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The universal separable metric space of Urysohn
and isometric embeddings thereof in Banach spaces
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M. Randall Ho lme s (Boise, Id.)

Abstract. This paper is an investigation of the universal separable metric space up
to isometry U discovered by Urysohn. A concrete construction of U as a metric subspace
of the space C[0, 1] of functions from [0, 1] to the reals with the supremum metric is given.
An answer is given to a question of Sierpiński on isometric embeddings of U in C[0, 1]. It
is shown that the closed linear span of an isometric copy of U in a Banach space which
contains the zero of the Banach space is determined up to linear isometry. The question
of what Banach spaces can be embedded in a linear isometric fashion in this uniquely
determined closed linear span of U is investigated.

0. Introduction. A well-known result of elementary topology is the
fact that certain topological spaces, such as the Hilbert cube, are “universal
separable metric spaces”—such a space is a separable metric space which
contains a homeomorph of each separable metric space. A less well-known
result of metric topology is that there are universal separable metric spaces
up to isometry ; that is, there are separable metric spaces which contain an
isometric copy of each separable metric space. The best-known theorem es-
tablishing the existence of a universal separable metric space up to isometry
is the theorem of Banach and Mazur which asserts that C[0, 1], the space of
continuous functions from [0, 1] to the reals with the supremum metric, is
such a space (see [B], [B-P]; Banach and Mazur actually show that C[0, 1] is
a universal separable Banach space up to linear isometry; we cite this result
as Theorem 4 of Part III). But the first result of this kind was obtained by
Urysohn (see [U]), who constructed a metric space U of this kind which he
proved can be characterized up to isometry by the fact that it is a universal
separable metric space up to isometry which is complete and “metrically
homogeneous with respect to finite sets”. The definition of this property is
given below.

Urysohn’s construction of U is highly abstract. We are able to present a
more concrete construction of U inside C[0, 1] (in the proof of Theorem 1 of
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Part II), using lemmas which relate isometric embeddings of U in C[0, 1] to
space-filling curves (Lemmas 0–4 of Part II). In [H], Huhunaishvili refined
some results of Urysohn, showing that certain properties which Urysohn
proved of finite sets of points of U can be established for compact subsets
of U , making it possible to improve the characterization of U (in [J], Joiner
improved a result on finite sets to Cauchy sequences; we give results of
Urysohn, Joiner and Huhunaishvili in Part I). Here is our characterization
of U.

Theorem. U is determined uniquely up to isometry by the fact that it is a
separable metric space and any isometry from a subspace of a compact metric
space X into U can be extended to the whole of X (this is the Corollary to
the Theorem of Part I).

Sierpiński, in [S], where he gave an “elementary” proof of the theorem of
Banach and Mazur (a version is given as the proof of Theorem 1 of Part III
below), pointed out that their result implies that U can be embedded in
C[0, 1]. He asked whether there were simpler or more natural embeddings
of U in C[0, 1] than those given by the general procedure he used in his
proof to embed an arbitrary separable metric space in C[0, 1], which made
essential use of space-filling curves. We are able to answer this question
essentially in the negative; in particular, any isometric embedding of U in
C[0, 1] is intimately related to a kind of space-filling curve.

Theorem. For any isometric copy of U in C[0, 1] containing 0, the
constant zero function, we can define a map F from [0, 1] to the space U ′ of
Lipschitz functions on U of norm ≤ 1 which send 0 to 0 by F (t)(f) = f(t),
where t ∈ [0, 1] and f is in the isometric copy of U . If we put the pointwise
convergence topology on U ′, F is a continuous path whose range includes g
or −g for each g ∈ U ′. U ′ is a Hilbert cube (topologically), and F “half-fills”
it (visits each point or its negative). The class of such paths F corresponds
exactly to the isometric embeddings of U in C[0, 1] (this follows from the
corollary to Lemma 5 of Part II, the Lemma of Part III, and Theorem 2 of
Part III).

Finally, we can establish some surprising results about isometric embed-
dings of U in Banach spaces.

Theorem. All isometric copies of U in Banach spaces which contain the
zero element of the Banach space have the same closed linear span U up to
linear isometry. Moreover , any finite collection of points of the copy of U
which does not include the zero is linearly independent (see Theorem 1 of
Part IV).

We ask a natural question: is the separable Banach space U a univer-
sal separable Banach space up to linear isometry? This question turns out
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to be very hard to answer! We are able to embed the space L1 of mea-
surable functions on the reals with the integral norm in U, and thus all
two-dimensional Banach spaces (see Theorem 2 of Part IV and its Corol-
lary). We can establish that U does not have a homogeneity property as a
Banach space analogous to that of U as a metric space (see Theorem 3 of
Part IV). Whether U is universal for separable Banach spaces remains an
open problem. U is a “natural” object as a metric space; it is surprising
that its uniquely determined linear closure as a Banach space seems to be
much harder to work with.

Another question which the author thinks might be interesting but has
not seriously attacked is whether U has a basis in the sense of the classical
theory of Banach spaces. This question might be hard to answer, because
U is defined in a way which has no analogue among the definitions of the
Banach spaces usually studied.

A caution: in this paper, we are usually considering metric spaces and
isometries or separable Banach spaces and linear isometries rather that topo-
logical spaces and homeomorphisms. If we mention “embeddings” without
qualification, they should usually be taken to be isometric or linearly iso-
metric. We adopt the convention that d represents all metrics; we have no
occasion in this paper to consider more that one metric on the same set.

Results are numbered independently in each part and referred to with
the number of the part outside the part in which they reside.

I. The crucial metric property and its consequences

Definition. Let X be a metric space, and let A be a subset of X. A
function r from A to the nonnegative reals will be called a possible com-
bination of distances from A if it satisfies the inequalities |r(x) − r(y)| ≤
d(x, y) ≤ r(x) + r(y) for each pair of points x, y ∈ A. We will refer to
the set of possible combinations of distances from A as R(A). A possible
combination of distances will be termed a possible combination of rational
distances if all values in its range are rational; the set of possible combina-
tions of rational distances from A will be denoted by R0(A). We say that
there are points at all possible combinations of (rational) distances from A
in X when for each r ∈ R(A) (R0(A)) there is a point p ∈ X such that
d(p, a) = r(a) for each a ∈ A.

A metric space X is said to be (nearly) inflatable if for each finite subset A
of X there are points at all possible combinations of (rational) distances
from A. Note that an inflatable metric space must be nonempty—consider
empty A.

Observation. A complete, inflatable, separable metric space V must be
a universal separable metric space up to isometry.
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P r o o f. Consider a countable metric space {a0, a1, a2, . . .}. There is cer-
tainly an isometry from {a0} into V . Given an isometry I from {a0, . . . , an}
into V , construct an isometry I ′ from {a0, . . . , an+1} into V which extends
I as follows. The map r which takes I(ai) to d(ai, an+1) for 0 ≤ i ≤ n is
a possible combination of distances from {a0, . . . , an}; by inflatability of V ,
we can choose I ′(an+1) so that d(I(ai), I ′(an+1)) = r(I(ai)) = d(ai, an+1)
for 0 ≤ i ≤ n. By induction, initial segments of a countable metric space can
be uniformly isometrically embedded in V , so any countable metric space
can be embedded in V . Thus, any separable metric space can be isometri-
cally embedded in V : let X be a separable metric space; a countable dense
subset D of X can be isometrically embedded in V , because V is inflatable;
thus, the completion of D, which is isometric to the completion of X, can
be isometrically embedded in V , because V is complete. Since V is sepa-
rable and contains an isometric copy of each separable metric space, V is a
universal separable metric space up to isometry.

We will show below (in Part II) that there is a complete, inflatable
separable metric space U . Urysohn proved in [U] that there is exactly one
such metric space, up to isometry.

Lemma. Let A be a finite subset of a metric space X. For each real
number e > 0 and strictly positive function r ∈ R(A), there is a function
r′ ∈ R0(A) such that |r(a)− r′(a)| < e for each a ∈ A.

P r o o f. Let m be the number of distinct values in the range of r. Let
e′ be min{e, d}, where d is the smallest nonzero absolute difference between
values in the range of r. Replace the largest value in the range of r, wherever
it occurs, with a rational value larger by less than e′/m. Replace the second-
largest value in the range of r by a rational value larger by an amount
strictly between e′/m and 2e′/m. In general, replace the ith largest value
in the range of r by a rational value larger by an amount strictly between
(i−1)e′/m and ie′/m. Observe that the substitution for values in the range
of r is monotone, because, while smaller values are increased by a larger
amount, no value is increased sufficiently to exceed the original value of
the next larger value. The resulting function is the desired r′. It is clearly
rational-valued and differs by less than e from r; we need to verify that it is a
possible combination of distances from A. Indeed, our procedure increased
sums of possible distances and decreased positive absolute differences of
possible distances (leaving zero differences unchanged): |r′(x) − r′(y)| ≤
|r(x)− r(y)| ≤ d(x, y) ≤ r(x) + r(y) ≤ r′(x) + r′(y).

Proposition. The following are equivalent for a complete metric
space X:

(a) X contains a dense nearly inflatable subset.
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(b) X is inflatable.
(c) For each compact subspace A of X, there are points at all possible

combinations of distances from A in X.

P r o o f. That (c) implies (b) and (b) implies (a) are obvious. It suffices
to show that (a) implies (c).

Suppose that X is a metric space with a nearly inflatable dense sub-
set D. We will construct a sequence {p1, p2, . . .} of points of X, a sequence
{A1, A2, . . .} of compact subsets of X, a sequence {r1, r2, . . .} with ri an
element of R(Ai), and a sequence {B1, B2, . . .} of finite subsets of D.

Let e be a positive real number and set A1 = A. Let r = r1 be a
strictly positive element of R(A). Extend r to the whole of X by defining
r(x) = maxa∈A |r(a)− d(a, x)| for each x ∈ X; it is easy to verify that this
is a strictly positive element of R(X). Let B1 be a finite subset of D which
contains elements within e/6 of each element of A. Use the Lemma to find
an r′ ∈ R0(B1) which differs from r|B1 by less than e/6; there is a point
p1 ∈ D such that d(p1, b) = r′(b) for each b ∈ B1. Observe that d(p1, a),
for a ∈ A, differs from d(p1, b) = r′(b) for some b ∈ B1 by less than e/6,
|r′(b)− r(b)| < e/6, and |r(b)− r(a)| < e/6, so |d(p1, a)− r(a)| < e/2.

We continue the construction inductively as follows. When we have
constructed A1 and pi, where for each a ∈ Ai, |d(a, pi) − ri(a)| < e/2i, we
define Ai+1 as Ai ∪ {pi} and ri+1 as ri ∪ {(pi, e/2i)}, which is easily seen to
belong to R(Ai+1). We extend ri+1 to X as above. We choose Bi+1 to be a
finite subset of D containing points within 1/(3 ·2i+1) of each point of Ai+1.
We choose r′ ∈ R0(Bi+1) approximating ri+1 within 1/(3 ·2i+1) and let pi+1

be a point in D at distance r′(b) from each point b of Bi+1. We show as
above that |d(pi+1, a)− ri+1(a)| < 1/2i+1 for each a ∈ Ai+1. This allows us
to continue the induction. Note that d(pi, pi+1) differs by less than 1/2i+1

from ri+1(pi) = 1/2i.
The sequence of pi’s is a Cauchy sequence, so must converge to a point p,

and it is obvious that d(a, p) = r(a) for each a ∈ A, since the sequence of
d(a, pi)’s must converge to d(a, p), and |d(a, pi)− r(a)| < 1/2i.

Theorem (following Urysohn as extended by Huhunaishvili). The fol-
lowing are equivalent for a complete separable metric space U :

(a) U is inflatable.
(b) If X is a separable metric space and A its compact subset, then any

isometric embedding of A into U can be extended to an isometric embedding
of X into U .

(c) If V is a complete inflatable separable metric space and A is a compact
subset of V, then any isometric embedding of A into U can be extended to
an isometric embedding of V onto U .
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Corollary. There is at most one complete inflatable separable metric
space U , up to isometry , and it is characterized up to isometry by the facts
that it is a separable metric space and that any isometry from a subset of
a compact metric space X into U can be extended to an isometry from the
whole of X into U .

P r o o f o f T h e o r e m a n d C o r o l l a r y. We prove first that (a)
implies (c).

Let U and V be complete inflatable separable metric spaces. Let the com-
pact subset A of V be the domain of any isometry I into U . Let {a1, a2, . . .}
be a countable dense subset of V −A. Let {b1, b2, . . .} be a countable dense
subset of U − I[A]. Choose a point p ∈ U such that d(p, I(x)) = d(a1, x)
for each x ∈ A; such a point exists by part (c) of the Proposition. Choose
a point q ∈ V such that d(q, x) = d(b1, I(x)) for each x ∈ A. Extend I
by setting I(a1) = p and I(q) = b1. This completes the first step of the
construction. At the ith step, when I(aj) and I−1(bj) have been defined for
each j < i, choose p such that d(p, I(x)) = d(ai, x) for each x in the domain
of I (including points of A, aj ’s for j < i, and I−1(bj)’s for j < i). Choose
q such that d(q, x) = d(bi, I(x)) for each x in the same domain. Extend I
by setting I(ai) = p and I(q) = bi. This process enables us to extend I to
an isometry from a dense subset of V onto a dense subset of U , and thus to
an isometry from V onto U .

We can now prove that (a) implies (b). Suppose that A, a compact
subset of a separable metric space X, can be embedded isometrically in U .
We know (by the Observation above) that X can be embedded isometrically
in any complete inflatable separable V . Thus, we can consider the space X
to be included in V , and use the proof that (a) implies (c) to show that
the embedding of A into U can be extended to an embedding of V onto U ,
which can be restricted to an embedding of X into U extending the original
embedding of A.

That (b) implies (a) is immediate. That (c) implies (a) and the Corol-
lary follow easily once the existence of a complete inflatable metric space is
established (see below). The alternate characterization of U holds by the
Theorem. To see that the property given implies completeness, consider an
isometric embedding of a Cauchy sequence in U ; it could be extended to an
isometric embedding of the Cauchy sequence with its limit point. To see
that the property given implies inflatability, consider an embedding of all
but one point of a finite metric space into U .

The results listed above were established by Urysohn and Huhunaishvili.
Urysohn used the property which we call “inflatability” to motivate his con-
struction of U . He also used it to prove that U is “metrically homogeneous
with respect to finite sets”—that every isometry from a finite subset of U
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to a finite subset of U extends to an isometry from U onto U . Urysohn
proved that U is uniquely characterized up to isometry by the facts that
it is complete, metrically homogeneous with respect to finite sets, and is
a universal separable metric space up to isometry; implicit in his proof is
an argument that U is uniquely characterized as complete, inflatable and
separable. Joiner proved that U is metrically homogeneous with respect to
Cauchy sequences, but Huhunaishvili had already shown that U is metri-
cally homogeneous with respect to compact sets (part (c) with U = V ), from
which the extensions of properties of U from finite to compact sets easily
follow. The fact that Joiner presents in [J] an easy consequence of the work
presented almost twenty years earlier in [H] was an indication to us that it
was advisable to summarize all this work here.

An interesting question raised by Urysohn is whether completeness can
be dropped from his characterization of U—must any universal separable
metric space up to isometry which is metrically homogeneous with respect to
finite sets be isometric to U? This question has been answered in the nega-
tive in the unpublished note [Z] of Martin Ziegler. It seems that E. Rothacker
independently found the results of Huhunaishvili in 1976, but did not pub-
lish his findings.

II. The construction of U inside C[0, 1]. In this part we will con-
struct an inflatable subspace of C[0, 1], the space of continuous functions
from [0,1] to the reals with the supremum metric d(f, g) = supt∈[0,1] |f(t)−
g(t)|. C[0, 1] is known to be a universal separable metric space up to isome-
try by a theorem of Banach and Mazur (see [B], [B-P] and Part III below).
The construction provides another proof of this result.

Definition. If S is a set of functions in C[0, 1], and r is a possible
combination of distances from S, we define the functions Ar and Br in
C[0, 1] by Ar(x) = supf∈S f(x) − r(f) and Br(x) = inff∈S f(x) + r(f).
Note that Ar(x) will be the smallest value that a function with distance
r(f) from each f ∈ S could have at x, and Br(x) will be the largest. Ar

and Br can only be assumed to be continuous functions if S is finite or
satisfies other special conditions. The notation is adequate because S can
be determined from r.

Lemma 0. If r is a possible combination of distances from {f1, . . . , fn}, a
finite set of functions in C[0, 1], then Ar and Br are continuous functions,
Ar(x) ≤ Br(x) for each x ∈ [0, 1], d(Ar, fi) ≤ r(fi) for each i ≤ n, and
d(Br, fi) ≤ r(fi) for each i ≤ n.

P r o o f. Omitted.

Lemma 1. There are points at all possible combinations of distances from
a finite subset {f1, . . . , fn} of C[0, 1] exactly if for each i ≤ n there is an
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si = ±1 and an xi ∈ [0, 1] such that fj(xi) = fi(xi) + sid(fi, fj) for each
j ≤ n, in other words, exactly if for each fi there is xi ∈ [0, 1] such that
each other fj takes on a value at xi as large as its distance from fi permits,
or such that each other fj takes on a value at xi as small as its distance
from fi permits.

P r o o f. Let D be the diameter of {f1, . . . , fn}. Let ri be the function
which takes each fj to (3/2)D − d(fi, fj). It is straightforward to establish
that ri is a possible combination of distances from {f1, . . . , fn}. Thus, if
there is a point at every possible combination of distances from the fi’s,
there is a function gi ∈ C[0, 1] such that d(gi, fj) = (3/2)D − d(fi, fj) for
each j. In particular, d(gi, fi) = (3/2)D. Thus, there is a point xi such that
|gi(xi) − fi(xi)| = (3/2)D, i.e., gi(xi) − fi(xi) = si(3/2)D, where si = ±1.
Suppose si = 1. Then gi(xi) = fi(xi) + (3/2)D, and so fi(xi) + d(fi, fj) ≥
fj(xi) ≥ gi(xi)−d(gi, fj) = fi(xi)+(3/2)D−((3/2)D−d(fi, fj)) = fi(xi)+
d(fi, fj), for each j ≤ n. The proof for si = −1 is exactly analogous, with
suitable interchange of signs and senses of inequalities.

If for each fi there are xi and si as described, and r is a possible com-
bination of distances from the fi’s, choose a continuous function h from
[0, 1] to [−1, 1] such that h(xi) = si for each i ≤ n. Define g(x) =
((1−h(x))/2)Ar(x) + ((1 + h(x))/2)Br(x). Since Ar(x) ≤ g(x) ≤ Br(x) for
all x by Lemma 0 and the fact that g is a convex combination of Ar and
Br, d(g, fi) ≤ r(fi) for each i ≤ n. Now consider g(xi). We have h(xi) = si,
so if si = 1, g(xi) = Br(xi), and if si = −1, g(xi) = Ar(xi). If si = 1,
then Br(xi) is the minimum of expressions of the form fj(xi) + r(fj) =
fi(xi) + d(fi, fj) + r(fj) ≥ fi(xi) + d(fi, fi) + r(fi) = fi(xi) + r(fi), be-
cause r(fi)− r(fj) ≤ d(fi, fj) by the definition of a possible combination of
distances. Thus g(xi) = fi(xi) + r(fi). The proof that g(xi) = Ar(xi) =
fi(xi)− r(fi) when si = −1 is analogous. It follows that d(g, fi) = r(fi) for
each i ≤ n.

It is an immediate consequence of this lemma that C[0, 1] is not inflat-
able. If it were, then there would be points at every possible combination of
distances from every finite subset of C[0, 1]. Consider the constant functions
f1(x) = 0, f2(x) = 1, and f3(x) = 2. If there were points at every possible
combination of distances from these, there would be a point x2 ∈ [0, 1] such
that f1(x2) and f3(x2) would either both be greater than f2(x2) or both be
less than f2(x2), by the Lemma. This is absurd. A possible combination
of distances which is not realized is distance 1 from f1, distance 1 from f2,
and distance 1 from f3 (since the only function at distance 1 from f1 and
f3 is f2 itself).

The condition of Lemma 1 is a necessary but not a sufficient condition
for a finite collection of functions in C[0, 1] to be a subset of an inflatable
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metric subspace of C[0, 1]. A stronger necessary condition, which is still
not quite sufficient, will be given now. It will be assumed from this point
on that the constant zero function 0 belongs to any inflatable subset of
C[0, 1] discussed; all other inflatable sets can be obtained from inflatable
sets containing 0 by a simple translation. For each f ∈ C[0, 1], we define
|f | = d(0, f). (We may write this ||f || when we want to be careful to avoid
confusion between norms of functions and absolute values of numbers.)

Definition. A possible combination of values for a set A of functions
in C[0, 1] is a function r from A to the reals such that |r(f)| ≤ |f | for each
f ∈ A and |r(f) − r(g)| ≤ d(f, g) for each f, g ∈ A. This is equivalent to
the notion of “restriction to A of a Lipschitz function with constant ≤ 1 on
A ∪ {0} which sends 0 to 0”. Note that for any x ∈ [0, 1], the function rx

which takes each f ∈ A to f(x) is a possible combination of values for A.
A set A of functions in C[0, 1] takes on half of all possible combinations of
values if and only if for each possible combination of values r for A there is
an x ∈ C[0, 1] and an s = ±1 such that f(x) = sr(f) for each f ∈ A.

Lemma 2. If a finite subset {f1, . . . , fn} of C[0, 1] is a subset of an
inflatable metric subspace of C[0, 1] which contains 0, then it takes on half
of all possible combinations of values.

P r o o f. Let r be a possible combination of values for the fi’s. Let D be
the diameter of the set consisting of the fi’s and 0. Then the function which
sends 0 to (3/2)D and each fi to (3/2)D + r(fi) is a possible combination
of distances from this set. Since 0 and the fi’s all belong to the same
inflatable subset of C[0, 1], there is a function g in the inflatable subset of
C[0, 1] such that d(g,0) = (3/2)D and d(g, fi) = (3/2)D + r(fi) for each
i ≤ n. There are points at all possible combinations of distances from the
set consisting of 0, g and the fi’s, since it is a finite subset of an inflatable
space. By Lemma 1, there is an xg ∈ [0, 1] and an sg = ±1 such that
0(xg) = g(xg) + sg(3/2)D and fi(xg) = g(xg) + sg((3/2)D + r(fi)). Since
0 is the constant zero function, we have g(xg) = −sg(3/2)D, whereupon we
have fi(xg) = sgr(fi).

The converse of Lemma 2 is not true; not all sets of functions which take
on half of all possible combinations of values are subsets of inflatable sets in
C[0, 1]—but we are on the right track.

Definition. If S is a metric subspace of C[0, 1] and g is a function in
C[0, 1] such that |g| = 1, d(f, g) = 1 + |f | for each f ∈ S, and S ∪ {g} takes
on half of all possible values, we say that g inflates S.

R e m a r k. A function g inflates the subset A of C[0, 1] iff |g| = 1 and
for any t ∈ [−1, 1] and for any r ∈ R(A) there exist s = ±1 and x ∈ [0, 1]
such that g(x) = st and f(x) = sr(f) for each f ∈ A.
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Lemma 3. Suppose g inflates S and h is a map from [−1, 1] onto [−1, 1]2,
with h(t) = (h1(t), h2(t)) and h odd , that is, h(−t) = (−h1(t),−h2(t)).
Define the functions g′ and g′′ by g′(t) = h1(g(t)) and g′′(t) = h2(g(t)). If T
is any set of functions such that T takes on half of all possible combinations
of values and the value of any function in T is an odd function of the values
of g′′ and the functions of S, then g′ inflates T . In particular , g′ inflates S.

P r o o f. Certainly |g′| = 1 and, given r ∈ R(T ) and t ∈ [−1, 1], there
exist s = ±1 and x ∈ [0, 1] such that g(x) = st and f(x) = sr(f) for f ∈ T .
Take u ∈ [0, 1] so that h(u) = (st, g′′(x)) and apply the Remark to get
y ∈ [0, 1] and s′ = ±1 such that f(y) = s′f(x) = s′sr(f) for f ∈ S and
g(y) = s′u. Then g′(y) = h1(g(y)) = h1(us′) = s′st. Similarly, the values of
the functions in T being odd functions of the values of g′′ and of the values
of the functions in S, it follows easily that f(y) = f(x) = s′sr(f) for f ∈ T .
By the Remark, it follows that g′ inflates T .

Lemma 4. Given a metric subspace S of C[0, 1], a function g which
inflates S, and a possible combination of distances r from a finite sub-
set {f1, . . . , fn} of S, we can find a function fn+1 ∈ C[0, 1] such that
d(fi, fn+1) = r(fi) for each i ≤ n, and a function g′ which inflates S ∪
{fn+1}.

P r o o f. We extend r to the whole of S by the definition r(f) =
mini≤n d(f, fi) + r(fi). It is straightforward to check that the functions
Ar and Br are unaffected by this extension.

Let h = (h1, h2) be an odd map from [−1, 1] onto [−1, 1]2. Define
g′(x) = h1(g(x)), g′′(x) = h2(g(x)), and fn+1(x) = ((1− g′′(x))/2)Ar(x) +
((1 + g′′(x))/2)Br(x). Since Ar(x) ≤ fn+1(x) ≤ Br(x) for each x, we have
d(fi, fn+1) ≤ r(fi) for each i ≤ n.

Fix i ≤ n. The function which takes fj to d(fi, fj) − |fi| and g to any
value t ∈ [−1, 1] is a possible combination of values for these functions.
Choose t so that h2(t) = 1. Thus there is an xi ∈ [0, 1] and an si = ±1
such that fj(xi) = si(d(fi, fj) − |fi|) and g(xi) = sit, which implies that
g′′(xi) = h2(sit) = si. It follows that if si = 1, fn+1(xi) = Br(xi), and if
si = −1, fn+1(xi) = Ar(xi). In the case where si = 1, we have fn+1(xi) =
Br(xi), which is the minimum of expressions of the form fj(xi) + r(fj) =
d(fi, fj) − |fi| + r(fj) ≥ d(fi, fi) − |fi| + r(fi) = fi(xi) + r(fi), because
d(fi, fj) ≥ r(fi) − r(fj). This forces d(fi, fn+1) = r(fi). The proof for the
case si = −1 is symmetrical.

Now we need to show that S ∪ {fn+1} takes on half of all possible
combinations of values. Let R be such a possible combination of val-
ues. Let AR = maxf∈S R(f) − r(f) and let BR = minf∈S R(f) + r(f).
Then AR and BR are lower and upper bounds respectively on the pos-
sible values of R(fn+1) given the values of R(f) for f ∈ S. Let c =
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(R(fn+1) − AR)/(BR − AR). Let C = 2c − 1. C is a quantity between
−1 and 1 whose value is determined in an affine manner by the position
of R(fn+1) in the interval [AR, BR]. Now define R′, a possible combi-
nation of values for {f1, . . . , fn, g}, by R′(fi) = R(fi) for each i ≤ n
and R′(g) = t, where h2(t) = C. Thus, there is an x ∈ [0, 1] and an
s = ±1 such that fi(x) = sR(fi) for each i ≤ n, and g(x) = t, so that
g′′(x) = sC. When s = 1, Ar(x) = AR and Br(x) = BR, and, symmetri-
cally, Ar(x) = −BR and Br(x) = −AR when s = −1. In the case where
s = 1, we get fn+1(x) = ((1−C)/2)AR+((1+C)/2)BR = R(fn+1) by choice
of C. When s = −1, we get fn+1(x) = −R(fn+1) in a symmetrical fashion.
Thus S ∪ {fn+1} takes on half of all possible combinations of values. Since
the value of fn+1 is an odd function of the values of S and g′′, g′ inflates
S ∪ {fn+1} by Lemma 3.

Lemma 5. If A is a subset of C[0, 1], and any finite subset of A takes
on half of all possible combinations of values, then A takes on half of all
possible combinations of values.

P r o o f. Let A0 be a countable dense subset of A. Let An, for each
positive integer n, be a set with n elements, with An ⊂ An+1 for each n and⋃

n>0 An = A0. Let f be a possible combination of values for A. For each
n, there is a tn ∈ [0, 1] and an sn = ±1 such that a(tn) = snf(a) for each
a ∈ An. Let s = ±1 be chosen to equal sn for infinitely many n; let T be
the set of tn’s for which sn = s. Let t be a cluster point of T ; it is obvious
that a(t) = sf(t) for each a ∈ A.

Corollary to Lemma 5. An inflatable metric subspace of C[0, 1] which
contains 0 takes on half of all possible combinations of values.

Note that Lemmas 0–4 are all true if we use instead of C[0, 1] any space
of functions from a set to the reals with the supremum metric in which the
distance d(f, g) between any two functions in the space is actually equal to
|f(x) − g(x)| for some x in the set. In particular, C[0, 1] can be replaced
by the space of continuous functions from any compact metric space to the
reals under the supremum metric (Lemma 5 will also hold in this case).

Now we will prove that there is a complete inflatable metric subspace
of C[0, 1], which will be a universal separable metric space up to isometry.
This also implies that C[0, 1] itself is a universal separable metric space up
to isometry.

Theorem 1. There is a complete inflatable metric subspace U of C[0, 1].

P r o o f. Let X be any finite or countable metric subspace of C[0, 1] such
that there is a function g which inflates X. There are such subspaces: for
instance, let h = (h1, h2) be a map from [0, 1] onto [−1, 1]2, let X = {h1}
and let g = h2.
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We construct a countable metric subspace X∗ of C[0, 1] such that there
are points in X∗ at every possible combination of rational distances from
each finite subset of X, and there is a function g′ which inflates X∗.

Let h = (h1, h2) be an odd map from [−1, 1] onto [−1, 1]2. Define g′

and g1 by g′(x) = h1(g(x)) and g1(x) = h2(g(x)) for each x ∈ [0, 1]. List
all possible combinations of rational distances (possible combinations of dis-
tances whose ranges lie entirely in the positive rationals) from finite subsets
of X; these make up a countable set {r1, r2, . . .}. The function g1 inflates X
by Lemma 3; thus, by Lemma 4, there is a function f1 ∈ C[0, 1] such that
d(f, f1) = r1(f) for each f in the domain of r1, and a function g2 which
inflates X ∪{f1}. By the second part of Lemma 3, g′ also inflates X ∪{f1},
if f1 and g2 are constructed as described in Lemma 4. Repeat this process,
at the ith step finding a function fi such that d(f, fi) = ri(f) for each f in
the domain of ri and a function gi+1 which inflates X ∪{f1, . . . , fn}, with g′

also inflating X ∪ {f1, . . . , fn}, since the values of each fi are odd functions
of the values of the functions in X and the value of g′′, if the fi’s and gi’s
are constructed as in Lemma 4.

X ∪{f1, f2, . . .} is the desired X∗. By Lemma 5 and the construction, g′

inflates X∗. It is obvious from the construction that X∗ contains points at
all possible combinations of rational distances from each finite subset of X,
and that X∗ is countable.

We construct a space Xi for each positive integer i, with X1 = X,
X2 = X ∪X∗, and Xi+1 = Xi ∪ (Xi)∗ for each positive integer i. The union⋃

i∈N Xi will be denoted by U0. It is clear that U0 contains points at every
possible combination of rational distances from each finite subset of U0; any
finite subset of U0 is a subset of some Xi, and Xi+1 contains points at every
possible combination of rational distances from each finite subset of Xi. Let
U be the completion of U0; U is a complete inflatable separable metric space
by the Proposition of Part I.

Theorem 2. A finite set of functions {f1, . . . , fn} is a subset of an
inflatable subset of C[0, 1] containing 0 if and only if there is a function
g which inflates {f1, . . . , fn}.

P r o o f. If {f1, . . . , fn} is a subset of an inflatable subset V of C[0, 1],
then there are points in V at all possible combinations of distances from
{0, f1, . . . , fn}. The function r which takes 0 to 1 and fi to 1 + |fi| for
each i ≤ n is a possible combination of distances. Thus, there is a function
g ∈ V at distance 1 from 0 and distance 1 + |fi| from fi for each i. Since
{f1, . . . , fn, g} is a subset of the inflatable subset V of C[0, 1], it takes on
half of all possible combinations of values.

Suppose {f1, . . . , fn, g} takes on half of all possible combinations of val-
ues, |g| = 1, and d(g, fi) = 1 + |fi| for each i ≤ n. We can suppose without
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loss of generality that f1 = 0, because if any finite subset of C[0, 1] has these
properties, its union with {0} has them as well. Carry out the construction
of U in Theorem 1, using the set of fi’s as X and g as g, to construct a
complete inflatable metric subspace of C[0, 1] containing the finite set.

A corollary of Theorem 2 is that a function is an element of an inflatable
subset of C[0, 1] if and only if it is a component of a map from [0, 1] onto
a square [−a, a]2 whose range includes (x, y) or (−x,−y) for each x, y ∈
[−a, a]. We call such a map a half-square-filler . The corollary is proved
by examination of the case of Theorem 2 where the set of functions has
only one element; this implies immediately that the map (f1, g) “half-fills”
the product of [−|f1|, |f1|] and [−1, 1]; replace g by |f1|g to get a half-
square-filler with first component f1. The converse is established by first
linearly compressing a half-square-filler to a map “half-filling” a product
one of whose terms is [−1, 1], then observing that the components of such a
map satisfy the conditions of the Theorem.

We remark without the (tedious) proof that a slight modification of the
construction proves “reversible”; every copy of U in C[0, 1] which contains
0 is obtainable by the modified construction, by choosing parameters of the
construction appropriately. The modification is to use as possible combi-
nations of rational distances in the construction of each X∗ only those in
which the inequalities are strict. It then proves possible to recover the func-
tions used in the construction from an isometric copy of the modified U0 in
C[0, 1], and the closure of the modified U0 is still U .

III. The Banach–Mazur theorem and Sierpiński’s question. In
[S], Sierpiński gave a proof that C[0, 1] is a universal separable metric space
up to isometry. His proof was somewhat more elementary than the original
proof of Banach and Mazur, but it still involved the use of a Hilbert cube-
filling curve. Sierpiński was aware of the existence of U , which had been
discovered by Urysohn earlier. Of course, Sierpiński’s method of embed-
ding a separable metric space isometrically in C[0, 1] can be applied to U ;
Sierpiński asked in [S] whether there was a “simpler or more natural” way to
embed U isometrically in C[0, 1] than the application of his general method.
This is a vague question; what is simple or natural is often in the eye of
the beholder. We can make some remarks. Sierpiński’s use of a space-filling
curve is not an accident; Lemma 2, Theorem 2 and the corollary which
follows it, and the corollary to Lemma 5 should indicate to us that any
embedding of U in C[0, 1] has some relation to space-filling curves. The
following modified version of Sierpiński’s proof that C[0, 1] is a universal
separable metric space makes the relation between the use of space-filling
curves and the notion of “taking on half of all possible values” clearer.
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Definition. If X is a metric space, and x0 is a fixed point of X, let
(X, x0)′ be the set of functions from X to the reals such that g(x0) = 0 and
|g(x)−g(y)| ≤ d(x, y) for each x, y ∈ X, i.e., the set of Lipschitz functions on
X with norm ≤ 1 which send x0 to 0. We will usually call this X ′, where the
identity of x0 is understood. Note that if X is a metric subspace of C[0, 1]
containing 0, (X,0)′ is the set of possible combinations of values of X.

Theorem 1. C[0, 1] is a universal separable metric space up to isometry.

P r o o f. Let X be a separable metric space, and let x0 be a fixed point
of X. Put the pointwise convergence topology on X ′. Then X ′ is compact,
because |g(x)| = |g(x)−g(x0)| ≤ d(x, x0), so X ′ is homeomorphic to a subset
of the topological product of the intervals [−d(x, x0), d(x, x0)] indexed by
the points x of X, which is compact, and X ′ is clearly a closed subset of
this compact space, so is compact. X ′ is a metric space, because the values
of a function in X ′ are completely determined by its values on a countable
dense subset of X, so X ′ is homeomorphic to a subset of the product of the
countable collection of intervals [−d(x, x0), d(x, x0)] for x in the countable
dense subset of X, which is metrizable. It is straightforward to show that
X ′ is a convex subset of RX with the usual vector space structure, so it
is a Peano continuum. Let f be a map from [0, 1] onto X ′. Then the
unique map g such that g(x)(t) = f(t)(x) is the desired isometry from X
into C[0, 1]. Indeed, d(g(x), g(y)) is the supremum of expressions of the
form |g(x)(t) − g(y)(t)| = |f(t)(x) − f(t)(y)| ≤ d(x, y), since f(t) is an
element of X ′. Since the function hx from X to the reals which sends y to
d(x, y)− d(x, x0) is an element of X ′, there is t ∈ [0, 1] such that f(t) = hx,
and thus, for this value of t, |g(x)(t) − g(y)(t)| = |f(t)(x) − f(t)(y)| =
|hx(x) − hx(y)| = |−d(x, x0) − d(x, y) + d(x, x0)| = d(x, y), proving that
d(g(x), g(y)) = d(x, y), and g is the desired isometry.

Note that it is actually not necessary for f to fill X ′; it is sufficient for
the image of f to contain either g or −g for each g ∈ X ′, i.e. “half-fill” X ′,
since −hx may be used as well as hx in the argument.

Sierpiński’s proof can be understood in the terminology of our proof
as constructing a path f which visits each function hx instead of a path
which visits every function in X ′. This is done by first taking a path filling
the topological product of the intervals [−d(x, x0), d(x, x0)] indexed by the
points x of X, then choosing for each hx a point in [0, 1] which maps to it
and replacing the images of maximal open intervals of the complement of
the closure of the set of selected points with “affine straight line segments”.
Since each hx ∈ X ′ and X ′ is closed and convex, the image of the resulting
path is in X ′. This procedure produces nicer embeddings of spaces simpler
than U than ours does; it turns out that when X = U , the set of hx’s is
dense in X ′, which is not the case for most spaces X.
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The functions of X ′ can be viewed as “possible combinations of values”
of functions in the image of X in C[0, 1] under an isometry which sends
x0 to 0. In fact, every isometry F from a metric space X into C[0, 1] is
associated with a path G in X ′ by the relation F (x)(t) = G(t)(x) for each
x ∈ X and t ∈ [0, 1]. When is a path G in X ′ associated with an isometry
by this relation? For any path G in X ′, there is a function F from X into
C[0, 1] satisfying F (x)(t) = G(t)(x). We have d(F (x), F (y)) ≤ d(x, y) by the
argument used in the proof of Theorem 1 above, and d(F (x), F (y)) = d(x, y)
exactly if there is a t ∈ [0, 1] such that |F (x)(t) − F (y)(t)| = |G(t)(x) −
G(t)(y)| = d(x, y). Thus F is an isometry exactly if the path G meets the
set {g ∈ X ′ | |g(x) − g(y)| = d(x, y)} for each x, y ∈ X, or, equivalently, if
G meets {g ∈ X ′ | g(x)− g(y) = d(x, y)} for each x, y ∈ X. This set can be
thought of as a “face” of the “convex body” X ′: this prompts the following
definition.

Definition. Let facet(x, y) be the set {g ∈ X ′ | g(x)− g(y) = d(x, y)},
where x and y are points of a metric space X whose identity is understood.

Thus we can summarize the discussion in the previous paragraph in the
following economical form:

Lemma. Any isometry F from a metric space X into C[0, 1] is associated
with a path G in X ′ such that F (x)(t) = G(t)(x) for each x ∈ X and
t ∈ [0, 1]. A path G in X ′ is associated with an isometry in this manner if
and only if it visits either facet(x, y) or facet(y, x) for each x, y ∈ X.

Theorem 2. Every isometry from U into C[0, 1] is of the type described
in the proof of Theorem 1, as modified by the immediately following note.

P r o o f. If X is taken to be a subspace of C[0, 1] containing 0, then
(X,0)′ is exactly the set of possible combinations of values of X. Thus, by
the corollary to Lemma 5 of Part II, the path in U ′ associated with any
isometry from U into C[0, 1] sending x0 to 0 visits g or −g for each g ∈ U ′,
i.e., it half-fills U ′. But the isometric embeddings of U in C[0, 1] constructed
following the proof of Theorem 1 with the indicated modification are exactly
those with this property.

Theorem 2 is the closest thing we know to a definite answer to Sierpiński’s
question cited above; we feel that our proof of Theorem 1 is a generalized
version of Sierpiński’s, and for our method of proof the answer is that there
are no embeddings of (U, x0) in (C[0, 1],0) at all other than those derived
from it. Sierpiński’s method cannot generate every such isometry; in par-
ticular, it could not generate any isometry whose associated path mapped
an open interval into the complement of the set of hx’s in a nonaffine man-
ner. However, Sierpiński’s technique can approximate any such isometry as
closely as desired, if we allow the use of a curve which only “half-fills” a
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Hilbert cube. This theorem is definitely not true for any familiar space. For
instance, the image of the path associated with the isometry from R into
C[0, 1] sending each real to the corresponding constant function is a single
point in R′; this set of functions takes on only one combination of values.

Here is a result which says something interesting about the geometry
of U ′:

Theorem 3. For any open set O in U ′, there are points x, y ∈ U such
that facet(x, y) is contained in O.

P r o o f. A basis element of the pointwise convergence topology on U ′

is of the form {g ∈ U | g(xi) ∈ (ai, bi) for each i ≤ n}, where {x1, . . . , xn}
is a finite set of points in U and {(a1, b1), . . . , (an, bn)} is a finite collection
of open intervals in the reals. Any open O in U ′ contains a basis element,
so we simply need to produce a facet inside this arbitrary basis element
to prove the theorem. Let h be an element of this basis element. Then
H = {g ∈ U ′ | g(xi) = h(xi) for each i ≤ n} is a nonempty subset of the
basis element. We claim that H contains a facet. Let R = (3/2)D, where
D is the diameter of the set consisting of the xi’s and x0. There must be
a point A which lies at distance R − h(xi) from each xi, and distance R
from x0, because this is a possible set of distances from the xi’s and x0,
since h ∈ U ′. There must be a point B which lies at distance R+h(xi) from
each xi, at distance R from x0, and distance 2R from A, for the same reason.
Any function f ∈ facet(A,B) must satisfy f(A) − f(B) = 2R. But f(x0)
must be 0, and must differ from each of f(A) and f(B) by ≤ R. The only
way this can be true is if f(A) = R and f(B) = −R. But then f(xi) must
be ≤ f(B)+R+h(xi) = h(xi), and must also be ≥ f(A)−(R−h(xi)) = R,
so f(xi) = h(xi) for each i ≤ n, and facet(A,B) is a subset of H, which is
a subset of our arbitrary basis element.

It would be easy to prove the corollary to Lemma 5 of Part II using
Theorem 3; the associated path of any isometry from U into C[0, 1] sending
x0 to 0 must visit each facet or its negative; thus, by Theorem 3, it must visit
each open set of U ′ or its negative, thus every point in U ′ or its negative.
The points of U ′ are exactly the functions described in the corollary to
Lemma 5, and the associated path of an isometry visiting a certain point
of U ′ is equivalent to the functions of that isometric copy of U taking on
the “combination of values” represented by that point of U ′.

Banach and Mazur’s original proof that C[0, 1] is a universal separable
metric space up to isometry actually established the following fact, which
we state as a theorem without proof (see [B], [B-P]).

Theorem 4 (Banach and Mazur). C[0, 1] is a universal separable Ba-
nach space up to linear isometry.
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IV. The uniquely determined closed linear span of U . Now we
come to some very surprising results about U . Nothing in the definition
of U would prepare us to believe that U would have interesting proper-
ties in the context of linear spaces; it seems to be a strictly metric con-
cept. However, it turns out that U behaves in a very definite way in every
Banach space in which it can be embedded. All results in this part are
new.

Theorem 1. When U is embedded isometrically in any Banach space,
with a point x0 sent to the zero element of the Banach space, any finite subset
of the isometric copy of U which does not contain x0 is linearly independent ,
and the linear closure U of the copy of U is uniquely determined up to linear
isometry.

P r o o f. We may without loss of generality assume that the Banach space
in question is C[0, 1]. For the linear closure of the separable space U in any
Banach space will itself be a separable Banach space, which by Theorem 4
of Part III can be considered to be embedded in C[0, 1].

We show that the closed linear span of U is uniquely determined by
demonstrating that the norm of each linear combination of elements of U is
exactly determined by the distances of the elements involved from x0 and
from one another. Thus the norm of any element of the closure of the set
of linear combinations of elements of U is exactly determined by the choice
of x0. By part (b) of the Theorem of Part I, U has no privileged points, in
the sense that there is an isometry from U onto U taking x0 to any desired
point x. Thus any isometric copy of U in C[0, 1] which contains 0 can be
carried to any other by an isometry which fixes 0.

If F = {0, f1, . . . , fn} is a finite subset of C[0, 1] and a1, . . . , an are
real numbers, then ||

∑
1≤i≤n aifi|| = supt∈[0,1] |

∑
1≤i≤n ait

∗(fi)| ≤
supr∈F ′ |

∑
1≤i≤n air(fi)|, where t∗ is defined as the function which takes

each element of F to its value at t. By Lemma 2 of Part II, if F is a sub-
set of an isometric copy of U , for each r ∈ F ′ there is a t ∈ [0, 1] such
that r = t∗ or −r = t∗. We can conclude that in this case we get =
above in place of ≤. If, in addition, we have fi = fj iff i = j, we get
an r′ ∈ F ′ defined by r′(fi) = bai/|ai|, where b > 0 is less than d(fi, fj)
for each pair of distinct indices i and j. We then have ||

∑
1≤i≤n aifi|| =

supr∈F ′ |
∑

1≤i≤n air(fi)| ≥ |
∑

1≤i≤n air
′(fi)| = b

∑
1≤i≤n |ai|, which is

positive if any ai is nonzero; we see that any set of nonzero points of a
copy of U containing 0 is linearly independent. Moreover, since the expres-
sion ||

∑
1≤i≤n aifi|| = supr∈F ′ |

∑
1≤i≤n air(fi)| depends only on the ai’s

and the distances between points in F , it follows that any isometry between
copies of (U,0) in C[0, 1] extends linearly to an isometry between their linear
spans and hence to a linear isometry between the closures thereof.
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R e m a r k. It follows from our proof above that the norm of a finite
linear combination of points of U , and thus the distance between two finite
linear combinations of points of U , is as large as the distances among the
points of U involved and x0 permit, subject to the axioms of a Banach space.
Thus, another way of describing the norm of a linear combination a of points
of U is as the minimum of expressions

∑
i |ci|d(ai, a

′
i), where ai’s and a′i’s

are points of U and a =
∑

i ci(ai − a′i). A straightforward consequence of
this is that it is possible to expand a distance d(p, q) = ||p − q|| between
finite linear combinations of points of U as a minimal expression of the form∑

i |ci|d(pi, qi) where p =
∑

i pi and q =
∑

i qi, where pi, qi ∈ U (this may
require the introduction of cancelling terms into the expansion of the norm
of ||p− q|| described above).

Although no nontrivial linear combination of points of a copy of U con-
taining 0 is itself a point of U (only linear combinations of the form 0f or
1f , where f is a point of U , can be points of U , by the linear independence
of U), any linear combination of points in a copy of U containing 0 is a
point in some copy of U containing 0; if {f1, . . . , fn} is a finite set of points
in a copy of U containing 0, then there is a function g in the same copy of U
which inflates {f1, . . . , fn}. Let h be a linear combination of the fi’s and let
t, u be reals such that |t| ≤ 1, |u| ≤ h. Clearly, there exists an x ∈ [0, 1] and
an s′ = ±1 such that h(x) = s′u, and by the Remark preceding Lemma 3
of Part II there is a y ∈ [0, 1] such that g(y) = s′′s′t and fi(y) = s′′s′fi(x)
for some s′′ = ±1. Then, also, h(y) = s′′s′h(x) = s′′s′u. By the Remark of
Part II and Theorem 2 of Part II, h belongs to some copy of U containing 0.

We now investigate the properties of the Banach space U. A natural
question to raise is whether U is a universal separable Banach space up to
linear isometry. We do not know the answer to this question; the rest of
this paper covers our investigation of what Banach spaces can be embedded
in U. It would be easy to show that U was a universal separable Banach
space if U had properties relative to Banach spaces similar to those that U
has relative to metric spaces; we show that U does not have such properties.
We assume throughout that U is a metric subspace of C[0, 1] containing 0,
and thus that U is a closed linear subspace of C[0, 1].

Theorem 2. L1, the space of measurable functions on the nonnegative
reals with the norm of a function equal to its Lebesgue integral over the
nonnegative reals, can be embedded in a linear isometric fashion in U.

P r o o f. Let I be an isometry from the nonnegative reals into U such that
I(0) = 0. Then the isometry which sends the characteristic function of the
interval [0, r] to I(r) for each nonnegative real r determines a linear isometry
from L1 into U. The characteristic functions of intervals [0, r] for nonzero r,
which we denote by X(r) below, are linearly independent in L1 and their
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closed linear span is the whole space, so I does in fact determine a linear
map from L1 into U; it remains to show that this map is an isometry. It is
sufficient to show that the norm of each finite linear combination of X(r)’s
is equal to the norm of the corresponding finite linear combination of I(r)’s.
Indeed, ||

∑
1≤i≤n aiX(ri)||, where we assume without loss of generality that

ri < rj iff i < j, can be expressed as
∑

1≤i≤n |bi|(ri − ri−1), where r0 is
taken to be 0 and bi =

∑
i≤j≤n aj . It is clear that ||

∑
1≤i≤n aiI(ri)|| ≤∑

1≤i≤n |bi|(ri − ri−1). To see that these quantities are equal, consider a
t ∈ [0, 1] at which the functions I(ri) take on values I(ri)(t) = sf(ri), where
s = ±1 and f is the continuous piecewise linear function with f(0) = 0 and
the slope of f equal to |bi|/bi in the interior of each interval [ri−1, ri]. This
is clearly a possible combination of values for the I(ri)’s, so a t exists which
realizes it. The value of each I(ri)−I(ri−1) at t is s(|bi|/bi)(ri−ri−1), so the
value at t of

∑
1≤i≤n bi(I(ri)−I(ri−1)) is equal to

∑
1≤i≤n s|bi|(ri−ri−1).

Corollary to Theorem 2. All two-dimensional Banach spaces can
be embedded in U in a linear isometric fashion.

P r o o f. We show that all two-dimensional Banach spaces can be em-
bedded in L1 in a linear isometric fashion. (This result has previously been
shown by Lindenstrauss in [L].)

With each Banach space X with basis {u, v} with |u| = 1, we associate
the function f defined by f(a) = d(au, v). We investigate the properties of
such functions f , and produce a characterization of such functions. From f ,
we can recover the Banach space X: |au| = |a| and |au+bv| = |b|f(−a/b) for
b 6= 0. Applying the triangle inequality, we easily get f(a+ b) ≤ f(a)+ f(b)
for a, b ∈ R; f(ca + (1 − c)b) ≤ |c|f(a) + |1 − c|f(b) for a, b, c ∈ R. These
conditions can be shown to characterize the class of such functions f ex-
actly. This analysis is analogous to our definition of “possible combinations
of distances” in metric spaces, but we have only covered the analogue of the
case of “possible distances” from one point u, which is completely trivial
in the metric context! It follows that the graph of f is concave up, so f
has a first derivative on the complement of a countable set which is non-
decreasing, bounded above by 1 and below by −1. Thus f ′ has a partial
inverse h which has domain [−1, 1] and is nondecreasing; fill in the graph
of h with horizontal lines corresponding to the vertical jumps in the graph
of f ′. Define g(t) as h((t + 1)/2) and let X(s) denote the characteristic
function of [0, s].

We will compute d(aX(1), g) using the integral metric of L1[0, 1] and
show that it exists for each a; the case a = 0 verifies that g ∈ L1.

Observe that
∫
[0,1]

|g − a|, the integral which, if it exists, will be the
desired distance, is (1/2)(

∫
[a,∞]

(1 − f ′) −
∫
[−∞,a]

(f ′ + 1)), by an obvious
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operation on the graph. Now,
1
2

( ∫
[a,b]

1− f ′
)

=
1
2
(b− a− (f(b)− f(a))) ,

1
2

( ∫
[−c,a]

f ′ + 1
)

=
1
2
(a + c + f(a)− f(−c)) .

If we add the approximations to the improper integrals, we obtain (1/2)(b−
f(b) + c− f(−c) + 2f(a)).

The limit as b approaches infinity of b−f(b) and the limit as c approaches
infinity of c − f(−c) both exist and are bounded in absolute value by |v|;
b − f(b), for instance, is equal to d(0, bu) − d(v, bu) ∈ [−|v|, |v|] and must
increase. We term these limits r1 and r2, respectively. Moreover, b− f(b) +
c−f(−c) = b+c−(f(b)+f(−c)) = b+c−(d(v, bu)+d(v,−cu)) ≤ 0. If we set
r = −(r1+r2)/2, we see that d(aX(1), g) = f(a)−r = d(au, v)−r, and r ≥ 0.
The map F which sends u to X(1) ∈ L1[0, 2] and v to g + r(X(2)−X(1)) ∈
L1[0, 2] satisfies d(F (au), F (v)) = ||au− v|| and hence extends linearly to a
linear isometry from X into L1[0, 2].

Definition. We say that a point b in a metric space is between points
a and c iff d(a, b) + d(b, c) = d(a, c). We define B(a, c) as the set of points b
which are between a and c. The set of points between a and b in a metric
space which lie in a subspace X will be denoted by BX(a, b).

A triple midpoint between points a, b, and c is a point d which is in the
intersection of B(a, b), B(a, c) and B(b, c). It is straightforward to establish
that a triple midpoint between a, b, and c is at distance (d(a, b) + d(a, c)−
d(b, c))/2 from a and symmetrically determined distances from b and c. A
metric space has the triple midpoint property if any three points in the space
have at least one triple midpoint.

U obviously has the triple midpoint property. Any space C[X] has the
triple midpoint property, because it is easy to show that for any combination
of distances r from a set S, there is a point t such that d(s, t) ≤ r(s) for each
s ∈ S, and the combination of distances from a, b, and c at which a triple
midpoint would be found is minimal. Any l1 space, that is, a function space
with a sum or integral metric, has unique triple midpoints—for each triple
of points a, b, c there is exactly one triple midpoint. We sketch a proof for
a space of functions with the integral metric: if f , g, and h are functions
in the space, it is straightforward to show that the unique function whose
value at each t is in the closed intervals between f(t) and g(t), between f(t)
and h(t), and between g(t) and h(t) is the unique triple midpoint between
f , g, and h. We prove two lemmas, then we prove that U does not have the
triple midpoint property.
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Lemma 1. Let A and B be subsets of U with finite diameter such that for
some positive e, d(a, b) > e for each a ∈ A and b ∈ B. Then the intersection
of the closed linear span of A and the closed linear span of B is {0}. (Note
that the conditions of the lemma hold in the case where A and B are disjoint
compact subsets of U .)

P r o o f. Let a and b be points in the closed linear spans of A, B, respec-
tively. Let e be a positive real number. Let a′, b′ be finite rational linear
combinations of points of A, B, respectively, within distance e of a, b re-
spectively. Expand d(a′, b′) as indicated in the Remark above, as a minimal
expression of the form

∑
i |ci|d(a′i, b

′
i), where

∑
i cia

′
i = a′ and

∑
i cib

′
i = b′.

Using the fact that all coefficients in the expansions of a′ and b′ are ratio-
nal, we may assume that all ci’s have the same absolute value c (the gcd of
all coefficients occurring in the original expansions of a′ and b′). It is also
possible to assume without loss of generality that wherever a pair of terms
cia

′
i and cja

′
j satisfy ci = −cj and a′i = a′j 6= 0 then either b′i = a′i = a′j or

b′j = a′j = a′i; otherwise, it would be possible to replace both a′i and a′j with
either b′i or b′j without increasing the value of the expansion of d(a′, b′) (by
an application of the triangle inequality) and thus without changing it, since
the value of the expansion is minimal for expansions of the same form (the
replacement does not affect the value of a′ because the terms involved can-
cel one another). Such a process of substitution can be iterated and must
terminate. Note that it is also possible to assume that all a′i’s not equal
to 0 occur nontrivially in the expansion of either a′ or b′ (cancelling pairs of
terms involving points from the expansion of b′ may be involved)—all other
points have to occur in cancelling pairs of terms which can be eliminated
by possibly iterated application of the technique indicated above. All these
remarks apply by symmetry to the expansion of b′ as well.

It follows that each point a′i, b′i is in A, in B, or equal to 0. Each term
cd(a′i, b

′
i) of the expansion of d(a′, b′) such that one of the points is in A and

the other is in B makes a contribution of at least cd(A,B) to d(a′, b′). The
sum of the absolute values of the coefficients of such a′i’s and b′i’s will be
as small as desired if d(a′, b′) is taken to be sufficiently small (as it will be
if d(a, b), e are taken to be sufficiently small). Since the sets A and B are
bounded, it follows that the points a′′, b′′ obtained by eliminating all such
terms from the expansions of a′, b′ respectively are as close as desired to
a′, b′, respectively, under the same conditions. Eliminating the correspond-
ing terms from the expansion of d(a′, b′) gives an expansion of d(a′′, b′′) (a
“better” candidate for the expansion of this distance could be used to give
a “better” candidate for the expansion of d(a′, b′)); now observe that since
points of A and B never correspond to one another in the expansions of
a′′, b′′, the expansion of d(a′′, b′′) can be divided into two expansions, one
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involving points of A and 0 and one involving points of B and 0, which are
easily seen to be expansions of d(a′′,0) and d(b′′,0), since a′′ involves points
of B only trivially and b′′ involves points of A only trivially. If these were not
actually expansions of the distances indicated, a “better” expansion could
be found for d(a′′, b′′). Thus d(a′′, b′′) = d(a′′,0) + d(b′′,0), and it follows
that forcing a and b closer together and e to 0, which clearly forces d(a′′, b′′)
to 0, thus forces a′′ and b′′ to 0—but this also forces a and b themselves
to 0.

Lemma 2. Let p and q be points of U. Then any point of U between p−q
and 0 is in the closed linear span of BU (p, q).

P r o o f. Note that h is between 0 and p− q iff h + q is between p and q,
and h + q is in the closed linear span of BU (p, q) iff h is. It follows that it is
equivalent to prove that points between p and q are in the closed linear span
of the set of points of U between p and q, and this is what we will prove.

Let h be a point of U between p and q. For any e > 0, we can find h′

within distance e/2 of h which is a finite linear combination of points of U
with rational coefficients. Expand the distances from p to h′ and from h′

to q in the form described in the Remark and used in the proof of Lemma 1.
As in the proof of Lemma 1, we can assume without loss of generality that
the absolute values of all coefficients are the same (call this value c). We
may suppose without loss of generality that the expansions of h′ involved in
the two expansions of distances are the same.

We now construct sequences of terms from the expansions of d(p, h′)
and d(h′, q), which we will refer to as paths. The paths will be disjoint and
will contain no term more than once. A path will have as its first term a
term |ci|d(pi, h

′
i) of the expansion of d(p, h′) such that ci = c and pi = p;

a (4n + 1)st term of a path will be a term |ci|d(pi, h
′
i) of the expansion of

d(p, h′), the (4n + 2)nd term will be the corresponding term |ci|d(h′i, qi) of
the expansion of d(h′, q), the (4n + 3)rd term will be a term |cj |d(h′j , qj)
such that cj = −ci and qi = qj , and the (4n+4)th term will be |cj |d(pj , h

′
j).

The (4n + 5)th term, if there is one, must be a term |ck|d(pk, h′k) such that
ck = −cj = ci and pj = pk. In the course of constructing paths, we reserve
the right to introduce additional zero terms in all expansions if this enables
us to lengthen paths nontrivially; this has the effect that each path will
actually begin with a term cd(p, h′i) and end with a term cd(h′j , q). The
reason for this is that the only terms in the expansions of p, q respectively
which do not have cancelling terms are of the form cp, cq respectively. We
extend paths whenever possible subject to the condition that each term
is only used once in any path, and whenever a path terminates, we start
constructing a new path if a suitable first term is still available. When
the process is complete, 1/c paths will have been constructed. There may
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remain terms which are not on any path. The sum of the terms in the
expansion of p not involved in any path will be zero, and likewise for q; this
will not necessarily be true of h′, but we will show that the norm of the sum
of such terms of h′ is less than e.

We define the length of a path as the sum of the terms on the path. By
iterated applications of the triangle inequality, the length of each path must
be at least cd(p, q), so the sum of the lengths of all paths must be at least
d(p, q). Now if we let H represent the sum of all terms of the expansion
of h′ which are not on any path, we observe that the sum of all terms of
the expansion of d(p, h′) which involve terms of h′ and p not on any path
is an expansion of d(H,0), and similarly for d(h′, q). Thus the norm of H
is bounded above by the excess of d(h′, p) + d(h′, q) over d(p, q), which is
bounded in turn by e.

Now fix a positive real number d and observe that each term of the
expansion of h′ which occurs on a path and is at a distance greater than d
from BU (p, q) must make a contribution of at least cd to the excess of the
length of the path it is on over cd(p, q). This implies that for e small enough
and N the number of paths containing points at a distance greater than d
from BU (p, q), the quantity Nc will be as small as desired. Now observe that
the terms of p involved in such paths will add up to Ncp and the terms of q
involved in such expansions will add up to Ncq, while, if we let H ′ represent
the total of points of the expansion of h′ involved in such paths, the total
length of these paths will be an expansion of d(H ′, Ncp) + d(H ′, Ncq), a
quantity which approaches 2d(H ′,0) as e and Nc approach zero. The total
length of paths which do not involve points at a distance greater than d
from BU (p, q) will be at least (1 − Nc)d(p, q). As e approaches zero, Nc
approaches zero, and the total length of paths not containing points at a
distance greater than d from BU (p, q) will approach a quantity greater than
or equal to d(p, q), so the sum of all other terms of the expansion, which
approaches 2d(H,0) + 2d(H ′,0), will approach zero. This implies that the
distance between h′ and the sum of the terms of its expansion which are
within d of BU (p, q) will become as small as desired if e is taken sufficiently
small. We can obtain a point within d of this point which is a point of
the linear span of BU (p, q) by replacing each point in the expansion with a
point within distance d which is actually in BU (p, q). Thus, if we take first
d and then e small enough, we can obtain a point as close to the original h
as desired which is a finite linear combination of points of BU (p, q).

Theorem 3. U does not have the triple midpoint property.

P r o o f. Consider points a, b, c, d of U , with d(a, b) = d(c, d) = 1,
d(b, c) = d(d, a) = 1/2, and d(a, c) = d(b, d) = 3/2. (Such points can be
found on a circle of circumference 3 with the distance between two points
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defined as the shortest arc distance.) The distances of all these points from
0 can be taken to be 3/4. Define A as a− b and B as d− c. Then d(A,0) =
d(B,0) = 1, obviously. Also, d(A,B) ≤ d(a, d) + d(b, c) + 1, and the values
of A and B actually differ by 1 when a, c take on the value 1/4 and b, d
take on the value −1/4, so d(A,B) = 1 as well. If A, B, and 0 have a triple
midpoint C, we must have d(A,C) = d(B,C) = d(0, C) = 1/2. Finally,
observe that the intersection of BU (a, b) and BU (c, d) is empty; if a point
lies in BU (a, b), it must be at distance ≤ 1/2 from either a or b, and thus
at distance ≥ 1 from either c or d. The only apparently possible case is
that in which these inequalities are actually equations, so the point in the
intersection of BU (a, b) and BU (c, d) is a midpoint between a and b and is
actually c or d itself; but neither c nor d is a midpoint between a and b.
Now observe that the closed linear spans of BU (a, b) and BU (c, d) have
intersection {0} by Lemma 1, and that the triple midpoint C of A, B, and
0 must be in the intersection of these closed linear spans by Lemma 2, which
is impossible, because the distance from C to 0 is supposed to be 1/2.

The result of Theorem 3 shows that U contains a collection of three
points and a combination of distances from those points which is permitted
by the axioms of a Banach space (it is realized in C[0, 1] for those three
points) which is not realized by a point in U. This rules out a proof that
U is a universal separable Banach space which would be analogous to the
proof that U is a universal separable metric space.

A natural line of investigation to pursue at this point is to attempt
to determine what spaces Rn with the supremum metric can be linearly
isometrically embedded in U. If all such spaces could be embedded in U, we
could conclude that all finite-dimensional Banach spaces with polyhedral
unit balls could be embedded in U (this follows from results about the
geometry of convex polytopes: see [G]). It proves possible to embed R2, R3,
and R4 with the supremum metric in a linear isometric fashion in U, but
it is not clear whether all such spaces can be embedded in U. R4 with the
supremum metric is embedded as follows: choose points a, a′, b, b′, c, c′, d,
d′ in U such that the distance between each of the first four points and each
of the last four points is 1/4 and each other nontrivial distance is 1/2. The
basis elements for a linear isometric copy of R4 with the supremum metric
are a− a′ + b− b′, a− a′ − b + b′, c− c′ + d− d′, and c− c′ − d + d′.
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