A characterization of dendroids
by the \(n \)-connectedness of the Whitney levels

by

Alejandro Illanes (México, D.F.)

Abstract. Let \(X \) be a continuum. Let \(C(X) \) denote the hyperspace of all subcontinua of \(X \). In this paper we prove that the following assertions are equivalent: (a) \(X \) is a dendroid, (b) each positive Whitney level in \(C(X) \) is 2-connected, and (c) each positive Whitney level in \(C(X) \) is \(\infty \)-connected (\(n \)-connected for each \(n \geq 0 \)).

Introduction. Throughout this paper \(X \) will denote a continuum (i.e., a compact connected metric space) with metric \(d \). Let \(C(X) \) be the hyperspace of all subcontinua of \(X \) with the Hausdorff metric \(\mathcal{H} \). A Whitney map for \(C(X) \) is a continuous function \(\mu : C(X) \to \mathbb{R} \) satisfying: (a) \(\mu(\{x\}) = 0 \) for each \(x \in X \), (b) if \(A, B \in C(X) \) and \(A \subsetneq B \), then \(\mu(A) < \mu(B) \), and (c) \(\mu(X) = 1 \). A (positive) Whitney level is a set of the form \(\mu^{-1}(t) \) where \(0 \leq t \leq 1 \) (resp. \(0 < t \leq 1 \)). \(S^n \) denotes the \(n \)-sphere. A space \(Y \) is \(n \)-connected if, for every \(0 \leq i \leq n \), each map \(f : S^i \to Y \) is null homotopic; \(Y \) is \(\infty \)-connected if it is \(n \)-connected for each \(n \). A topological property \(P \) is a Whitney property provided whenever a continuum \(X \) has property \(P \), so does every positive Whitney level in \(C(X) \). A map is a continuous function. The unit closed interval is denoted by \(I \), and the set of positive integers by \(\mathbb{N} \).

Positive Whitney levels are continua [1]. Answering questions by J. Krasińskiwicz and S. B. Nadler, Jr., in [9] A. Petrus showed that if \(D \) is a 2-cell, then there exists a Whitney level \(\mathcal{A} \) in \(C(D) \) which is not contractible, in fact \(\mathcal{A} \) has non-trivial fundamental group and non-trivial first singular homology group.

The main theorem in this paper is:

Theorem. The following assertions are equivalent:

(i) \(X \) is a dendroid,

(ii) Each positive Whitney level in \(C(X) \) is 2-connected.

(iii) Each positive Whitney level in \(C(X) \) is \(\infty \)-connected.
We divide the proof into two independent sections. In the first section we prove that (ii)⇒(i), and in the second one we prove that (i)⇒(iii).

1. 2-connectedness of Whitney levels implies that X is a dendroid. We will need the following lemma.

1.1. Lemma. Let $\mu : C(X) \to \mathbb{R}$ be a Whitney map. Let $t_0 \in I$. Let Y be a continuum such that $C(Y)$ is contractible. Then every map $f : Y \to \mu^{-1}([0, t_0])$ is homotopic to a map $g : Y \to \mu^{-1}([0, t_0])$ such that $\operatorname{Im}g \subset \mu^{-1}(t_0)$.

Proof. Take a map $f : Y \to \mu^{-1}([0, t_0])$. Since $C(Y)$ is contractible, by [12, Thm. 16.7] there exists a map $F : Y \times I \to C(Y)$ such that, for every $y \in Y$, $F(y, 0) = \{y\}$, $F(y, 1) = Y$ and $s \leq t$ implies that $F(y, s) \subset F(y, t)$.

We distinguish two cases:

(a) $\mu(\bigcup f(Y)) = \mu(\{f(y) \in C(Y) : y \in Y\}) \geq t_0$. Define $G : Y \times I \to C(X)$ by $G(y, t) = \bigcup f(F(y, t)) = \{f(v) \in C(X) : v \in F(y, t)\}$. Then G is a map such that $G(y, 0) = f(y)$ and $G(y, 1) = \bigcup f(Y)$ for every $y \in Y$. Define $K : Y \times I \to \mu^{-1}([0, t_0])$ by

$$K(y, t) = \begin{cases} G(y, t) & \text{if } \mu(G(y, t)) \leq t_0, \\ G(y, s) & \text{if } \mu(G(y, t)) > t_0, \end{cases}$$

where $s \in [0, t_0]$ is chosen in such a way that $\mu(G(y, s)) = t_0$.

Then $K(y, 0) = f(y)$ and $K(y, 1) \in \mu^{-1}(t_0)$, and we define $g : Y \to \mu^{-1}([0, t_0])$ by $g(y) = K(y, 1)$ for every $y \in Y$.

(b) $\mu(\bigcup f(Y)) \leq t_0$. Defining G as in (a), we see that f is homotopic (within $\mu^{-1}([0, t_0])$) to the constant map $y \to \bigcup f(Y)$. Since $\bigcup f(Y) \in \mu^{-1}([0, t_0])$, there exists an ordered arc ([12, Thm. 1.8]) joining $\bigcup f(Y)$ to an element $A_0 \in \mu^{-1}(t_0)$ (within $\mu^{-1}([0, t_0])$). Then we complete the proof of the lemma by defining $g(y) = A_0$ for every $y \in Y$.

We will use the following notions related to Whitney levels:

The space of Whitney levels, $N(X)$, of X is defined by $N(X) = \{A \in C(C(X)) : A$ is a Whitney level in $C(X)\}$. This space was introduced in [5]–[7]. In [7, Lemma 2.2] it was proved that an equivalent metric for $N(X)$ is $H^*(A, B) = \max\{H(A, B) : A \in A, B \in B \text{ and } A \subset B\}$. A partial order for $N(X)$ is defined in [5] by $A \leq B$ if and only if for each $B \in B$, there exists $A \in A$ such that $A \subset B$. If $A \subset N(X)$ is compact and γ is an ordered arc in $C(X)$ beginning with a singleton and ending with X, then ([5]) $A_\gamma = \bigcap\{A \in \gamma : \text{ there exists } A \in A \subset A \in A \subset B \text{ for some } B \in B\}$. Finally, in [5] it is shown that $\inf(A) = \{A, A \in C(X) : \gamma \text{ is an ordered arc in } C(X) \begin{array}{l} \text{ beginning with a singleton and ending with } X \end{array}\}$ is a Whitney level which is the infimum, in $(N(X), \leq)$, of the set A.

A. Illanes
CONVENTIONS. \(\mathbb{R}^n \) denotes the Euclidean \(n \)-dimensional space. \(e : \mathbb{R} \to S^1 \) denotes the exponential map defined by \(e(t) = (\cos t, \sin t) \). \(D^2 \) is the unit disk in \(\mathbb{R}^2 \). If \(Y \) is a topological space, a map \(f : Y \to S^1 \) can be lifted (\(f \simeq 1 \)) if there exists a map \(g : Y \to \mathbb{R} \) such that \(e \circ g = f \) (equivalently, if \(f \) is null homotopic, see [10, Lemma 5]). If \(A \in C(X) \) and \(\varepsilon > 0 \) then \(N(\varepsilon, A) \) denotes the set \(\{ x \in X : \text{there exists } y \in A \text{ such that } d(x, y) < \varepsilon \} \) and \(B(A, \varepsilon) \) denotes the set \(\{ B \in C(X) : \mathcal{H}(A, B) < \varepsilon \} \). \(2^X \) denotes the hyperspace of all closed nonempty connected subsets of \(X \).

From now on, in this section, we will suppose that if \(A \) is a positive Whitney level in \(C(X) \), then every map \(f : S^1 \to A \) is null homotopic for \(i = 1, 2 \) (we are not supposing yet that \(A \) is pathwise connected).

1.2. THEOREM. \(X \) is hereditarily unicoherent.

Proof. Suppose, on the contrary, that there exist \(A_1, B_1 \in C(X) \) such that \(A_1 \cap B_1 \) is not connected. Let \(H, K \in 2^X \) be such that \(H \cap K = \emptyset \) and \(A_1 \cap B_1 = H \cup K \). We will construct:

(a) A Whitney map \(\omega \) for \(C(X) \),
(b) A number \(t_0 \in (0, 1] \),
(c) Two open subsets \(\mathcal{V}_1 \) and \(\mathcal{V}_2 \) in \(\omega^{-1}([0, t_0]) \),
(d) A map \(\lambda : S^1 \to \mathcal{V}_1 \cap \mathcal{V}_2 \) and
(e) A map \(h_1 : \mathcal{V}_1 \cap \mathcal{V}_2 \to S^1 \)

such that \(\omega^{-1}([0, t_0]) = \mathcal{V}_1 \cup \mathcal{V}_2 \), \(h_1 \circ \lambda \) is not homotopic to a constant and, for \(i = 1, 2 \), \(\lambda : S^1 \to \mathcal{V}_i \) can be extended to the disk \(D^2 \). Then, using Lemma 1.1 and a Mayer–Vietoris type sequence we will obtain a contradiction. The construction of these elements is divided into a sequence of steps.

A. There exists \(A_0 \in C(X) \) such that \(A_0 \subsetneq A_1 \), \(A_0 \cap H \neq \emptyset \), \(A_0 \cap K \neq \emptyset \) and \(A_0 \) is minimal with these properties.

To construct \(A_0 \), choose a Whitney map \(\mu \) for \(C(X) \). Let \(t_1 = \min \{ \mu(A) \in I : A \subsetneq A_1, A \cap H \neq \emptyset \text{ and } A \cap K \neq \emptyset \} \). Take \(A_0 \in C(X) \) such that \(\mu(A_0) = t_1 \).

B. Let \(H_1 = A_0 \cap H \) and \(K_1 = A_0 \cap K \). Then there exists \(B_0 \in C(X) \) such that \(B_0 \subsetneq B_1 \), \(B_0 \cap H_1 \neq \emptyset \), \(B_0 \cap K_1 \neq \emptyset \) and \(B_0 \) is minimal with these properties. Define \(H_0 = H_1 \cap B_0 \) and \(K_0 = K_1 \cap B_0 \). Then \(A_0 \cap B_0 = H_0 \cup K_0 \), \(H_0 \cap K_0 = \emptyset \) and \(H_0, K_0 \in 2^X \). Furthermore, if \(A \) (resp. \(B \)) is a proper subcontinuum of \(A_0 \) (resp. \(B_0 \)), then \(A \cap H_0 = \emptyset \) (resp. \(B \cap H_0 = \emptyset \)) or \(A \cap K_0 = \emptyset \) (resp. \(B \cap K_0 = \emptyset \)).

C. Let \(E = A_0 \cup B_0 \). Let \(S^+ = \{(x, y) \in S^1 : y \geq 0 \} \) and \(S^- = \{(x, y) \in S^1 : y \leq 0 \} \). Since \(X \) is metric, Tietze’s Theorem implies that there exists a map \(f_0 : E \to S^1 \) such that \(H_0 = f_0^{-1}((-1, 0)) \), \(K_0 = f_0^{-1}((1, 0)) \), \(f_0(A_0) \subset S^+ \) and \(f_0(B_0) \subset S^- \). Since \(S^1 \) is an ANR (metric), there exists
an open subset U in X and a map $f : U \to S^1$ such that $E \subseteq U$ and $f|E = f_0$. Then the Unique Lifting Theorem implies that $f|E$ cannot be lifted.

D. If A is a proper subcontinuum of E, then $f|A \simeq 1$.

To see this, suppose, for example, that A_0 is not contained in A. Let $A_H = \bigcup \{ L \in C(X) : L$ is a component of $A \cap A_0$ and $L \cap H_0 \neq \emptyset \}$ and let $A_K = \bigcup \{ L \in C(X) : L$ is a component of $A \cap A_0$ and $L \cap H_0 = \emptyset \}$. Then A_H is closed in X. We will prove that A_K is closed. If $A \subseteq A_0$, then either $A_K = A$ or $A_K = \emptyset$. Suppose then that A is not contained in A_0. If L is a component of $A \cap A_0$, then L_0 intersects either H_0 or K_0 but not both of them. If $x \in \text{Cl}(A_K)$ then $x = \lim n x_n$ where $(x_n)_n$ is a sequence such that, for each n, $x_n \in L_n$ for some component L_n of $A_0 \cap A$ such that $L_n \cap H_0 = \emptyset$ (then $L_n \cap K_0 \neq \emptyset$). Therefore the component L of $A_0 \cap A$ which contains x intersects K_0. Hence $L \cap H_0 = \emptyset$ and $x \in A_K$. The minimality of A_0 implies that $A_H \cap K_0 = \emptyset$. Notice that $A_H \cap A_K = \emptyset$ and $A_K \cap H_0 = \emptyset$.

Thus $A = A_H \cup A_K \cup (A \cap B_0)$. Since $A_H, A_K \subseteq A = f^{-1}(S^\ast)$ and $A \cap B_0 \subseteq B_0 = f^{-1}((S^\ast)^c)$, we find that $f|A_H, f|A_K$ and $f|(A \cap B_0)$ can be lifted. Since $A_H \cap A \cap B_0 \subseteq H_0 = f^{-1}((-1, 0))$, $A_K \cap A \cap B_0 \subseteq K_0 = f^{-1}((1, 0))$ and $A_H \cap A_K = \emptyset$, it follows that $f|A$ can be lifted.

E. There exists an open subset \mathcal{V} of $C(X)$ such that $C(E) - \{ E \} \subseteq \mathcal{V}$ and for each $A \in \mathcal{V}$, $A \subseteq U$ and $f|A \simeq 1$.

Indeed, let $A \in C(E) - \{ E \}$, $f|A \simeq 1$. Then $\{ 0 \}$ there exists an open subset U_A of U containing A such that $f|U_A \simeq 1$. Therefore there exists $\varepsilon_A > 0$ such that if $\mathcal{H}(A, B) < \varepsilon_A$, then $f|B \simeq 1$. Define $\mathcal{V} = \{ B \in C(X) : \mathcal{H}(A, B) < \varepsilon_A$ for some $A \in C(E) - \{ E \} \}$.

F. Fix a Whitney map $\nu_0 : 2^X \to I$. Let $\nu = \nu_0|C(X)$. Define $t^* = \nu(E) > 0$ and define $h : C(X) \times I \times (0, t^*) \to \mathbb{R}$ by $h(A, t, s) = \min \{ \nu(A) t^*/s, \nu_0(A \cup E) + t(\nu(A) - \nu(E)) \}$. Then h is continuous and $h(E, t, s) = t^*$ for every $t \in I$ and $s \in (0, t^*)$. Fix $t \in (0, 1]$ and $s \in (0, t^*)$. Then the map $A \to h(A, t, s)/h(E, t, s)$ from $C(X)$ to I is a Whitney map.

G. If $0 < s_1 < s_2 < t^*$, then there exists $r \in (0, 1]$ such that if $0 < t \leq r$, $A \in \nu^{-1}([s_1, s_2])$ and $h(A, t, s_1) < t^*$, then $A \in \mathcal{V}$.

Indeed, otherwise we can choose sequences $(t_n)_n \in (0, 1]$ and $(D_n)_n \in \nu^{-1}([s_1, s_2])$ such that $t_n \to 0$ and $h(D_n, t_n, s_1) < t^*$ and $D_n \not\subseteq \mathcal{V}$ for all n. We may suppose that $D_n \to A$ for some $A \in \nu^{-1}([s_1, s_2])$. Then $A \not\in \mathcal{V}$ and $\nu(A) \leq s_2 < \nu(E)$. Thus A is not contained in E and $\nu_0(A \cup E) > t^*$. Since $t_n(\nu(D_n) - \nu(E)) + \nu_0(D_n \cup E) \to \nu_0(A \cup E)$ and $\nu(D_n) t^*/s_1 \geq t^*$, we conclude that there exists $n \in \mathbb{N}$ such that $h(D_n, t_n, s_1) \geq t^*$. This contradiction completes the proof of G.
H. Choose a sequence \((s_n)_n \subset (0,t^*)\) such that \(s_n \to t^*\) and \(0 < s_1 < s_2 < \ldots\). Let \((t_n)_n \subset (0,1] \) be a sequence such that \(t_n \to 0, \ t_1 > t_2 > \ldots\) and, for each \(n\), if \(A \in \nu^{-1}([s_n, s_{n+1}])\) and \(h(A,t_n,s_n) < t^*\), then \(A \in \mathcal{V}\).

I. Let \(\mathcal{A} = s^{-1}(t^*)\). For each \(n\), define \(\mathcal{A}_n = \{ A \in C(X) : h(A,t_n,s_n) = t^*\}\). Then \(E \in \mathcal{A}_n, \mathcal{A}_n\) is a positive Whitney level, \(\nu^{-1}(s_n) \leq \mathcal{A}_n \leq \mathcal{A}\) and \(\mathcal{A}_n \to \mathcal{A}\).

To see this, let \(A \in \mathcal{A}_n\); then \(t^* \leq \nu(A)t^*/s_n\). Thus \(s_n \leq \nu(A)\). Then there exists \(B \in \nu^{-1}(s_n)\) such that \(B \subset A\). Hence \(\nu^{-1}(s_n) \leq \mathcal{A}_n\).

Now, let \(A \in \mathcal{A}\). Then \(h(A,t_n,s_n) = \min\{\nu_0(A \cup E), (t^*)^2/s_n\}\). Therefore \(h(A,t_n,s_n) \geq t^*\), so that there exists \(B \in C(X)\) such that \(B \subset A\) and \(h(B,t_n,s_n) = t^*\). Thus \(\mathcal{A}_n \leq \mathcal{A}\).

By [7, Lemma 2.2(b)], \(\mathcal{H}^s(\mathcal{A}_n, \mathcal{A}) \leq \mathcal{H}^s(\nu^{-1}(n), \nu^{-1}(t^*)) \to 0\). Hence \(\mathcal{A}_n \to \mathcal{A}\).

J. Define \(\mathcal{B} = \inf(\{\mathcal{A}_n : n \geq 1\})\). Then \(\mathcal{B}\) is a Whitney level. Thus there exists \(t_0 \in I\) and a Whitney map \(\mu\) for \(C(X)\) such that \(\mathcal{B} = \mu^{-1}(t_0)\). Since \(E \in \mathcal{A}\) and \(E \in \mathcal{A}_n\) for all \(n\), it follows that \(E \in \mathcal{B}\) and \(t_0 > 0\).

K. The set \(\mathcal{W} = \nu^{-1}((s_1,t^*)) \cap \mu^{-1}([0,t_0])\) is contained in \(\mathcal{V}\).

Indeed, let \(A \in \mathcal{W}\). Then there exists \(N\) such that \(A \in \nu^{-1}([s_N, s_{N+1}])\).

By H, we must show that \(h(A,t_N,s_N) < t^*\). Suppose, on the contrary, that \(h(A,t_N,s_N) \geq t^*\). Then there exists a subcontinuum \(A^*\) of \(A\) such that \(h(A^*,t_N,s_N) = t^*\). Choose a point \(a \in A^*\). Let \(\gamma\) be an ordered arc in \(C(X)\) joining \(\{a\}\) to \(X\) such that \(A^*, A \in \gamma\). Let \(A_2\) be the unique element in \(\gamma \cap \mathcal{B}\). Since \(\mu(A) < t_0 = \mu(A_2)\), we find that \(A \not\subseteq A_2\). Thus \(A \not\subseteq A_2 = \bigcap\{B \in C(X) : B \in \gamma \cap \{\mathcal{A} \cap \{\mathcal{A}_n : n \in \mathbb{N}\}\}\} \subset A^*\). This contradiction proves that \(A \in \mathcal{V}\).

L. Choose a Whitney map \(\overline{\pi} : 2^X \to I\) which extends \(\mu\) (see [14, Cor. 3.3]). Define \(\omega : C(X) \to I\) by \(\omega(A) = (\overline{\pi}(A \cup E)\overline{\pi}(A))^{1/2}\). Then \(\omega\) is a Whitney map such that \(\omega(E) = \mu(E) = t_0, \ \omega^{-1}(t_0) - \{E\} \subset \mu^{-1}([0,t_0])\) and \(\nu^{-1}((s_1,1]) \cap \omega^{-1}(t_0) \subset \mathcal{V} \cup \{E\}\).

To prove this, let \(A \in \omega^{-1}((s_1,1]) \cap \omega^{-1}(t_0) - \{E\}\). By K, to show that \(A \in \mathcal{V}\), it is enough to prove that \(\nu(A) < t^*\). Suppose that \(\nu(A) \geq t^*\). Then there exists \(A^* \in \nu^{-1}(t^*)\) such that \(A^* \subset A\). Since \(B \leq \nu^{-1}(t^*)\), there exists \(E \in \mathcal{B}\) such that \(B \subset A^*\). Since \(E\) is not contained in \(A\), we have \(t_0 = \omega(A) \geq \omega(B) > \mu(B) = t_0\). This contradiction proves that \(A \in \mathcal{V}\).

M. There exists \(\varepsilon > 0\) such that \(B(E, \varepsilon) \subset \nu^{-1}((s_1,1])\) and if \(\mathcal{H}(A, E) < \varepsilon, \ A \subset B\) and \(B \in \omega^{-1}(t_0)\), then \(B \in \mathcal{V} \cup \{E\}\).

Indeed, let \(\varepsilon_1 > 0\) be such that if \(\mathcal{H}(E, A) < \varepsilon_1\) then \(A \in \nu^{-1}((s_1,1])\).

Let \(\delta > 0\) be such that \(A \subset B\) and \(|\omega(A) - \omega(B)| < \delta\) imply that \(\mathcal{H}(A, B) < \varepsilon_1/2\) (see [12, Lemma 1.28]). Choose \(r_0 \in [0,t_0]\) such that \(t_0 - r_0 < \delta\). Finally, choose \(\varepsilon > 0\) such that \(\varepsilon < \varepsilon_1/2\) and \(\mathcal{H}(A, E) < \varepsilon\) imply that
A ∈ \omega^{-1}([r_0, 1]).

N. Define \(V_1 = B(E, \varepsilon) \cap \omega^{-1}([0, t_0]) \) and \(V_2 = \omega^{-1}([0, t_0]) \setminus \{E\} \). Then \(V_1 \) and \(V_2 \) are open subsets of \(\omega^{-1}([0, t_0]) \) such that \(\omega^{-1}([0, t_0]) = V_1 \cup V_2 \) and if \(A \in V_1 \cap V_2 \), then \(f|A \simeq 1 \).

O. Define \(h_1 : V_1 \cap V_2 \to S^1 \) in the following way: Given \(A \in V_1 \cap V_2 \), take a map \(g_A : A \to \mathbb{R} \) such that \(e \circ g_A = f|A \). Define \(h_1(A) = e(\min g_A(A)) \). Then \(h_1 \) is well defined and continuous.

Indeed, it is easy to prove that \(h_1 \) is well defined. To prove that \(h_1 \) is continuous, take a sequence \((D_n)_n \) in \(V_1 \cap V_2 \) such that \(D_n \to A \in V_1 \cap V_2 \). Let \(g_A : A \to \mathbb{R} \) be a map such that \(e \circ g_A = f|A \). Let \(U_1 \) be an open subset of \(X \) such that \(A \subset U_1 \subset U \) and \(f|U_1 \simeq 1 \). Let \(g : U_1 \to \mathbb{R} \) be a map such that \(e \circ g = f|U_1 \). Since \(D_n \to A \), there exists \(N \) such that \(D_n \subset U \) for all \(n \geq N \).

Then, for all \(n \geq N \), \(h_1(D_n) = e(\min g(D_n)) \to e(\min g(A)) = h_1(A) \).

P. Choose \(\delta > 0 \) such that \(A \subset B \) and \(|\omega(A) - \omega(B)| < \delta \) imply that \(\mathcal{H}(A, B) < \varepsilon \). Choose \(s* \in (0, t_0) \) such that \(t_0 - s* < \delta \) and \(\omega(A_0), \omega(B_0) < s* \). Choose \(p_0 \in H_0 \) and \(q_0 \in K_0 \). Finally, choose maps \(\alpha_1, \alpha_2, \beta_1, \beta_2 \) from \(I \) to \(C(X) \) such that \(\alpha_1(0) = \{p_0\} = \beta_1(0), \alpha_2(0) = \{q_0\} = \beta_2(0), \alpha_1(1) = A_0 = \alpha_2(1), \beta_1(1) = B_0 = \beta_2(1) \), and, for \(i = 1, 2, s < t \) implies that \(\alpha_i(s) \) is properly contained in \(\alpha_i(t) \) (resp. \(\beta_i(s) \)) and \(\omega(\alpha_i(s)) \) is properly contained in \(\alpha_i(t) \) (resp. \(\beta_i(t) \)) (see [12, Thm. 1.8]).

Q. Choose \(r_1 \in I \) such that \(\omega(B_0 \cup \alpha_2(r_1)) = s* \). Define \(\gamma : [0, 4] \to C(X) \) by

\[
\gamma = \begin{cases}
\alpha_2((1-t)r_1 + t) \cup \beta_2(w(t)) & \text{if } t \in [0, 1], \\
\beta_1((2-t)(1-w(1))) \cup A_0 \cup \beta_1(x(t)) & \text{if } t \in [1, 2], \\
\beta_1((3-t)(x(2)) + t - 2) \cup \alpha_1(y(t)) & \text{if } t \in [2, 3], \\
\alpha_1((4-t)y(3)) \cup B_0 \cup \alpha_2(z(t)) & \text{if } t \in [3, 4].
\end{cases}
\]

Here \(w(t), x(t), y(t), z(t) \in I \), for \(t \) in the respective intervals, are consecutively chosen in such a way that \(\omega(\gamma(t)) = s* \) for all \(t \in [0, 4] \). Then \(\gamma \) is well defined, continuous, \(\gamma(0) = \gamma(4) \) and \(\gamma(t) \in \omega^{-1}(s*) \cap C(E) \cap V_1 \cap V_2 \) for every \(t \in [0, 4] \).

R. Define \(\lambda : S^1 \to \omega^{-1}(s*) \cap V_1 \cap V_2 \) by \(\lambda(\cos t, \sin t) = \gamma(2t + \pi)/\pi \) if \(t \in [-\pi, \pi] \). Then \(\lambda \) is well defined, continuous and \(h_1 \circ \lambda \) is not homotopic to a constant.

To see that \(h_1 \circ \lambda \) cannot be lifted, we first show that, for each \(z \in S^2 \), there exists a map \(g_z : \lambda(z) \to [-\pi, 2\pi) \) such that \(e \circ g_z = f|\lambda(z) \) and \(0 \in \text{Im} g_z \). Set \(z = (\cos t, \sin t) \) with \(t \in [-\pi, \pi] \). If \(t \in [-\pi, -\pi/2] \), then \(s = 2(t + \pi)/\pi \in [0, 1] \) and \(\lambda(z) = \gamma(s) = \alpha_2((1 - s)r_1 + s) \cup \beta_2(w(s)) \). If \(\beta_2(w(s)) \) is a proper subset of \(A_0 \) since \(s < t_0 \), the minimality of \(A_0 \) implies that \(\alpha_2((1 - s)r_1 + s) \cap H_0 = \emptyset \). Thus \(f(\alpha_2((1 - s)r_1 + s)) \) is a compact subset of \(S^*-\{(-1, 0)\} \) and, since
$f(\beta_2(w(s)))$ is contained in S^-, there exists a map $g_z : \lambda(z) \to [-\pi, \pi)$ such that $f(\lambda(z)) = e \circ g_z$. Since $(1, 0) = f(q_0) \in f(\lambda(z))$, we have $0 \in \text{Im } g_z$. If $\beta_2(w(s))$ is a proper subset of B_0, the minimality of B_0 implies that $\beta_2(w(s)) \cap H_0 = \emptyset$, so that $f(\beta_2(w(s)))$ is a compact subset of $S^- - \{(1, 0)\}$. Thus there exists a map $g_z : \lambda(z) \to (-\pi, \pi]$ such that $e \circ g_z = f(\lambda(z))$. In the case that $t \in [-\pi/2, 0]$, similar considerations lead to the existence of g_z.

Similarly, for each $z \in S^+$, there exists a map $g_z : \lambda(z) \to [0, 3\pi)$ such that $e \circ g_z = f(\lambda(z)$ and $0 \in \text{Im } g_z$.

If $z \in S^-$, then $h_1(\lambda(z)) = e(\min g_z(\lambda(z))) = e([-\pi, 0]) = S^-$, so $h_1(\lambda(z)) \in S^-$ for each $z \in S^-$. Since $\lambda((-1, 0)) = \gamma(0) = \alpha_2(r_1) \cup \beta_2(w(0)) = \alpha_2(r_1) \cup B_0$ and $f(p_0) = (-1, 0)$, it follows that $-\pi$ is in the image of the map $g((-1, 0)) : \lambda((-1, 0)) \to [-\pi, \pi]$. Then $h_1(\lambda((-1, 0))) = e(-\pi) = (1, 0)$. Similarly $h_1(\lambda((1, 0))) = (1, 0)$.

Thus $h_1 \circ \lambda$ is a map from S^1 to S^2 sending S^+ into S^+, S^- into S^-, $(1, 0)$ into $(1, 0)$ and $(0, 1)$ into $(0, 1)$. This implies that $h_1 \circ \lambda$ cannot be lifted.

S. $\lambda : S^1 \to V_1$ can be extended to a map $\bar{\lambda} : D^2 \to V_1$.

To see this, let $F : S^1 \times I \to C(S^1) (= D^2)$ be a map such that, for each $x \in S^1$, $F(x, 0) = \{x\}$, $F(x, 1) = S^1$ and $s \leq t$ implies that $F(x, s) \subset F(x, t)$. Define $\bar{\lambda} : S^1 \times I \to C(X)$ by $\bar{\lambda}(x, s) = \bigcup \{\lambda(z) \in C(X) : z \in F(x, s)\}$. Then $\bar{\lambda}$ is continuous, $\bar{\lambda}(x, 0) = \lambda(x)$ and $\bar{\lambda}(x, 1) = \bigcup \{\lambda(z) \in C(X) : z \in S^1\} = E$ for all $x \in S^1$. Identifying D^2 with $(S^1 \times I)/(S^1 \times \{1\})$, we deduce that $\bar{\lambda}$ is an extension of λ to D^2. If $x \in S^1$ and $s \in I$, $\lambda(x) = \bar{\lambda}(x, s) \subset \bar{\lambda}(x, s) \subset E$, then $\text{ht}(\bar{\lambda}(x, s), E) \leq \text{ht}(\lambda(x), E) < \varepsilon$ and so $\bar{\lambda}(x, s) \in V_1$ for every $x \in S^1$ and $s \in I$.

T. $\lambda : S^1 \to V_2$ can be extended to a map $\lambda' : D^2 \to V_2$.

This follows from the fact that $\text{Im } \lambda \subset \omega^{-1}(s^*) \subset V_2$ and every map from S^1 into $\omega^{-1}(t_1)$ is homotopic to a constant.

This completes the construction of $\omega, t_0, V_1, V_2, \lambda$ and h_1. Now we consider the Mayer–Vietoris sequences for the triads $(V_1 \cup V_2, V_1, V_2)$ and $(S^2, S^2_t, S^2_\lambda)$ where $S^2_t = \{(x, y, z) \in S^2 : z \geq 0\}$ and $S^2_\lambda = \{(x, y, z) \in S^2 : z \leq 0\}$. Consider the diagram

\[
\begin{array}{cccc}
0 = H_2(S^2_t) \oplus H_2(S^2_\lambda) & \longrightarrow & H_2(S^2) & \xrightarrow{\partial} & H_1(S^1) & \longrightarrow & 0 \\
\downarrow \Lambda_s & & \Lambda & & \Lambda_s & & \\
H_2(V_1) \oplus H_2(V_2) & \longrightarrow & H_2(V_1 \cup V_2) & \xrightarrow{\partial} & H_1(V_1 \cap V_2)
\end{array}
\]

where $\Lambda : S^2 \to V_1 \cup V_2 = \omega^{-1}([0, t_0])$ is defined in such a way that $\Lambda|S^1 = \lambda, \Lambda|S^2_t = \bar{\lambda}$ and $\Lambda|S^2_\lambda = \lambda'$.
By Lemma 1.1, Λ is homotopic to a map $A_0 : S^2 \to \omega^{-1}([0,t_0])$ such that $\text{Im}A_0 \subset \omega^{-1}(t_0)$. Since $\omega^{-1}(t_0)$ is a positive Whitney level, A_0 is homotopic to a constant. Therefore A_\ast is the zero homomorphism. This implies that so is λ_\ast, and hence also the composition $h_1 \circ \lambda_\ast = (h_1 \circ \lambda)_\ast$. This is a contradiction since $h_1 \circ \lambda : S^1 \to S^1$ is not homotopic to a constant. Therefore X is hereditarily unicoherent.

Remark. If Y is a hereditarily indecomposable continuum then every Whitney level \mathcal{A} in $C(Y)$ is hereditarily indecomposable (see [12, Thm. 14.1]); thus every map from S^n into \mathcal{A} is constant for each $n \in \mathbb{N}$. Therefore it is not enough to suppose that the maps from n-spheres ($n \geq 1$) into positive Whitney levels in $C(X)$ are null homotopic to conclude that X is a dendroid. On the other hand [11, Example 3], it is not enough to suppose that every positive Whitney level \mathcal{A} in $C(Z)$ is pathwise connected to conclude that Z is pathwise connected. However, as shown below, it suffices to add the assumption that Z is hereditarily unicoherent.

1.3. Lemma. Suppose that Z is a hereditarily unicoherent continuum with the following property: If $p, q \in Z$ and $\varepsilon > 0$, then there exist $n \in \mathbb{N}$ and $A_1, \ldots, A_n \in C(Z)$ such that $p \in A_1$, $q \in A_n$, $A_1 \cap A_2 \neq \emptyset$, \ldots, $A_{n-1} \cap A_n \neq \emptyset$ and $\text{diam}(A_i) < \varepsilon$ for each i. Then Z is pathwise connected.

Proof. Let p and q be two different points in Z and let $A = \bigcap\{B \in C(Z) : p, q \in B\}$. Since Z is hereditarily unicoherent, we have $A \in C(Z)$. We will prove that A is connected in kleinen at each point. Let $a \in A$ and let $\varepsilon > 0$. Take $A_1, \ldots, A_n \in C(Z)$ such that $p \in A_1$, $q \in A_n$, $A_1 \cap A_2 \neq \emptyset$, \ldots, $A_{n-1} \cap A_n \neq \emptyset$ and $\text{diam}(A_i) < \varepsilon$ for each i. Let $D = \bigcup\{A_1 : a \in A_i\}$ and let $W = A - \bigcup\{A_1 : a \notin A_i\}$. Then $D \in C(Z)$, $A \subset A_1 \cup \ldots \cup A_n$, W is an open subset of A and $a \in W \subset D \subset B(\{a\}, \varepsilon)$. Hence A is connected in kleinen at a. Therefore A is a locally connected continuum. Thus A is pathwise connected (in fact, this implies that A is an arc). Hence Z is pathwise connected.

1.4. Theorem. If Z is hereditarily unicoherent and all its positive Whitney levels are pathwise connected, then Z is pathwise connected.

Proof. Let $p, q \in Z$ and let $\varepsilon > 0$. Fix a Whitney map μ for $C(Z)$. Let $0 < \delta < 1$ be such that if $A, B \in C(Z)$, $|\mu(A) - \mu(B)| < \delta$ and $A \subset B$, then $\mathcal{H}(A, B) < \varepsilon$. Let $0 < t < \delta/2$. Choose $A, B \in \mu^{-1}(t)$ such that $p \in A$ and $q \in B$. Let $\alpha : I \to \mu^{-1}(t)$ be a map such that $\alpha(0) = A$ and $\alpha(1) = B$. Let $\lambda > 0$ be such that $|t - s| < \lambda$ implies that $\mathcal{H}(\alpha(t), \alpha(s)) < \varepsilon/3$. Let $0 = t_0 < t_1 < \ldots < t_n = 1$ be a partition of I such that $t_1 - t_0 < \delta$ for all $i \geq 1$. For $i \geq 1$, define $A_i = \bigcup\{\alpha(t) : t_{i-1} \leq t \leq t_i\}$. Then $A_1, \ldots, A_n \in C(Z)$, $\text{diam}(A_i) < \varepsilon$ for all i, $p \in A_1$, $q \in A_n$ and $A_1 \cap A_2 \neq \emptyset$, \ldots, $A_{n-1} \cap A_n \neq \emptyset$. Therefore Z is pathwise connected.
1.5. THEOREM. If each positive Whitney level in \(C(X) \) is 2-connected, then \(X \) is a dendroid.

1.6. COROLLARY. If every positive Whitney level in \(C(X) \) is contractible, then \(X \) is a dendroid.

2. If \(X \) is a dendroid then every positive Whitney level in \(C(X) \) is \(\infty \)-connected. In [12, Thm. 14.8], it was shown that if \(X \) is pathwise connected then every Whitney level for \(C(X) \) is also pathwise connected. So we concentrate our attention on the null homotopy of maps from \(n \)-spheres \((n \geq 1) \) into positive Whitney levels.

Throughout this section we will suppose that \(X \) is a dendroid. Fix a Whitney map \(\mu \), a number \(t_0 \in (0,1] \) and an integer \(N \in \mathbb{N} \). We will show that every map \(G : S^N \to \mu^{-1}(t_0) \) is null homotopic. To do this, we will need to define a strong form of convergence in \(C(X) \).

2.1. DEFINITION. Given \(x \not= y \in X \), the unique arc joining \(x \) and \(y \) in \(X \) will be denoted by \(\overrightarrow{xy} \). The set \(\{x\} \) will be denoted by \(\overrightarrow{x} \). Define \(\overrightarrow{L : C(X) \times X \to C(X)} \) by \(L(A,x) = \overrightarrow{ax} \) where \(a \) is the unique element in \(A \) such that \(\overrightarrow{a} \cap A = \{a\} \). Given a sequence \((A_n)_n \) in \(C(X) \) and an element \(A \in C(X) \), we say that \((A_n)_n \) strongly converges to \(A \) \((A_n \xrightarrow{s} A) \) if \(A_n \to A \) and \(L(A_n,a) \to \{a\} \) for each \(a \in A \).

The following lemma is easy to prove.

2.2. LEMMA. (a) If \(A_n \xrightarrow{s} A \), \(B_n \xrightarrow{s} B \) and \(A_n \cap B_n \neq \emptyset \) for each \(n \), then \(A_n \cup B_n \xrightarrow{s} A \cup B \).

(b) Let \((A_n)_n \subset C(X) \) and \(A \in C(X) \) be such that, for each infinite subset \(S \) of \(\mathbb{N} \), there exists a subsequence \((A_{n_k})_k \) such that \(n_k \in S \) for every \(k \) and \(A_{n_k} \xrightarrow{s} A \). Then \(A_n \xrightarrow{s} A \).

Define \(J : C(X) \times C(X) \to C(X) \) by
\[
J(A,B) = \begin{cases}
A \cap B & \text{if } A \cap B \neq \emptyset, \\
\{b\} & \text{if } A \cap B = \emptyset,
\end{cases}
\]
where \(b \) is the unique point in \(B \) such that \(\overrightarrow{ab} \cap B = \{b\} \) for each \(a \in A \).

2.3. LEMMA. If \(A_n \xrightarrow{s} A \) and \(B_n \xrightarrow{s} B \), then \(J(A_n,B_n) \xrightarrow{s} J(A,B) \).

Proof. Case 1: \(A \cap B = \emptyset \). Then there exists \(M \) such that \(A_n \cap B_n = \emptyset \) for all \(n \geq M \). Let \(\{a\} = J(B,A) \) and \(\{b\} = J(A,B) \). For each \(n \geq M \), let \(\{a_n\} = J(B_n,A_n) \), \(\{b_n\} = J(A_n,B_n) \) and let \(c_n \in A_n \) and \(d_n \in B_n \) be such that \(\overrightarrow{ac_n} = L(A_n,a) \) and \(\overrightarrow{bd_n} = L(B_n,b) \). Since the set \(\overrightarrow{ac_n} \cup \overrightarrow{ab} \cup \overrightarrow{bd_n} \) is connected and intersects \(A_n \) and \(B_n \), it contains \(\overrightarrow{a_n b_n} \). In particular, \(b_n \in \overrightarrow{ac_n} \cup \overrightarrow{ab} \cup \overrightarrow{bd_n} \to \overrightarrow{ab} \). Thus the limit points of the sequence \((b_n)_n \) are in \(\overrightarrow{ab} \cap B = \{b\} \). Therefore \(b_n \to b \). Hence \(J(A_n,B_n) \to J(A,B) \).
Since $c_m \to \{a\}$, there exists $M_1 \geq M$ such that $b_n \not\in c_m$ for every $n \geq M_1$. Thus $b_n \in \overline{ab} \cup \overline{bd}$ for all $n \geq M_1$. It follows that $\overline{b_n b} \to \{b\}$. So $L(J(A_n, B_n), b) \to \{b\}$. Thus $J(A_n, B_n) \to J(A, B)$.

Case 2: $A \cap B \neq \emptyset$. First we will prove that $\limsup J(A_n, B_n) \subset J(A, B)$. Let $x \in \limsup J(A_n, B_n)$. Then there exists a subsequence $(n_k)_k$ of $(n)_n$ and, for each k, there exists $x_k \in J(A_{n_k}, B_{n_k})$ such that $x_k \to x$. If $A_{n_k} \cap B_{n_k} \neq \emptyset$ for an infinite number of k's, then $x \in A \cap B = J(A, B)$ (in this case). Thus we may suppose that $A_{n_k} \cap B_{n_k} = \emptyset$ for every k.

If there exist $z, y \in A \cap B$ such that $z \neq y$, choose $p \in \overline{zy} - \{z, y\}$. For each $k \in \mathbb{N}$, let $a_k, b_k \in A_{n_k}$ be such that $L(A_{n_k}, z) = \overline{ak}$ and $L(A_{n_k}, y) = \overline{bk}$. Since $\overline{ak} \to \{z\}$ and $\overline{bk} \to \{y\}$, there exists $K \in \mathbb{N}$ such that, for all $k \geq K$, $\overline{ak} \cap \overline{bk} = \emptyset$, $\overline{ak} \cap \overline{py} = \emptyset$ and $\overline{bk} \cap \overline{py} = \emptyset$. Given $k \geq K$, $\overline{ak} \subset A_{n_k}$ and $(\overline{ak} \cup \overline{tp} \cup \overline{py} \cup \overline{yr})$ and $(\overline{bk} \cup \overline{tp}) \cap (\overline{py} \cap \overline{yr} = \{p\}$. Therefore $p \in \overline{ak} \cup \overline{bk}$. Hence $p \in A_{n_k}$ for all $k \geq K$. Similarly, there exists K_1 such that $p \in B_{n_k}$ for all $k \geq K_1$. This contradicts our assumption. Therefore $A \cap B$ consists of a single point a_0.

For each $k \in \mathbb{N}$, let $a_k \in A_{n_k}$ and $b_k \in B_{n_k}$ be such that $\overline{ak} \cup \overline{bk} \cap A_{n_k} = \{a_k\}$ and $a_k b_k \cap B_{n_k} = \{b_k\}$. Then $\{b_k\} = J(A_{n_k}, B_{n_k})$. So $x_k \to b_k$. Suppose that $L(A_{n_k}, a_0) = \overline{ak} a_0$ and $L(B_{n_k}, a_0) = \overline{bk} a_0$ with $\gamma \in A_{n_k}$ and $d_k \in B_{n_k}$. Then $x_k \in a_k b_k \subset \overline{ak} a_0 \cup \overline{bk} d_k \to \{a_0\}$. Therefore $x = a_0 \in A \cap B = J(A, B)$. Hence $\limsup J(A_n, B_n) \subset J(A, B)$.

Now take a point $x \in J(A, B) = A \cap B$. For each n, let $a_n \in A_n$ and $b_n \in B_n$ be such that $L(A_n, x) = \overline{an}$ and $L(B_n, x) = \overline{bn}$. If $A_n \cap B_n \neq \emptyset$, then $a_n b_n \subset A_n \cup B_n$. Thus $a_n b_n \cap A_n \cap B_n \neq \emptyset$. Hence $(\overline{an} \cup \overline{bn}) \cap A_n \cap B_n \neq \emptyset$. This implies that $L(A_n \cap B_n, x) \subset \overline{an} \cup \overline{bn}$. If $A_n \cap B_n = \emptyset$, let $\{d_n\} = J(A_n, B_n)$. Then $d_n \in \overline{an} \cup \overline{bn}$ and $L(J(A_n, B_n), x) \subset \overline{an} \cup \overline{bn}$. Therefore $L(J(A_n, B_n), x) \subset \overline{an} \cup \overline{bn}$ for all n. Since $\overline{an} \cap \overline{bn} \to \{x\}$, we have $L(J(A_n, B_n), x) \to \{x\}$. Thus $x \in \liminf J(A_n, B_n)$ and we conclude that $J(A_n, B_n) \to J(A, B)$.

In order to give a “uniform” parametrization of the arcs in X, we define, for $a, b \in X$, the function $\gamma(a, b) : I \to \overline{ab}$ by $\gamma(a, b)(t) = x$ if $\mu(\overline{ab}) = t \mu(\overline{ab})$ and $x \in \overline{ab}$. Then we have:

2.4. Lemma. For each $a, b \in X$, $\gamma(a, b)$ is a map, $\gamma(a, b)(0) = a$, $\gamma(a, b)(1) = b$ and, if $a \neq b$, then $\gamma(a, b)$ is injective.

2.5. Lemma. If $\{a_n\} \to \{a\}$, $\{b_n\} \to \{b\}$, then $\gamma(a_n, b_n)(r_n) \to \gamma(a, b)(r)$ and $\{\gamma(a_n, b_n)(r_n)\} \to \{\gamma(a, b)(r)\}$.

Proof. Let $\gamma_r = \gamma(a_n, b_n)$ and $\gamma = \gamma(a, b)$. Since $\overline{an} \in \overline{an} \cup \overline{ab} \cup \overline{bn}$ and $\overline{ab} \subset \overline{an} \cup \overline{bn} \cup \overline{bn}$, we have $\overline{an} \to \overline{ab}$ and $\overline{bn} \to \overline{ab}$. First, we will show that $\{\gamma_r(r)\} \to \{\gamma(r)\}$.\[\]
If \(r = 0 \) or \(a = b \), then \(\overrightarrow{\eta_n(r_n)} \to a \), since \(\mu(a_n \gamma_n(r_n)) = r_n \mu(\overrightarrow{a_n b_n}) \to 0 \) and \(a_n \to a \). Since \(L(\gamma_n(r_n)), \gamma(r) = a \gamma_n(r_n) \subset \overrightarrow{a_n a} \cup a_n \gamma_n(r_n) \to \{a\} \), we have \(\{\gamma_n(r_n)\} \xrightarrow{\alpha} \{\gamma(r)\} \).

If \(r = 1 \) and \(a \neq b \), then for \(p \in \overrightarrow{ab} - \{a, b\} \), \(a_n \gamma_n(r_n) \subset \overrightarrow{a_n a} \cup \overrightarrow{ap} \cup \overrightarrow{pb} \cup \overrightarrow{bb} \). Since \(\mu(\overrightarrow{ap} \cup \overrightarrow{mb}) \to \mu(\overrightarrow{mp}) < \mu(\overrightarrow{ab}) \) and \(\mu(a_n \gamma_n(r_n)) = r_n \mu(\overrightarrow{a_n b_n}) \to \mu(\overrightarrow{ab}) \), there exists \(M \) such that \(\gamma_n(r_n) \notin \overrightarrow{a_n a} \cup \overrightarrow{ap} \) for all \(n \geq M \). Thus \(\gamma_n(r_n) \in \overrightarrow{pb} \cup \overrightarrow{pb} \) for all \(n \geq M \). This implies that \(\{\gamma_n(r_n)\} \xrightarrow{\alpha} \{\gamma(r)\} \).

If \(0 < r < 1 \) and \(a \neq b \), then for \(p \in A \gamma - \{\gamma(r)\} \) and \(q \in \gamma(r) b - \{\gamma(r)\} \), \(a_n \gamma_n(r_n) \subset \overrightarrow{a_n a} \cup \overrightarrow{ap} \cup \overrightarrow{aq} \cup q \overrightarrow{b} \cup \overrightarrow{bb} \). Proceeding as above, there exists \(M \) such that \(\gamma_n(r_n) \notin \overrightarrow{a_n a} \cup \overrightarrow{ap} \) for all \(n \geq M \). If there exists a subsequence \((\gamma_{n_k}(r_{n_k}))_k \) of \((\gamma_n(r_n))_n \) such that \(\gamma_{n_k}(r_{n_k}) \to x \) for some \(x \in \overrightarrow{ab} \) and \(a_{n_k} \gamma_{n_k}(r_{n_k}) \to A \) for some \(A \in C(X) \). Then \(a, x \in A, \mu(a_{n_k} \gamma_{n_k}(r_{n_k})) \to r \mu(\overrightarrow{ab}) = \mu(a \gamma(r)) < \mu(\overrightarrow{ap}) \leq \mu(\overrightarrow{a}) \leq \mu(A) = \lim \mu(a_{n_k} \gamma_{n_k}(r_{n_k})). \) This contradiction proves that there exists \(M \in \mathbb{N} \) such that \(\gamma_n(r_n) \notin \overrightarrow{a} \) for all \(n \geq M \). It follows that \(\{\gamma_n(r_n)\} \xrightarrow{\alpha} \{\gamma(r)\} \).

Now we will prove that \(\overrightarrow{\gamma_n(r_n) \gamma_n(t_n)} \xrightarrow{\alpha} \overrightarrow{\gamma(r) \gamma(t)} \). Notice that \(\overrightarrow{\gamma_n(r_n) \gamma_n(t_n)} \to \overrightarrow{\gamma(r) \gamma(t)} \). Given \(p = \gamma(s) \in \overrightarrow{\gamma(r) \gamma(t)} \), there exists a sequence \((s_n)_n \subset I \) such that \(s_n \to s \) and \(s_n \) is between \(r_n \) and \(t_n \). Then \(\gamma(s_n) \xrightarrow{\alpha} \gamma(s) \). Since \(L(\gamma_n(r_n)) \gamma_n(t_n), \gamma(s) \subset \gamma_n(r_n), \gamma(s) \to \gamma(s) \), we obtain \(\overrightarrow{\gamma_n(r_n) \gamma_n(t_n)} \xrightarrow{\alpha} \overrightarrow{\gamma(r) \gamma(t)} \).

Define \(\mathfrak{A} = \{(A, B) \in C(X) \times C(X) : A \subset B\} \) and \(F : \mathfrak{A} \times I \to C(X) \) by \(F(A, B, t) = \bigcup \{\overrightarrow{\mu(p)} \in C(X) : a \in A, x \in B \text{ and } \mu(\overrightarrow{p}) \leq t\} \).

2.6. Lemma. (a) \(F \) is well defined.
(b) \(F((A, B)) \times I \) is continuous for every \((A, B) \in \mathfrak{A} \).
(c) \(F(A, B, 0) = A \) and \(F(A, B, 1) = B \).
(d) If \(s \leq t \), then \(F(A, B, s) \subset F(A, B, t) \).

Proof. We only prove (b). Let \((A, B) \in \mathfrak{A} \) and let \(\varepsilon > 0 \). Let \(\delta > 0 \) be such that if \(A_1 \subset B_1 \) and \(|\mu(A_1) - \mu(B_1)| < \delta \), then \(H(A_1, B_1) < \varepsilon \). It is easy to check that if \(|s - t| < \delta \), then \(H(F(A, B, t), F(A, B, s)) < \varepsilon \). Thus \(F((A, B)) \times I \) is continuous.

2.7. Lemma. If \(A_n \xrightarrow{\alpha} A, B_n \xrightarrow{\alpha} B \) and \(t_n \to t \) with \((A_n, B_n) \in \mathfrak{A} \) for each \(n \), then \(F(A_n, B_n, t_n) \xrightarrow{\alpha} F(A, B, t) \).

Proof. Take \(x \in \lim \sup F(A_n, B_n, t_n) \). Then \(x = \lim x_k \) where \(x_k \in F(A_n_k, B_n_k, t_{n_k}) \) and \((n_k)_k \) is a subsequence of \((n)_n \). For each \(k \), there exists \(a_k \in A_{n_k} \) and \(b_k \in B_{n_k} \) such that \(x_k \in \overrightarrow{a_k b_k} \) and \(\mu(\overrightarrow{a_k b_k}) \leq t_{n_k} \). We may suppose that \(a_k \to a \) for some \(a \in A \) and \(\overrightarrow{a_k b_k} \to C \) for some \(C \in C(X) \). Then \(\overrightarrow{a} \subseteq C \subseteq B \) and \(\mu(\overrightarrow{a}) \leq \mu(C) \leq t \). Hence \(x \in F(A, B, t) \). Therefore \(\lim \sup F(A_n, B_n, t_n) \subset F(A, B, t) \).
Now take \(x \in F(A, B, t) \). Then \(x \in B \) and there exists \(a \in A \) such that \(\mu(\overline{tx}) \leq t \). Let \(s = \mu(\overline{tx}) \). Then there exists a sequence \((s_n)\) with \(0 \leq s_n \leq t_n \) for all \(s \) and \(s_n \to s \). For each \(n \in \mathbb{N} \), let \(a_n \in A_n \) and \(x_n \in B_n \) be such that \(L(A_n, a) = \overline{a_n}x \) and \(L(B_n, x) = \overline{x_n}x \). Let \(y_n \in F(A_n, B_n, t_n) \) be such that \(L(F(A_n, B_n, t_n), x) = \overline{y_n}x \). If \(\mu(\overline{a_n}x) \leq s_n \), define \(z_n = x_n \). If \(\mu(\overline{a_n}x) \geq s_n \), let \(z_n \) be the unique element in \(\overline{a_n}x_n \) such that \(\mu(\overline{a_n}z_n) = s_n \). Then \(z_n \in F(A_n, B_n, t_n) \).

If \(x = a \), then \(L(F(A_n, B_n, t_n), x) = \overline{y_n}a \subset \overline{a_n}a \to \{a\} \). Therefore \(L(F(A_n, B_n, t_n), x) \to \{x\} \). Now suppose that \(x \neq a \). Given \(p \in \overline{px} = \{a, x\} \), \(z_n \in \overline{a_n}x \subset \overline{a_n}a \cap \overline{ap} \cup \overline{ax} \cup \overline{ax_n} \). Since \(\mu(\overline{a_n}a \cap \overline{ap}) \to \mu(\overline{ap}) < s \), there exists \(M \) such that \(z_n \in \overline{ap} \cup \overline{ax_n} \) for all \(n \geq M \). This implies that \(\overline{ap} \to \{x\} \). Since \(\overline{ap} \subset \overline{ax} \), we have \(L(F(A_n, B_n, t_n), x) \to \{x\} \). It follows that \(F(A_n, B_n, t_n) \to F(A, B, t) \).

Now we “uniformize” the map \(F \). Define \(G : \mathfrak{A} \times I \to C(\mathcal{X}) \) by \(G(A, B, t) = F(A, B, s) \) where \(s \) is chosen in such a way that \(\mu(G(A, B, t)) = \mu(A) + t(\mu(B) - \mu(A)) \).

2.8. Lemma. (a) \(G(A, B, 0) = A \) and \(G(A, B, 1) = B \).

(b) If \(s \leq t \), then \(G(A, B, s) \subset G(A, B, t) \).

(c) If \(A_n \to A, B_n \to B \) and \(t_n \to t \) with \((A_n, B_n) \in \mathfrak{A} \) for each \(n \), then \(G(A_n, B_n, t_n) \to G(A, B, t) \).

(d) \(G(\{(A, B)\}) \times I \) is continuous for every \((A, B) \in \mathfrak{A} \).

Proof. We only prove (c). We will use Lemma 2.2(b). Let \(S \) be an infinite subset of \(\mathbb{N} \). For each \(n \in S \), let \(G(A_n, B_n, t_n) = F(A_n, B_n, s_n) \) with \(s_n \in I \). Let \(G(A, B, t) = F(A, B, s) \). Take a subsequence \((n_k)_k \) of \((n)_n \) such that \(n_k \in S \) for all \(k \) and \(s_{n_k} \to s^* \) for some \(s^* \in I \). Then \(G(A_{n_k}, B_{n_k}, t_{n_k}) \to F(A, B, s^*) \). This yields \(\mu(F(A, B, s^*)) = \lim(\mu(A_{n_k}) + t_{n_k}(\mu(B_{n_k}) - \mu(A_{n_k}))) = \mu(G(A, B, t)) = \mu(F(A, B, s)) \). It follows that \(F(A, B, s^*) = F(A, B, s) \). Hence \(G(A_{n_k}, B_{n_k}, t_{n_k}) \to G(A, B, t) \). Therefore \(G(A_n, B_n, t_n) \to G(A, B, t) \).

Now we define “standard” arcs joining elements in \(\mu^{-1}(t_0) \). Define \(\alpha : \mu^{-1}(t_0) \times \mu^{-1}(t_0) \times I \to \mu^{-1}(t_0) \) in the following way:

A. If \(A \cap B = \emptyset \), let \(\{a\} = J(B, A) \), \(\{b\} = J(A, B) \) and \(\gamma = \gamma(a, b) \).

A.1. If \(\mu(ab) \leq t_0 \), let \(s_0 \) be the unique number in \(I \) such that \(\mu(\overline{ab} \cup G(\{a\}, A, s_0)) = t_0 \), then define:

\[
\alpha(A, B, t) = \begin{cases}
\overline{a\gamma(3t)} \cup G(\{a\}, A, s) & \text{if } 0 \leq t \leq 1/3, \\
G(\{a\}, A, (2 - 3t)s_0) \cup \overline{ab} \cup G(\{b\}, B, s) & \text{if } 1/3 \leq t \leq 2/3, \\
\overline{\gamma(3t - 2)b} \cup G(\{b\}, B, s) & \text{if } 2/3 \leq t \leq 1.
\end{cases}
\]
In the three cases the element \(s \in I \) is chosen in such a way that \(\mu(\alpha(A, B, t)) = t_0. \)

2. If \(\mu(ab) \geq t_0, \) let \(s_0 \) and \(r_0 \) be the unique elements in \(I \) such that
\[
\mu(\alpha_0(s_0)) = t_0 = \mu(\gamma(r_0)b).
\]
Then define
\[
\alpha(A, B, t) = \begin{cases}
\alpha_0(3t_0s_0) \cup G(\{a\}, A, s) & \text{if } 0 \leq t \leq 1/3, \\
\gamma(s)\gamma((2 - 3t)\epsilon + 3t - 1) & \text{if } 1/3 \leq t \leq 2/3, \\
\gamma((3t - 2 + (3 - 3t)\epsilon)b) \cup G(\{b\}, B, s) & \text{if } 2/3 \leq t \leq 1,
\end{cases}
\]

with \(s \) chosen as above.

B. If \(A \cap B \neq \emptyset, \) define
\[
\alpha(A, B, t) = \begin{cases}
A & \text{if } 0 \leq t \leq 1/3, \\
G(A \cap B, A, 2 - 3t) \cup G(A \cap B, B, s) & \text{if } 1/3 \leq t \leq 2/3, \\
B & \text{if } 2/3 \leq t \leq 1,
\end{cases}
\]

with \(s \) chosen in the same way.

It is easy to check that \(\alpha \) is well defined, \(\alpha(A, B, 0) = A \) and \(\alpha(A, B, 1) = B \) for all \((A, B) \in \mu^{-1}(t_0) \times \mu^{-1}(t_0) \) and if \(A, B \subset A_0 \subset C(X), \) then \(\alpha(A, B, t) \subset A_0 \) for each \(t \in I. \)

2.9. Lemma. If \(A_n \xrightarrow{\alpha} A, B_n \xrightarrow{\alpha} B \) and \(t_n \rightarrow t, \) then \(\alpha(A_n, B_n, t_n) \xrightarrow{\alpha} \alpha(A, B, t) \) \((A_n, B_n, A \text{ and } B \text{ in } \mu^{-1}(t_0)). \)

Proof. We will use Lemma 2.2(b). Let \(S \) be an infinite subset of \(\mathbb{N}. \) We need to analyze several cases.

1. \(A \cap B \neq \emptyset. \)

1.1. \(A_{n_k} \cap B_{n_k} = \emptyset \) for infinitely many elements \(n_1 < n_2 < \ldots \) in \(S. \) For each \(k, \) let \(\{a_{n_k}\} = J(B_{n_k}, A_{n_k}) \) and \(\{b_{n_k}\} = J(A_{n_k}, B_{n_k}). \) Since \(\{a_{n_k}\} = J(A_{n_k}, B_{n_k}) \xrightarrow{\alpha} J(A, B) = A \cap B, \) \(A \cap B \) consists of a single point \(a_0. \) Then \(\{a_{n_k}\} = J(B_{n_k}, A_{n_k}) \xrightarrow{\alpha} \{a_0\}. \) For each \(k, \) let \(\gamma_k = \gamma(a_{n_k}, b_{n_k}). \) It follows that, for all sequences \((r_k)_k \) and \((m_k)_k \) in \(\mathcal{I}, \) \(\gamma_k(r_k)\gamma_k(m_k) \xrightarrow{\alpha} \{a_0\}. \)

1.1.1. \(t_0 = 0. \) Then \(\mu(a_{n_k}b_{n_k}) \geq t_0, \) so \(\alpha(A_{n_k}, B_{n_k}, t_{n_k}) \) is equal to either \(\{a_{n_k}\}, \) a point in \(\gamma_k(0)\gamma_k(1) = a_{n_k}b_{n_k} \) or \(\{b_{n_k}\}. \) Thus \(\alpha(A_{n_k}, B_{n_k}, t_{n_k}) \xrightarrow{\alpha} \{a_0\} = A = B = \alpha(A, B, t). \)

1.1.2. \(t_0 > 0. \) We may suppose that \(\mu(a_{n_k}b_{n_k}) < t_0 \) for every \(k. \) For each \(k, \) let \(s^k \in I \) be such that \(\mu(a_{n_k}b_{n_k} \cup G(\{a_{n_k}\}, A_{n_k}, s^k)) = t_0 \) and let \(s_k \) be the number chosen so that \(\mu(\alpha(A_{n_k}, B_{n_k}, t_{n_k})) = t_0. \) We may suppose that \(s_k \rightarrow s^* \) for some \(s^* \in I \) and \(s^k \rightarrow s^* \) for some \(s^* \in I. \) Then \(\mu(a_{n_k}b_{n_k}) = \mu(s^* \mu(\alpha_{n_k}b_{n_k})) = \mu(\{a_{n_k}\} + s^* \mu(A) - \mu(\{a_{n_k}\})), \) and so \(s^* = 1. \) We may suppose that one of the following three cases holds:
1.1.2.1. \(t_{nk} \in [0, 1/3] \) for every \(k \). Then \(t \in [0, 1/3] \) and \(\alpha(A_{nk}, B_{nk}, t_{nk}) \xrightarrow{s} G(\{a_0\}, A, s') = A = \alpha(A, B, t) \).

1.1.2.2. \(t_{nk} \in [1/3, 2/3] \) for every \(k \). Then \(t \in [1/3, 2/3] \) and we have \(\alpha(A_{nk}, B_{nk}, t_{nk}) \xrightarrow{s} G(\{a_0\}, A, (2 - 3t)s') \cup G(\{a_0\}, B, s') = \alpha(A, B, t) \).

1.1.2.3. \(t_{nk} \in [2/3, 1] \) for every \(k \). Then \(t \in [2/3, 1] \) and \(\alpha(A_{nk}, B_{nk}, t_{nk}) \xrightarrow{s} G(\{a_0\}, B, s') = B = \alpha(A, B, t) \).

This completes Subcase 1.1.

1.2. \(A_{nk} \cap B_{nk} \neq \emptyset \) for infinitely many elements \(n_1 < n_2 < \ldots \) in \(S \). Then we may suppose that one of the following three cases holds:

1.2.1. \(t_{nk} \in [0, 1/3] \) for all \(k \). Then \(\alpha(A_{nk}, B_{nk}, t_{nk}) = A_{nk} \xrightarrow{s} A = \alpha(A, B, t) \).

1.2.2. \(t_{nk} \in [1/3, 2/3] \) for all \(k \). So \(\alpha(A_{nk}, B_{nk}, t_{nk}) = B_{nk} \xrightarrow{s} B = \alpha(A, B, t) \).

1.2.3. \(t_{nk} \in [2/3, 1] \) for every \(k \). Then \(\alpha(A_{nk}, B_{nk}, t_{nk}) = G(A_{nk} \cap B_{nk}, A_{nk}, 2 - 3t_{nk}) \cup G(A_{nk} \cap B_{nk}, B_{nk}, s_k) \), where \(s_k \in I \), and we may suppose that \(s_k \rightarrow s' \) for some \(s' \in I \). Then \(\alpha(A_{nk}, B_{nk}, t_{nk}) \xrightarrow{s} G(J(A, B), A, 2 - 3t) \cup G(J(A, B), B, s') = \alpha(A, B, t) \).

This completes the proof of Case 1.

2. \(A \cap B = \emptyset \). Then we may suppose that \(A_n \cap B_n = \emptyset \) for every \(n \in S \).

Here it is necessary to consider the following cases:

2.1. \(\mu(\overline{a_n b_n}) \geq t_0 \) for infinitely many elements \(n_1 < n_2 < \ldots \) in \(S \).

2.1.1. \(t_{nk} \in [0, 1/3] \) for every \(k \).

2.1.2. \(t_{nk} \in [1/3, 2/3] \) for every \(k \).

2.1.3. \(t_{nk} \in [2/3, 1] \) for every \(k \).

2.2. \(\mu(\overline{a_n b_n}) \leq t_0 \) for infinitely many elements \(n_1 < n_2 < \ldots \) in \(S \).

2.2.1. \(t_{nk} \in [0, 1/3] \) for every \(k \).

2.2.2. \(t_{nk} \in [1/3, 2/3] \) for every \(k \).

2.2.3. \(t_{nk} \in [2/3, 1] \) for every \(k \).

All of them can be treated similarly to Case 1.

Hence, in each one of the cases, infinitely many elements \(n_1 < n_2 < \ldots \) of \(S \) can be obtained such that \(\alpha(A_{nk}, B_{nk}, t_{nk}) \xrightarrow{s} \alpha(A, B, t) \).

Therefore \(\alpha(A_n, B_n, t_n) \xrightarrow{s} \alpha(A, B, t) \).

2.10. Construction. For each \(r \in \mathbb{N} \), let \(S_r = \{\{0, 1\}\}^r \). For each set \(E = \{A_{\sigma} \in \mu^{-1}(t_0) : \sigma \in S_N\} \) define \(f_E : I^N \rightarrow \mu^{-1}(t_0) \) through the following steps:

- \(f_E(a_1, \sigma_1) = \alpha(A_{(0, \sigma_1)}, A_{(1, \sigma_1)}, a_1) \) if \(a_1 \in I \) and \(\sigma_1 \in S_{N-1} \).
- \(f_E(a_1, a_2, \sigma_2) = \alpha(f_E(a_1, 0, \sigma_2), f_E(a_1, 1, \sigma_2), a_2) \) if \(a_1, a_2 \in I \) and \(\sigma_2 \in S_{N-2} \).
If \(2 \leq r < N\), then \(f_E(a_1, \ldots, a_r, \sigma_r) = \alpha(f_E(a_1, \ldots, a_{r-1}, 0, \sigma_r), \sigma_E(a_1, \ldots, a_r)\) for \(a_1, \ldots, a_r \in I\) and \(\sigma_r \in S_{N-r}\).

If \(r = N\), then we set \(f_E(a_1, \ldots, a_N) = \alpha(f_E(a_1, \ldots, a_{N-1}, 0), f_E(a_1, \ldots, a_{N-1}, 1), a_N)\) for \(a_1, \ldots, a_N \in I\).

The following lemma is easy to prove.

2.11. **Lemma.** (a) \(f_E\) is well defined.

(b) If \((a_n)_n \subset I^N\) and \(a \in I^N\) are such that \(a_n \to a\) then \(f_E(a_n) \to f_E(a)\).

(c) If \(A \subset A \subset C(X)\) for each \(\sigma \in S_N\), then \(f_E(a) \subset A\) for every \(a \in I^N\).

2.12. **Lemma.** Let \(p,q \in \{0,1\}\). Let \(E = A_\sigma : \sigma \in S_N\) and \(D = \{B_\sigma : \sigma \in S_N\}\) and let \(r \in \{1,\ldots,N\}\) be such that \(A_{(\sigma_1,p,\sigma_2)} = B_{(\sigma_1,q,\sigma_2)}\) for each \(\sigma_1 \in S_{r-1}\) and \(\sigma_2 \in S_{N-r}\). Then \(f_E(a_1,p,a_2) = f_D(a_1,q,a_2)\) for every \(a_1 \in I^{r-1}\) and \(a_2 \in I^{N-r}\).

Proof. Let \(x = (x_1,\ldots,x_N), y = (y_1,\ldots,y_N) \in I^N\) be such that \(x_r = y_r, y_i = q\) and \(x_i = y_i\) for all \(i \neq r\). We will show, by induction on \(k\), that if \(x_{k+1},\ldots,x_N, y_{k+1},\ldots,y_N \in \{0,1\}\) then \(f_E(x) = f_D(y)\).

Suppose that \(k = 1\). Let \(\sigma = (x_2,\ldots,x_N)\) and \(q = (y_2,\ldots,y_N) \in S_{N-1}\). If \(r > 1\), then \(A_{(0,\sigma)} = B_{(0,\sigma)}\), \(A_{(1,\sigma)} = B_{(1,\sigma)}\) and \(x_1 = y_1\). Then \(f_E(x) = \alpha(A_{(0,\sigma)}, A_{(1,\sigma)}, x_1) = \alpha(B_{(0,\sigma)}, B_{(1,\sigma)}, y_1) = f_D(y)\). If \(r = 1\), then \(\sigma = q\). Notice that \(f_E(x) = A_{(p,\sigma)}\) and \(f_D(y) = B_{(q,\sigma)}\). Thus \(f_E(x) = f_D(y)\).

Suppose that the assertion holds for \(k < n\). Suppose that \(x_{k+2},\ldots,x_N, y_{k+2},\ldots,y_N \in \{0,1\}\). Then \(f_E(x) = \alpha(f_E(x_1,\ldots,x_k,0,x_{k+2},\ldots,x_N), f_E(x_1,\ldots,x_k,1,x_{k+2},\ldots,x_N)\), \(x_{k+1} = \ast\). If \(k + 1 \neq r\), the induction hypothesis implies that \(\ast = f_D(y)\), and if \(k + 1 = r\), then \(f_E(x) = f_D(y)\), which, by the induction hypothesis, is equal to \(f_D(y_1,\ldots,y_k,q,y_{k+2},\ldots,y_N) = f_D(y)\).

This completes the induction. Then the theorem follows by taking \(k = N\).

2.13. **Construction.** Let \(g : I^N \to \mu^{-1}(t_0)\) be a map. Given \(m \in \mathbb{N} \cup \{0\}\) and \(x = (x_1,\ldots,x_N) \in \{0,1,\ldots,10^m - 1\}\). Define \(Q(x) = [x_1/10^m, (x_1 + 1)/10^m] \times \cdots \times [x_N/10^m, (x_N + 1)/10^m]\) and \(E(x) = \{A_\sigma : \sigma \in S_N\}\) where \(A_\sigma = g((x + \sigma)/10^m)\) for every \(\sigma \in S_N\). Next, define \(h_x : Q(x) \to \mu^{-1}(t_0)\) by \(h_x(a) = f_E(x)(10^m(a - x/10^m))\). Then \(h_x\) is well defined. Now define \(h_m : I^N \to \mu^{-1}(t_0)\) by \(h_m(a) = h_x(a)\) if \(a \in Q(x)\). Finally, define \(h : I^{N+1} \to \mu^{-1}(t_0)\) by

\[h(a,t) = \begin{cases} g(a) & \text{if } t = 0, \\ \alpha(h_{m+1}(a), h_m(a), 2^{m+1}(t - 1/2^{m+1})) & \text{if } t \in [1/2^{m+1}, 1/2^m]. \end{cases} \]
2.14. **Lemma.** For each m, h_m is well defined and, if $a_n \to a$, then $h_m(a_n) \xrightarrow{s} h_m(a)$.

Proof. To see that h_m is well defined take a point $a \in Q(x) \cap Q(y)$. First suppose that x and y differ just in one coordinate r. Suppose that $x_r < y_r$. Then $a_r 10^m = y_r = x_r + 1$. Then $h_m(a)$ can be defined as $f_{E(x)}(10^m(a - x/10^m))$ and $f_{E(y)}(10^m(a - y/10^m))$ where $E(x) = \{g((x + \sigma)/10^m) : \sigma \in S_N\}$ and $E(y) = \{g((y + \sigma)/10^m) : \sigma \in S_N\}$.

We will apply Lemma 2.12. Let $c = 10^m(a - x/10^m)$ and $d = 10^m(a - y/10^m)$. Then $c_r = 1$ and $d_r = 0$. Let $p = 1$ and $q = 0$. For $\sigma_1 \in S_{r_1}$ and $\sigma_2 \in S_{r_2}$, we have $g((x + (\sigma_1, p, \sigma_2))/10^m) = g((y + (\sigma_1, q, \sigma_2))/10^m)$. Hence, by Lemma 2.12, $f_{E(x)}(c) = f_{E(y)}(d)$. Thus $f_{E(x)}(10^m(a - x/10^m)) = f_{E(y)}(10^m(a - y/10^m))$.

If x and y differ in more than one coordinate, considering the vectors $(x_1, y_2, \ldots, y_N) \cup (x_1, x_2, y_3, \ldots, y_N) \cup \ldots (x_1, \ldots, x_{N-1}, y_N)$, we conclude that h_m is well defined.

The second part of the lemma follows from Lemma 2.11(b).

2.15. **Lemma.** h is well defined and continuous.

Proof. It is easy to check that h is well defined. From Lemma 2.13 it follows that if $(a_n, t_n) \to (a, t)$ and $t > 0$ then $h(a_n, t_n) \xrightarrow{s} h(a, t)$. Thus h is continuous at (a, t) if $t > 0$.

Now take a point $(a, 0) \in I^{N+1}$; we will check that h is continuous at this point. Let $\varepsilon > 0$. Consider the metric d_0 in I^N defined by $d_0(a, c) = \max\{|a_i - c_i| : 1 \leq i \leq N\}$. Let $\delta > 0$ be such that $d_0(a, b) < \delta$ implies that $H(g(a), g(b)) < \varepsilon$. Let $A_0 = [a_1 - \delta, a_1 + \delta] \times \ldots \times [a_N - \delta, a_N + \delta]$ and let $A = \bigcup (g(b) : b \in A_0 \cap I^N)$. Then A is a subcontinuum of X and $A \subset N(\varepsilon, g(a))$. Fix $M \in \mathbb{N}$ such that $3/10^M < \delta$.

We will prove that $h(b, t) \subset N(\varepsilon, h(a, 0))$ for $(b, t) \in I^{N+1}$ such that $d_0(a, b) \leq 1/10^M$ and $t < 1/2^M$.

Given $m \geq M$, let $x \in \{(0, 1, \ldots, 10^m - 1)\}^N$ be such that $b \in Q(x)$. If $\sigma \in S_N$, then $d_0(a, (x + \sigma)/10^m) = \max\{|a_i - (x_i + \sigma_i)/10^m| : 1 \leq i \leq N\} < \delta$. Thus $g((x + \sigma)/10^m) \subset A$ for each $\sigma \in S_N$. By Lemma 2.11(c), $f_{E(x)}(10^m(b - x/10^m)) \subset A$. Therefore $h_m(b) \subset A$ for each $m \geq M$. It follows that $h(b, t) \subset A \subset N(\varepsilon, h(a, 0))$.

Now suppose that h is not continuous at $(a, 0)$. Then there exists $B \in \mu^{-1}(t_0 - \{h(a, 0)\})$ and a sequence (a_n, t_n) such that $(a_n, t_n) \to (a, 0)$ and $h(a_n, t_n) \to B$. By the paragraph above, for each $\varepsilon > 0$, there exists $K \in \mathbb{N}$ such that $h(a_n, t_n) \subset N(\varepsilon, h(a, 0))$ for every $n \geq K$. This implies that $B \subset h(a, 0)$, so $B = h(a, 0)$. This contradiction completes the proof of the continuity of h.
2.16. Lemma. Let \(g, g^* : I^N \to \mu^{-1}(t_0) \) be maps such that \(g|\text{Fr}(I^N) = g^*|\text{Fr}(I^N) \). Let \(h, h^* : I^{N+1} \to \mu^{-1}(t_0) \) be the maps constructed as in 2.13 for the maps \(g \) and \(g^* \) respectively. Then \(h|\text{Fr}(I^N) \times I = h^*|\text{Fr}(I^N) \times I \) and \(h|I^N \times \{1\} = h^*|I^N \times \{1\} \).

Proof. Consider \(h_m^*, E^*(x) \) and \(A_r^* \) constructed as in 2.13 for the map \(g^* \). Let \((a, t) \in \text{Fr}(I^N) \times I \). If \(t = 0 \), then \(h(a, t) = g(a) = g^*(a) = h^*(a, t) \). Now suppose that \(t > 0 \). To prove that \(h(a, t) = h^*(a, t) \), it is enough to prove that \(h_m(a) = h_m^*(a) \) for every \(m \geq 0 \). Let \(x = (x_1, \ldots, x_N) \in (\{0, 1, \ldots, 10^m - 1\})^N \) be such that \(a \in Q(x) \). We have to prove that \(f_{E(x)}(10^m(a - x/10^m)) = f_{E^*(x)}(10^m(a - x/10^m)) \). Since \(a \in \text{Fr}(I^N) \), there exists \(r \in \{1, \ldots, N\} \) such that \(a_r = 0 \) or \(1 \).

If \(a_r = 0 \), then \(x_r = 0 \). We will apply Lemma 2.13 to \(p = q = 0 \). Given \(\sigma_1 \in S_{r-1} \) and \(\sigma_2 \in S_{N-r}, A_{(\sigma_1, 0, \sigma_2)} = g((x + (\sigma_1, 0, \sigma_2))/10^m) = g^*((x + (\sigma_1, 0, \sigma_2))/10^m) = A_r(\sigma_1, 0, \sigma_2) \). Thus Lemma 2.13 implies that \(f_{E(x)}(10^m(a - x/10^m)) = f_{E^*(x)}(10^m(a - x/10^m)) \).

If \(a_r = 1 \), then \(x_r + 1 = 10^m \) and \(a_r - x_r/10^m = 1/10^m \). Set \(p = q = 1 \). Given \(\sigma_1 \in S_{r-1} \) and \(\sigma_2 \in S_{N-r}, A_{(\sigma_1, 1, \sigma_2)} = g((x + (\sigma_1, 1, \sigma_2))/10^m) = g^*((x + (\sigma_1, 1, \sigma_2))/10^m) = A_r(\sigma_1, 1, \sigma_2) \). Thus Lemma 2.13 implies that \(f_{E(x)}(10^m(a - x/10^m)) = f_{E^*(x)}(10^m(a - x/10^m)) \). Hence \(h(a, t) = h^*(a, t) \).

Now take \(a \in I^N \). We will prove that \(h(a, 1) = h^*(a, 1) \). Notice that \(h(a, 1) = h_0(a) = f_{E^*(0)}(a)\) and \(h^*(a, 1) = f_{E^*(0)}(a) \). Given \(\sigma \in S_N \subset \text{Fr}(I^N) \), we have \(A_r = g(\sigma) = g^*(\sigma) = A_r^* \). Thus \(f_{E^*(0)} = f_{E^*(0)} \). Therefore \(h(a, 1) = h^*(a, 1) \).

2.17. Theorem. Every map \(G : S^N \to \mu^{-1}(t_0) \) is null homotopic.

Proof. Let \(G : S^N \to \mu^{-1}(t_0) \) be a map. Let \((S^N)^+ \) and \((S^N)^- \) be the north and south hemispheres of \(S^N \) respectively. Let \(g = G|(S^N)^+ \) and \(g^* = G|(S^N)^- \). Then \(g|\text{Fr}((S^N)^+) = g^*|\text{Fr}((S^N)^-) \). Identifying \((S^N)^+ \) and \((S^N)^- \) with \(I^N \), we consider \(h \) and \(h^* \) as in Lemma 2.16. Then \(h|\text{Fr}((S^N)^+ \times I) \cup ((S^N)^- \times \{1\}) = h^*|\text{Fr}((S^N)^- \times I) \cup ((S^N)^+ \times \{1\}) \). We consider the \((N + 1) \)-ball \(B^{N+1} \) as the space obtained by identifying, in the disjoint union \(((S^N)^+ \times I) \cup ((S^N)^- \times I) \), the points of the set \(\text{Fr}((S^N)^+ \times I) \cup ((S^N)^+ \times \{1\}) \) with the points of the set \(h^*|\text{Fr}((S^N)^- \times I) \cup ((S^N)^- \times \{1\}) \) in the natural way. Then there exists a map \(\tilde{h} : B^{N+1} \to \mu^{-1}(t_0) \) which extends both \(h \) and \(h^* \). Thus \(\tilde{h} \) is an extension of \(G \). Hence \(G \) is null homotopic.

Remark. Related with this topic, the following question by A. Petrus ([13]) remains open: If \(X \) is a contractible dendroid, is then every Whitney level for \(C(X) \) contractible?
References

Received 18 September 1990;
in revised form 28 June 1991