will pick boxes bd0 and bd1 (with X-projections
Id0 and Id1, respectively) to be two of the nn!/(n − 1)n−1! (notice that this
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is an even integer) boxes constructed at Stage n above inside box bd. Box
bd0 will be the “upper” box to the left of but closest to the vertical line
through the midpoint of Id and box bd1 will be the “lower” box to the right
of but closest to the same vertical line.

If d ∈ {0, 1}n, let sn+1 denote the slope of the slanted line extending
from the lower left corner of the box bd0 to the upper right corner of the
box bd1. Notice that sn+1 = c((n + 1)n+1!)(.1)n+1, for the same negative
constant c indicated above, and that the slope of a line between any point
of box bd0 and any point of box bd1 is less than sn+1.

Also notice that because of the symmetry and the fractal nature of the
graph of f , it is true that if 0 < ε < 1/(2nn!), u is distance ε to the left of
the right end of Id0, and v is distance ε to the right of the left end of Id1,
then

v∫

u

f(x) dx =
v∫

u

mn dx ,

where mn is the ordinate of the midpoint of box bd.

The perfect set P = (I0 ∪ I1) ∩ (I00 ∪ I01 ∪ I10 ∪ I11) ∩ . . . , and the
function g(x) is defined to be equal to the function f(x) for x ∈ P . Sup-
pose (u, v) is a segment contiguous to the perfect set P . There is a first n
such that u and v are separated by intervals Id0 and Id1 at Stage n (i.e. for
some d ∈ {0, 1}n). Then the point (u, g(u)) is on the lower edge of box
bd0 and the point (v, g(v)) is on the upper edge of box bd1. Furthermore,
u is the same distance to the left of the right end of Id0 as v is to the
right of the left end of Id1. We define g on the interval [u, v] as follows.
Connect the point (u, g(u)) to the point (v, g(v)) with a decreasing “C1”
function g which has derivative −∞ at both u and v, has derivative less
than sn/2 at every point of [u, v], and which is symmetric about the point
midway between (u, g(u)) and (v, g(v)). This can be accomplished by piec-
ing together two small circular arcs emanating from the two end points, and
then connecting the arcs by a straight line. It follows from the symmetry
that

v∫

u

g(x) dx =
v∫

u

f(x) dx =
v∫

u

mn dx ,

where mn is the ordinate of the middle point of box bd.

The function g is defined to the left of the left end of the perfect set P
and to the right of the right end of P to be “C1” and to make F and G
match up at the left end of P . It follows that F (x) = G(x) for every x ∈ P .

It also follows from the construction of g that g′(x) = −∞ for every
x ∈ P , that g is differentiable in the ordinary sense for all other x, and that
g is “C1”, so that G is “C2”. This completes the argument.
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The above construction has led the author to believe that the following
is probably true.

Conjecture 1.6. For every continuous f : R → R, there exists a “C2”
g : R → R such that f ∩ g is uncountable.

We are not at this stage able to provide a proof of this conjecture. By
contrast we are able to give the following example, which shows that the
function g of 3)(iii) cannot be made to be “C2” (or even “D2”).

Example 1.7. There exists a B1 function f : R → R which has no

uncountable intersection with any “D2” g : R → R. We will piece together
countably many copies of the example constructed in the proof of Theo-
rem 22 of [1], which states that for every ε > 0 there exists a perfect set

P ⊆ [0, 1] with λ(P ) > 1 − ε and a continuous f : P → R such that f ∩ g
is finite for every D2 g : [0, 1] → R. It was pointed out in [3] that this
function f also has the property that {x : f(x) = g(x)} has no bilateral

limit points and at most finitely many one-sided limit points for every “D2”
g : [0, 1] → R.

Now, to begin the construction. For each [a, b] ⊆ [0, 1], let P [a, b] be a
perfect subset P of [a, b] with λ(P ) = (b − a)/2, and let f [a, b] : P → R

be a continuous function f : P → R with the properties described above.
Also assume that f [a, b] is increasing and non-negative (as is the case in the
example of [1]). Let P1 = P [0, 1] and f1 = f [0, 1]. List the components of
[0, 1] \ P1 as {(a1,j , b1,j) : j = 1, 2, . . .}. For each j, let P1,j = P [a1,j , b1,j ],
let f1,j = f [a1,j, b1,j ], and let Q2 = P1 ∪ P1,1 ∪ P1,2 ∪ . . . For the ith step,
assume Pi−1,j and fi−1,j have been defined for all j, and Qi = Qi−1 ∪
Pi−1,1 ∪ Pi−1,2 ∪ . . . List the components of [0, 1] \ Qi as {(ai,j , bi,j) : j =
1, 2, . . .}. For each j, let Pi,j = P [ai,j , bi,j ], let fi,j = f [ai,j, bi,j ], and let
Qi+1 = Qi ∪ Pi,1 ∪ Pi,2 ∪ . . . Let G = [0, 1] \ (Q2 ∪ Q3 ∪ . . .). G is a dense
Gδ of measure zero. Let g : [0, 1] → R be a continuous increasing non-
negative function such that g′(x) = +∞ for every x ∈ G. Reorder and
rename {(Pi,j , fi,j) : i, j = 1, 2, . . .} as {(Pi, fi) : i = 2, 3, . . .}. For each i,
let gi : [0, 1] → R be a C∞ function such that

g(x) + 1/(i + 1) < gi(x) < g(x) + 1/i

for every x ∈ [0, 1] and let δi > 0 be small enough that

g(x) + 1/(i + 1) < gi(x) + δifi(x) < g(x) + 1/i

for every x ∈ Pi. Let f(x) = g(x) if x ∈ G, and let f(x) = gi(x) + δifi(x)
if x ∈ Pi. The function f is B1 (in fact upper semicontinuous). Suppose
there exists a “D2” function h : [0, 1] → R such that the set M = {x :
f(x) = g(x)} is uncountable. Let Q be a perfect subset of M . Since f is
differentiable on M and g′ = +∞ on G, Q ∩ G is finite. Then there is an i
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such that Q∩Pi is uncountable. Thus, it follows that fi has an uncountable
intersection with the “D2” function (h − gi)/δi, which is a contradiction.

3. Functions with the Baire property. The second most familiar
theorem of the type we are considering here is part 1) of the following for
“functions with the Baire property”, which we are calling the Bw-measurable
functions.

Theorem 2. If f : R → R is Bw-measurable, then

1) there exists a co-FC set M such that f |M is continuous ([16] and [9]),
2) there exists a co-FC set M and a D1 function F such that f |M =

F ′|M ,
3) there exists a perfect set P such that f |P

(i) is monotonic [7],
(ii) is “D1” (relative to P ) [5],
(iii) = g|P for some “C1” g : R → R [3].

P r o o f. Part 1) is sometimes called the Nikodym–Kuratowski Theorem
and the proof can be found in [16] and [9]. Part 2) is new and the proof will
follow easily from Theorem 4.14 of the paper [18] of Petruska and Laczkovich.
That theorem implies that if λ(M) = 0 and f = g|M for some B1 g :
[0, 1] → R, then f = h|M for some derivative h : [0, 1] → R. To prove
2), first let M1 be the set from part 1) of the theorem. Then, let M be
a co-FC Gδ subset of M1 such that λ(M) = 0. f |M can be extended to
a B1 g : [0, 1] → R. It follows from the result quoted above that f |M =
g|M = h|M for some derivative h : [0, 1] → R. Then let F be a D1 function
such that F ′ = h. This proves part 2). Part 3) was not stated explicitly for
Bw-measurable functions originally, but follows from part 1) and the results
concerning continuous functions in the papers referenced above. Note that
(iii) of part 3) actually implies (ii) of part 3), which was not the case in
Theorem 1.

Example 2.1. It is known that you cannot make the set M of part 1)
non-L0, even (assuming CH) for a Br-measurable f such as that described
in Example 2 of [4]. That same example shows that you cannot make the
set M of part 2) be non-L0 and have a continuous F : [0, 1] → R such that
F ′(x) = f(x) for every x ∈ M . If such an M and F existed, f |M could be
extended to a Borel function g : R → R. Then g could be restricted to a set
N of large measure so that g|N is continuous. But if you make λ(N) large
enough, it would follow that M ∩N is non-L0 and f |(M ∩N) = g|(M ∩N)
is continuous. This is a contradiction.

Example 2.2. We cannot remove the quotation marks from (ii) and
(iii) of part 3) because it was shown in Example 3.1 of [3] that there is a
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Bw-measurable f : [0, 1] → R with no D1 restriction to any perfect set. We
now show that CH implies the existence of a Br-measurable function which
has this property. Assume CH, and let {Pα : α < ω1} be a well-ordering of
the perfect subsets of [0, 1]. Let H1 be a Gδ L0 relatively dense subset of
P1. Let G1 = H1. Let f1 be a continuous increasing function with domain
G1 such that f ′(x) = +∞ for every x ∈ G1. Now suppose that α < ω1, and
Hβ , Gβ , and fβ have been defined for every β < α (where the Hβ are Gδ

sets). For each β < α, let Oα,β be the maximal relatively open subset of Pα

in which Hβ is dense (Oα,β might be empty) and let Uα denote the relative
interior of Pα\

⋃
β<α Oα,β (Uα may be empty). Note that the {Oα,β : β < α}

must be disjoint and that
⋃

β<α Hβ is relatively first category in Uα. Thus,
we can let Hα be a Gδ L0 relatively dense subset of Uα \

⋃
β<α Hβ . We can

let Gα = Hα ∪ [
⋃

β<α(Hβ ∩ Oα,β)], and let fα be a function defined on Gα

which is continuous increasing with f ′(x) = +∞ on Hα and which agrees
with fβ on Hβ ∩Oα,β for β < α. Let f be the union of the fα on the union
of the Hα, and let f be arbitrarily defined on the rest of [0, 1]. It is clear
that if P = Pα is any perfect subset of [0, 1], then Gα is a dense relatively
Gδ subset of P such that f |Gα is continuous. This is equivalent to f being
Br-measurable (see [16]). It is also clear that no f |Pα is D1 because f |Gα

will have derivative identically equal to +∞.

4. Marczewski measurable functions. The theorem for (s)-measu-
rable (or “Marczewski measurable”) functions is the following.

Theorem 3. If f : R → R is (s)-measurable, then

1) there exists a perfectly dense subset M of R (every open subset of R

contains a perfect subset of M) such that f |M is continuous [4],

2) there exists a perfectly dense subset M of R and a D1 function F :
R → R such that f |M = F ′|M ,

3) {same as 3) of Theorem 2}.

P r o o f. Part 1) was proved in [4]. To prove 2) we could take the set M1

of part 1) and let M be a perfectly dense subset of M1 such that λ(M) = 0.
Then f |M could be continuously extended to a Gδ set, and that function
could then be extended to a B1 g : [0, 1] → R. Then we can call on the result
of Petruska and Laczkovich used earlier to conclude that f |M = g|M = h|M
for some derivative h : [0, 1] → R. Then, let F be a primitive of h, and the
proof of part 2) is obtained. Again, part 3) was not originally stated for
(s)-measurable functions but the proof follows from part 1) and the results
concerning continuous functions which appear in the references given.

Example 3.1. It is known that you cannot make the set M of part 1)
be non-L0 or non-FC (assuming CH) for (s)-measurable f such as that
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described in Example 3 of [4]. That same example shows that you cannot
make the set M of part 2) be non-L0 or non-FC and have a continuous
F : [0, 1] → R such that F ′(x) = f(x) for every x ∈ M . The reasoning is
similar to that of Example 1.3 and Example 2.1.

Example 3.2. It was already pointed out in Example 1.1 that you cannot
make the set M of part 1) be co-(s0), even if f is a B1 function. Neither can
you make the set M be co-(s0) and have a continuous F : [0, 1] → R such
that F ′(x) = f(x) for every x ∈ M , even for the B1 function f(x) = 1/x
(with f(0) = 0). If such an F and M existed, then (F − Ln)′(x) = 0 on a
co-(s0) set (Ln is the natural log function on (0, 1]). But since the set where
(F − Ln)′ exists is a Borel set, it follows that (F − Ln)′ exists and is zero
on a co-countable set. It therefore follows that F − Ln is constant on (0, 1],
but this contradicts the assumption that F is continuous on [0, 1].
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