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Abstract. In this paper, we consider the following basic question. Let A be an
L-structure and let ψ be an infinitary sentence in the language L∪{R}, where R is a new
relation symbol. When is it the case that for every B ∼= A, there is a relation R such that
(B, R)�ψ and R ≤T D(B)? We succeed in giving necessary and sufficient conditions in
the case where ψ is a “recursive” infinitary Π2 sentence. (A recursive infinitary formula
is an infinitary formula with recursive disjunctions and conjunctions.) We consider also
some variants of the basic question, in which R is r.e., ∆0

α, or Σα instead of recursive
relative to D(B).

§ 0. Introduction. In [AN] it was shown that the syntactical char-
acterization by Goncharov of the recursive structures that are “recursively
stable” could be deduced quickly (without repeating the priority argument)
from a characterization of the “intrinsically recursive” relations on recursive
structures. The same method can be used to deduce the syntactical charac-
terization of “relatively recursively stable” structures (obtained in [AKMS]
and, independently, in [C]) from a characterization of “relatively intrinsically
recursive” relations, without repeating the forcing argument. Our aim here
is to obtain a general result on expansions which has as one consequence the
syntactical characterization of “relatively recursively categorical” structures
(also obtained in [AKMS] and [C]).

In this section, we give some examples to suggest the form of our result
on the basic question. At the end of the present section, we give a more
complete definition of the recursive infinitary formulas. Our result on the
basic question stated in the abstract will be proved in Section 1, and the
variants of the basic question are considered in Section 2. Section 3 has
some applications.

* Research partially supported by ARC Grant 6 164 717 and NSF Grant DMS 87
01559.
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All structures here are assumed to have universe ω, and all languages
are recursive. Formulas are identified with their Gödel numbers. Then for
any structure A, the open diagram D(A) has a Turing degree. If D(A)
is recursive, then A is said to be recursive. A structure A is relatively
recursively categorical if for each pair B, C of isomorphic copies of A, there
exists f ≤T D(B) ⊕ D(C) such that B ∼=f C. The theorem below gives
the syntactical characterization in the special case where A is a recursive
structure. (The more general result is obtained by relativizing.)

Theorem 0.1 ([AKMS] and [C]). Let A be a recursive structure. Then
A is relatively recursively categorical iff for some finite sequence c from A,
there is a recursive sequence of existential formulas (ϕi(c,xi))i∈ω (all having
parameters c, but with different sequences xi of free variables) such that

(i) for each finite sequence a from A, there is at least one i such that
A � ϕi(c,a),

(ii) if a and b are two sequences such that for some i, A � ϕi(c,a)
&ϕi(c,b), then (A,a) ∼= (A,b).

There is a restatement of Theorem 0.1 involving “cardinal sums”, sug-
gested by [AN]. Let B1 and B2 be structures for the same language L. A
cardinal sum of B1 and B2 is a structure B such that

(1) the language of B is L∪ {U1, U2} (where the Ui are unary predicate
symbols not in L),

(2) there exist functions fi mapping ω one-one onto UB
i , where the sets

UB
i partition the universe,

(3) for each relation symbol P from L, PB consists of the tuples fi(b)
such that fi(b) ∈ PBi (for i = 1, 2).

Let L be the language of cardinal sums of L0-structures, and let ψ say
of a new relation symbol R that it is an isomorphism between the first part
of the sum and the second. We can take ψ to be a recursive infinitary Π2

sentence—finitary if L0 is finite.
The lemma below follows immediately from the definitions.

Lemma 0.2. An L0-structure C is relatively recursively categorical iff
for every cardinal sum B of C with itself , there is a function R such that
R ≤T D(B) and (B, R) � ψ.

Now, Theorem 0.1 can be restated as follows: If C is a recursive structure
and A is a cardinal sum of C with itself, the following are equivalent:

(1) for each B ∼= A, there exists R ≤T D(B) such that (B, R) � ψ,
(2) C satisfies the syntactical conditions from Theorem 0.1.

This suggests the following more focused version of the basic question.
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Question 1. Let L be a language and let R be a new relation symbol,
not in L. Let A be a recursive L-structure, and let ψ be a sentence in the
language L ∪ {R}. What syntactical conditions (like those in Theorem 0.1)
guarantee that for every B ∼= A, there is a relation R such that (B, R) � ψ
and R ≤T D(B)?

Below are two more examples (families of examples, really) involving
recursive infinitary Π2 sentences ψ.

Example 1. Let A be a recursive L-structure, and let ϕ(x, y) be a
recursive infinitary Σ1 formula such that A � ∀x∃yϕ(x,y). Let R be a new
relation symbol, and let ψ say that R is a Skolem function for ϕ. It is easy
to see that for any B ∼= A, there is a relation R such that (B, R) � ψ and
R ≤T D(B). The value of the Skolem functionR at x = b can be determined
by searching, using the diagram, for c and other witnesses showing that
B � ϕ(b, c). If A is an ordering of type η and ϕ(x, y) is x < y, then there
will not be a definable Skolem function.

Example 2. Let A be a recursive structure for a finite relational lan-
guage. Let ψ say of a new binary relation symbol R that it is a non-trivial
automorphism of A. For some structures, every copy has a non-trivial au-
tomorphism that is recursive in the diagram. This is true, for example, of
equivalence relations and also of orderings of type η. By contrast, an order-
ing of type ω∗ + ω has non-trivial automorphisms, but there is a recursive
ordering of this type for which no non-trivial automorphism is recursive.

We now define the recursive infinitary formulas, together with indices
for the formulas, in terms of ordinal notations. The definition is the same
as in [A1] except for the choice of indices. Let L be a recursive language.
For each a ∈ O, we shall determine sets of indices SΣ

a and SΠ
a , and for the

ordinal α with notation a, we shall describe the recursive infinitary Σα and
Πα formulas with indices in these sets. The advantage of the present system
of indexing over the system in [A1] is that the sets SΣ

a and SΠ
a are recursive.

The recursive infinitary Σ0 and Π0 formulas are the finitary open L-
formulas. If ϕ is a finitary open formula with Gödel number g and variables
among x, then (1, g,x) is an index of ϕ in both SΣ

1 and SΠ
1 . (We use 1 in the

first component because this is the index for 0 in O.) The set of these indices
is SΣ

1 = SΠ
1 . If a is a notation for α ≥ 1, let SΣ

a = {(a, e,Σ,x) : e ∈ ω}
and SΠ

a = {(a, e,Π, x) : e ∈ ω}. The recursive infinitary Σα formula with
index (a, e,Σ,x) is

∨∨
i ∃vi βi(vi,x), where the disjunction is taken over

those i ∈ We such that i is a pair (i0, i1) with first component i0 a finite
sequence of variables vi and second component i1 an index in

⋃
b<Oa S

Π
b for

a formula with free variables among vi
∧x. Similarly, the recursive infinitary

Πα formula with index (a, e,Π,x) is
∧∧

i ∀vi βi(vi,x), where the conjunction
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is taken over those i ∈We such that i is a pair (i0, i1) with first component
i0 a finite sequence of variables vi and second component i1 an index in⋃

b<Oa S
Σ
b for a formula with free variables among vi

∧x.
Having indicated how ordinal notation is involved in infinitary recursive

formulas and their indices, we shall identify ordinals with their notations,
and we shall not distinguish between formulas and their indices.

§ 1. Expansion families. In Theorem 1.1 of this section, we give our
result on Question 1. The syntactical condition of the theorem involves
the notion of an “expansion family”. The relevant definitions are given
before the statement of the theorem. The proof of Theorem 1.1 is a forcing
argument similar to those in [K], [AKMS], and [C]. At the end of the section,
we give two simple corollaries of Theorem 1.1.

Let L be a fixed language, and let R be an r-placed relation symbol not
in L. Let ψ be a recursive infinitary Π2 sentence in the language L ∪ {R}.
An R-formula is a conjunction of finitely many formulas of the form R(u)
or ¬R(u), where the variables appearing in a conjunct need not be distinct.
When we write %(x) for an R-formula, we assume that x is a sequence of
distinct variables, including all variables that appear in the formula.

Let A be an L structure, and let L(A) be the extension of the language
L obtained by adding the elements of A as constants. Let Ax denote the
set of assignments of values in A to the variables in x. Formally, such an
assignment is a function from the set of variables in x into the universe of
A, but we identify this function with the obvious sequence a of constants
from A. An R-sentence for A is an L(A)-sentence %(a) obtained from an
R-formula %(x) and an assignment a ∈ Ax by replacing all occurrences of
variables in %(x) by the corresponding constants from a. Note that if σ is
an R-sentence for A, then σ ` R(a) iff R(a) is a conjunct of σ, and similarly
for ¬R(a). Hence, σ is consistent iff σ has no pair of explicitly contradictory
conjuncts R(a) and ¬R(a).

If ψ =
∧∧

i ∀ui

∨∨
j ∃vi,j βi,j(ui,vi,j) is a recursive infinitary Π2 sentence

in the language L∪{R}, then ψ is logically equivalent to a recursive infinitary
Π2 sentence

∧∧
i ∀ui

∨∨
j ∃vi,j (ϕi,j(ui,vi,j)&%i,j(ui,vi,j)), where ϕi,j is a

quantifier-free L-formula, and %i,j is an R-formula. By suitable “padding”,
we may assume that the conjunction and disjunctions are taken over ω.
We shall assume that our recursive infinitary Π2 sentences all come in this
standard form.

Let ψ =
∧∧

i ∀ui

∨∨
j ∃vi,j (ϕi,j(ui,vi,j)&%i,j(ui,vi,j)) be a recursive in-

finitary Π2 sentence, as above. An expansion family for ψ on A is a family
S of consistent R-sentences for A satisfying the following conditions:

(1) S 6= ∅,
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(2) if σ ∈ S and a is an r-tuple from A, then there exists τ ∈ S such
that τ ` σ and either τ ` R(a) or τ ` ¬R(a),

(3) for each σ ∈ S, i ∈ ω, and c ∈ Aui , there exist τ ∈ S, j ∈ ω, and
d ∈ Avi,j such that τ ` σ, τ ` %i,j(c,d), and A � ϕi,j(c,d).

An expansion family S for ψ on A is said to be formally Σ0
1 if for some

finite sequence c of elements of A, there is a recursive function assigning
to each R-formula σ(x) a recursive infinitary Σ1 formula ασ(c,x), in the
language L augmented by parameters c, such that for each a ∈ Ax, σ(a) ∈ S
iff A � ασ(c,a).

We are now in a position to state the result on Question 1.

Theorem 1.1. Let A be a recursive L-structure, let R be a new relation
symbol , and let ψ be a recursive infinitary Π2 sentence in the language
L ∪ {R}. Then the following are equivalent :

(1) for each B ∼= A, there is a relation R such that (B, R) � ψ and
R ≤T D(B),

(2) there is a formally Σ0
1 expansion family for ψ on A.

P r o o f. Throughout, we have in mind a fixed recursive infinitary Π2

sentence ψ =
∧∧

i ∀ui

∨∨
j ∃vi,j (ϕi,j(ui,vi,j)&%i,j(ui,vi,j)). The proof will

be broken into several lemmas.

Lemma 1.2. Let S be an expansion family for ψ on A, and suppose that
S is r.e. in D(A). Then there exists R ≤T D(A) such that (A, R) � ψ.

P r o o f. It follows from Conditions (1), (2), and (3) in the definition of
“expansion family” that there is a procedure recursive in D(A) for choosing
a sequence (σk)k∈ω from S such that

(a) σk+1 ` σk,
(b) for each r-tuple a from A, there exists k such that either σk ` R(a)

or σk ` ¬R(a),
(c) for each i ∈ ω and each c ∈ Aui , there exist k, j ∈ ω and d ∈ Avi,j

such that σk ` %i,j(c,d) and A � ϕi,j(c,d).

Let R = {a : σk ` R(a) for some k}. By (b) and the fact that each σk is
consistent, R ≤T D(A). Then by (c), we have (A, RA) � ψ. This completes
the proof of Lemma 1.2.

Let F be an isomorphism from A onto B. If σ = %(a) is an R-sentence for
A, let F (σ) denote the corresponding R-sentence for B (i.e., F (σ) = %(b),
where b = F (a)). If S is an expansion family for ψ on A, let F (S) denote
the corresponding family {F (σ) : σ ∈ S} of R-sentences for B. Clearly,
F (S) is an expansion family for ψ on B. In general, F (S) will not be r.e. in
D(B). The next lemma says that F (S) is r.e. in D(B) if S is formally Σ0

1 .
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Lemma 1.3. If S is a formally Σ0
1 expansion family for ψ on A and

A ∼=F B, then the expansion family F (S) for ψ on B is r.e. in D(B).

P r o o f. There is a recursive function assigning recursive infinitary Σ1

formulas to R-formulas such that if ασ(c,x) is the recursive infinitary Σ1

formula assigned to the R-formula σ(x), then for all a ∈ Ax, σ(a) ∈ S iff
A � ασ(c,a). Then for all b ∈ Bx, σ(b) ∈ F (S) iff B � ασ(F (c),b). It
is clear that we can enumerate, recursively in D(B), the R-sentences σ(b)
for B such that B � ασ(F (c),b). Therefore, F (S) is r.e. in D(B). This
completes the proof of Lemma 1.3.

Lemmas 1.2 and 1.3 combine to give one direction of Theorem 1.1. Sup-
pose there is a formally Σ0

1 expansion family S for ψ on A. If B ∼= A, then
by Lemma 1.3, there is an expansion family SB for ψ on B such that SB is
r.e. in D(B). By Lemma 1.2, there exists R ≤T D(B) such that (B, R) � ψ.
This shows that (2) implies (1). To show that (1) implies (2), we consider a
generic copy B of A, determined as in [K], [AKMS], or [C] by a permutation
g of ω such that B ∼=g A. Here we shall give only a brief description of the
kind of forcing used, summarizing some facts proved in [AKMS].

The forcing conditions are finite partial permutations p, q, . . . of ω. The
forcing language in [AKMS] includes a function symbol f , standing for the
permutation g, in addition to the symbols of L(A). The formulas are to be
interpreted in the structure (A, g). However, the structure we really want
to talk about is B. We must have sentences with the following meanings:

(1) B � ψ(b), where ψ(x) is a quantifier-free L-formula and b ∈ Bx,
(2) ϕD(B)

e (k) = j,
(3) ϕD(B)

e (k) ↓,
(4) ϕD(B)

e (k) ↑,
(5) ϕD(B)

e (k) is total,
(6) ϕD(B)

e (k) is {0, 1}-valued.

The sentence of type (1) with the intended meaning B � ψ(b), where
ψ(x) is a quantifier-free L-formula and b ∈ Bx, is ψ(f(b)). The sentence
of type (2) with intended meaning ϕD(B)

e (k) = j is a recursive disjunction
of sentences of type (1). There is one disjunct for each computation which
follows procedure e, starts with input k, and halts with output j, having
used answers to finitely many questions about membership in D(B). For
simplicity, we shall write ψ(b) ∈ D, ϕD

e (k) = j, ϕD
e (k) ↓, ϕD

e (k) ↑, ϕD
e is

total, and ϕD
e is {0, 1}-valued, for the sentences of types (1), (2), (3), (4),

(5), and (6), respectively.
Let σ be an R-sentence, with constants which we think of as naming

elements of B. There is a recursive infinitary sentence σe such that whenever
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B ∼=g A, if ϕD(B)
e is the characteristic function of a relation R, then we have

(B, R) � σ iff (A, g) � σe. (If ϕD(B)
e is the characteristic function of a

relation, then (A, g) � ϕD
e is total &ϕD

e is {0, 1}-valued.) We can take σe

to be a Σ1 sentence logically equivalent to the sentence that results from
replacing the conjuncts in σ of form R(b) by ϕD

e (b) = 1 and those of form
¬R(b) by ϕD

e (b) = 0. The sentence σe is determined effectively from σ and
e; the same σe works for all g and B such that B ∼=g A.

Forcing for recursive infinitary sentences is defined in a standard way,
except for sentences of type (1) above. If ψ(x) is a quantifier-free L-formula
and b ∈ Bx, then p  ψ(b) ∈ D iff the elements of b are all in dom(p) and
p maps b to some a such that A � ψ(a). Thus, the formula ψ(x) defines in
A the set of tuples a such that if p maps b to a, then p  ψ(b) ∈ D. For a
type (2) sentence ϕD

e (k) = j and a fixed b, we can find a recursive infinitary
Σ1 formula θ(x) of L which defines in A the set of tuples a such that if p
has domain b and p maps b to a, then p  ϕD

e (k) = j. Recall that the
sentence saying ϕD

e (k) = j has the form
∨∨

i ψi(bi) ∈ D, where for each i,
ψi(xi) is a quantifier-free L-formula and bi is a finite sequence of constants.
Let θ(x) be the disjunction of those ψi(xi) for which bi ⊆ b. While the
sentence ϕD

e (k) = j involves infinitely many constants, the formula θ(x) has
only finitely many free variables.

If σ is an R-sentence on B, then the sentence σe (described above) in-
volves infinitely many constants. However, for any R-formula %(x), with
variables among x, and any b ∈ Bx, we can find an infinitary Σ1 formula
%e
b(x) in the language L, having free variables among x and no extra con-

stants, such that A � %e
b(a) iff for the forcing condition p with domain b

such that p maps b to a, we have p  %(b)e. Each conjunct of %(b) gives
rise to a conjunct of %(b)e of the form ϕD

e (d) = k (for d ⊆ b), and each
conjunct of %(x) gives rise to a recursive infinitary Σ1 formula θ(x) in the
language L, as above. We let %e

b(x) be a Σ1 formula logically equivalent to
the conjunction of these finitely many θ(x).

We choose an increasing sequence (pk)k∈ω of forcing conditions deciding
all of the recursive infinitary formulas (or all that could possibly matter).
There is a countable fragment containing these formulas. The function g will
be

⋃
k pk. For the structure (A, g), we have the usual “truth and forcing”

lemma.
Suppose that Condition (1) (from the statement of Theorem 1.1) holds.

Then, in particular, for the generic copy B such that B ∼=g A, there exists
R such that R ≤T D(B) and (B, R) � ψ. For some e, R has characteristic
function ϕD(B)

e .
The following sentences are true in (A, g):

(a)
∧∧

σ(σe ∨ (¬σ)e), where the disjunction here is taken over all R-
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sentences σ on B,
(b)

∧∧
i∈ω,c∈Bui

∨∨
j∈ω,d∈Bvi,j (ϕi,j(f(c), f(d))&%i,j(c,d)e).

Therefore, some forcing condition p from the sequence (pk)k∈ω forces
both of these sentences. Let Sp be the family of R-sentences %(a) for A
such that for some q ⊇ p and some b, q(b) = a and q  %(b)e.

Lemma 1.4. The set Sp is a formally Σ0
1 expansion family for ψ on A.

P r o o f. We begin by checking that Sp has the properties of an expansion
family for ψ on A. The first thing to check is that if γ ∈ Sp, then γ
is consistent. If not, then for some r-tuple a, both R(a) and ¬R(a) are
conjuncts of γ. Then there exist q and b such that q ⊇ p, b ⊆ dom(q),
q(b) = a, and q forces both R(b)e and (¬R(b))e. By putting q into our
forcing sequence, we obtain g, B, and R such that both R(b) and ¬R(b) are
true in (B, R), a contradiction. The next thing to check is that Sp 6= ∅. For
any r-tuple a in A, either R(a) or ¬R(a) must be in Sp, since there exists
q ⊇ p such that for some b, q(b) = a, and either q  R(b)e or q  (¬R(b))e.
A similar argument shows that if σ ∈ Sp, then for any r-tuple a in A, there
exists τ ∈ Sp such that τ ` σ and either τ ` R(a) or τ ` ¬R(a). The
final thing to check is that for each σ ∈ Sp and each i ∈ ω and c ∈ Aui ,
there exist τ ∈ Sp, j ∈ ω, and d ∈ Avi,j such that τ ` σ, τ ` %i,j(c,d),
and A � ϕi,j(c,d). Let σ = %(a), and suppose q ⊇ p, where q(b) = a and
q  %(b)e. Since p forces sentence (b), there exist n, d, and q′ ⊇ q such that
c and d are both in ran(q′), A � ϕi,j(c,d), and if q′(c′) = c and q′(d′) = d,
then q′  %i,j(c′,d′)e. Let τ be σ&%i,j(c,d). Then τ ∈ Sp, as required.

We have shown that Sp is an expansion family for ψ on A. It remains to
show that Sp is formally Σ0

1 on A. Suppose that p maps b0 to a0. For any
R-formula %(x) and any a ∈ Ax, we have %(a) ∈ Sp iff there exist q ⊇ p,
b, and possibly further elements b1 and a1, such that q takes b0

∧b∧b1 to
a0

∧a∧a1, and q  %(b)e. For a particular b and b1, we have the recursive
infinitary Σ1 formula %e

b0,b,b1
(y,x, z), in the language L, such that if q maps

b0
∧b∧b1 to a0

∧a∧a1, then q  %(b)e iff A � %e
b0,b,b1

(a0,a,a′).
There is an effective procedure for determining, given % and e, an index

for a recursive infinitary Σ1 formula α%(y,x) which is logically equivalent
to the disjunction of the formulas ∃z %e

b0,b,b′(y,x, z). Then the formula
α%(a0,x) is the one we assign to the R-formula %(x). Note that the fixed
sequence of parameters a0 (the range of the forcing condition p) serves for
all %. This completes the proof of Lemma 1.4, which was all that remained
in the proof of Theorem 1.1.

In the introduction, we indicated how Theorem 1.1 was inspired by The-
orem 0.1. Now, we obtain the non-trivial direction of Theorem 0.1 as a
corollary of Theorem 1.1.
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Corollary 1.5. Let C be a recursive structure which is relatively re-
cursively categorical. Then for some finite sequence c from C, there is a
recursive sequence of existential formulas (ϕi(c,xi))i∈ω such that

(i) for each finite sequence a from C, there is at least one i such that
ϕi(c,a) holds,

(ii) if a and b are two sequences such that for some i, ϕi(c,a), ϕi(c,b)
both hold , then (C,a) ∼= (C,b).

P r o o f. Let A be a recursive cardinal sum of C with itself. Let ψ be
the sentence saying of a new relation symbol R that it is an isomorphism
between the two parts of A. Applying Theorem 1.1, we get a formally Σ0

1

expansion family S for ψ on A. Let c be the sequence of constants from the
expansion family. For each n, let x = (x0, . . . , xn−1) and y = (y0, . . . , yn−1)
be sequences of distinct variables, and let σn(x,y) be the R-formula say-
ing that R(xk) = yk for k < n. For each R-formula %(x,y, z) such that
` %(x,y, z) → σn(x,y), we have an effectively assigned recursive infinitary
Σ1 formula α%(c,x,y) such that %(a,b,d) ∈ S iff A � α%(c,a,b,d).
For each n, we can effectively determine a recursive infinitary Σ1 formula
αn(c,x,y) that is logically equivalent to the disjunction of the formulas ∃z
α%(c,x,y, z). Note that if A � αn(c,a,b) then a and b sit isomorphically
in the two parts of A, and for any a in the first part of A (or b in the second
part), there exist n and b (or a) such that A � αn(c,a,b).

Let c = c1
∧c2, where c1 lies in one part of A and c2 lies in the other.

For each n, we may assume that αn(c,x,y) is a disjunction of formulas
γn,m(c1,x)&δn,m(c2,y), where γn,m and δn,m are finitary existential for-
mulas, relativized to the first and second parts of the cardinal sum, re-
spectively. (That is, we may apply the Feferman–Vaught “splitting” pro-
cedure to effectively determine a formula of this form that is equivalent to
αn(c,x,y) in A.) If A � γn,m(c1,a1)&δn,m(c2,b), then a1 and b sit iso-
morphically in the two parts of A. If, in addition, A � γn,m(c1,a2), then
A � γn,m(c1,a2)&δn,m(c2,b), so a1 and a2 must sit isomorphically in the
first part of A.

We can recursively list the formulas γn,m(c1,x) such that γn,m(c1,x)
&δn,m(c2,y) is satisfiable in A. Let ϕi(c1,x) be the unrelativized formula
corresponding to the ith formula γn,m(c1,x) on the list, and think of C
as the part of A that includes c1. Clearly, each finite sequence a from C
satisfies one of the formulas ϕi(c1,x), and the argument above shows that
if a1 and a2 are two sequences such that for some i, C � ϕi(c,a1)&ϕi(c,a2)
both hold, then (C,a1) ∼= (C,a2). This completes the proof.

The next result is related to Beth’s Theorem.

Corollary 1.6. Let A be a recursive L-structure, let R be a new relation
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symbol , and let ψ be a recursive infinitary Π2 sentence in the language
L ∪ {R}. Suppose that for each B ∼= A, there is a unique relation R such
that (B, R) � ψ, and this relation R is always recursive in D(B). Then for
the relation R on A such that (A, R) � ψ, both R and its complement are
definable in A by recursive infinitary Σ1 formulas in the language L (with
finitely many parameters from A).

P r o o f. By Theorem 1.1, there is a formally Σ0
1 expansion family S for

ψ on A, with parameters c, say. We consider the R-formulas %(x,y) such
that %(x,y) ` R(x) or %(x,y) ` ¬R(x), with the corresponding recursive Σ1

L-formulas α%(c,x,y) such that %(a,b) ∈ S iff A � α%(c,a,b). Let α(c,x)
be the disjunction of ∃yα%(c,x,y) for those R-formulas %(x,y) such that
%(x,y) ` R(x), and let β(c,x) be the disjunction of ∃yα%(c,x,y) for those
R-formulas %(x,y) such that %(x,y) ` ¬R(x). For each a ∈ Ax, there is
some σ ∈ S such that σ ` R(a) or σ ` ¬R(a). For any σ ∈ S, we could
use the expansion family to produce a relation R on A satisfying ψ and
agreeing with σ. Since the relation R on A is unique, α(c,x) and β(c,x)
are the desired defining formulas.

The results in [AKMS] provide a different proof of Corollary 1.6, which
works for arbitrary infinitary sentences ψ, not just for recursive Π2 sen-
tences.

In the next section, we consider some variants of Question 1.

§ 2. Related results. The first variant of the basic question concerns
expansions which are relatively ∆0

α instead of relatively recursive.

Question 2. For α a recursive ordinal, when is it the case that for every
B ∼= A, there is a relation R such that (B, R) � ψ and R is ∆0

α relative to
D(B)?

Recall Example 2 from Section 1. In this example, L is a finite relational
language, and ψ is a finitary Π2 sentence in the language L ∪ {R} saying
that R is a non-trivial automorphism of the L-reduct. Let A be an ordering
of type ω∗ +ω. There is a non-trivial automorphism defined by the formula
ϕ(x, y) = x < y&∀z ¬(x < z&z < y). It follows that for any B ∼= A, there
is a non-trivial automorphism recursive in D(B)′. Or, let A be an ordering
of type ω · η. Then no non-trivial automorphism is definable, but for any
B ∼= A, there is a non-trivial automorphism recursive in D(B)′′.

The next variant of the basic question concerns expansions which are
relatively r.e.

Question 3. When is it the case that for every B ∼= A, there is a
relation R such that (B, R) � ψ and R is r.e. in D(B)?
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If there is a relation R such that (A, R) � ψ and R is definable by a
recursive infinitary Σ1 formula, then the answer to Question 3 is positive.
However, definability is not necessary. The two examples below both have
the feature that for each B ∼= A, there is a relation R such that (B, R) � ψ
and R is r.e. in D(B), but for some B, R cannot be taken to be definable
or recursive in D(B).

Example 3. Let A be a structure of the form (ω, T ), where T is a ternary
relation on ω obtained as follows: Let U , V be disjoint infinite subsets of ω
(such that the complement of U ∪ V is also infinite), let X be a partition
of V into two-element sets, and let F be a function mapping U one-one
onto X. Now, let T consist of the triples (u, x, y) for which F (u) = {x, y}.
Note that (u, x, y) ∈ T iff (u, y, x) ∈ T . Let ψ be a sentence saying of a
new unary relation symbol R that for each triple in T , R contains exactly
one of the last two components. Using T as a name for itself, we have
ψ = ∀u∀x∀y [T (u, x, y) → (R(x) ↔ ¬R(y))]. For any B ∼= A, there is some
R, r.e. in D(B), such that (B, R) � ψ. (To enumerate R, we enumerate
TB, and as each triple (a, b, c) appears, we put b into R unless c is already
in.) Clearly, there is no definable relation satisfying ψ. We can produce
B ∼= A such that D(B) is recursive and there is no recursive R such that
(B, R) � ψ.

The example below is a modification of Example 1.

Example 4. Let A be a recursive L-structure, let ϕ(x,y) be a recursive
infinitary Σ1 L-formula, and let ψ be a recursive infinitary Π2 sentence
saying that R is a function, not necessarily total, such that ∀x∀y (R(x,y) →
ϕ(x,y)) and ∀x∀y (ϕ(x,y) → ∃z R(x, z)). Then for any B ∼= A, there is a
relation R such that (B, R) � ψ and R is r.e. in D(B). There is a recursive
structure A = (ω,C), where C is a ternary relation—resembling the relation
{(x,y, z) : z is a halting computation for ϕx(y)}—such that if ϕ(x,y, z) is
the formula saying ∃z C(x,y, z), and we form ψ as above, then there is no
recursive or definable R such that (A, R) � ψ.

Initially, we obtained a result on Question 3 for recursive infinitary Π1

sentences, such as the sentence ψ from Example 3. We then extended the
result to a special class of recursive infinitary Π2 sentences, including the
sentence ψ from Example 4. Before stating the results on Questions 2 and 3,
we define some hierarchies of formulas, similar to the one in [A2].

As always, R is an r-placed relation symbol not in the language L. For
each fixed ordinal α > 0, we define sets of infinitary L ∪ {R}-formulas
Σβ |(R ∈ Σα), Πβ |(R ∈ Σα), Σβ |(R ∈ ∆α), and Πβ |(R ∈ ∆α), for all β.
If β < α, then Σβ |(R ∈ Σα) and Σβ |(R ∈ ∆α) are both equal to the set
of Σβ L-formulas, and Πβ |(R ∈ Σα) and Πβ |(R ∈ ∆α) are both equal to
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the set of Πβ L-formulas. Let β ≥ α. Then Σβ |(R ∈ Σα) is the set of
infinitary formulas of the form

∨∨
n ∃yn (ϕn(x,yn)&ψn(x,yn)), where for

each n, ϕn is a finite conjunction of formulas of the form R(u) and ψn

is Πγ |(R ∈ Σα) for some γ < β; Πβ |(R ∈ Σα) is the set of infinitary
formulas of the form

∧∧
n ∀yn (ϕn(x,yn)∨ψn(x,yn)), where for each n, ϕn

is a finite disjunction of formulas of the form ¬R(u) and ψn is Σγ |(R ∈ Σα)
for some γ < β; Σβ |(R ∈ ∆α) is the set of infinitary formulas of the form∨∨

n ∃yn (ϕn(x,yn)&ψn(x,yn)), where for each n, ϕn is an R-formula and
ψn is Πγ |(R ∈ ∆α) for some γ < β; and Πβ |(R ∈ ∆α) is the set of infinitary
formulas of the form

∧∧
n ∀yn (ϕn(x,yn)∨ψn(x,yn)), where for each n, ϕn

is a finite disjunction of formulas R(u) or ¬R(u) and ψn is Σγ |(R ∈ ∆α)
for some γ < β.

Our result on Question 2 is for sentences ψ in Πα+1|(R ∈ ∆α). If ψ
is such a sentence, then we may assume that ψ is in the “standard form”∧∧

i ∀ui

∨∨
j ∃vi,j (ϕi,j(ui,vi,j)&%i,j(ui,vi,j)), where for each i and j, ϕi,j is

a Πβ formula of L, for some β < α, and %i,j is an R-formula. When we
defined “expansion family” earlier, we were thinking of recursive infinitary
sentences ψ in Π2|(R ∈ ∆1). The same definition serves for ψ in Πα+1|(R ∈
∆α). An expansion family S for ψ on A is said to be formally Σ0

α if for some
finite sequence c of elements of A, there is a recursive function assigning
to each R-formula %(x) a recursive infinitary Σα-formula α%(c,x), in the
language L with parameters c, such that for each a ∈ Ax, %(a) ∈ S iff
A � α%(c,a).

Theorem 2.1. Suppose A is a recursive L-structure. Let R be a new re-
lation symbol , and suppose ψ is a recursive infinitary sentence in Πα+1|(R ∈
∆α). Then for any recursive ordinal α ≥ 1, the following are equivalent :

(1) for all B ∼= A there exists R such that (B, R) � ψ and R is ∆0
α

relative to D(B),
(2) there exists a formally Σ0

a expansion family for ψ on A.

The proof of Theorem 2.1 is a straightforward generalization of the proof
of Theorem 1.1, so we shall omit it.

There is a natural extension of Corollary 1.6 that follows from Theo-
rem 2.1.

Corollary 2.2. Let A be a recursive L-structure, let R be a new relation
symbol , and let ψ be a recursive infinitary sentence in Πα+1|(R ∈ ∆α). Sup-
pose that for each B ∼= A, there is a unique relation R such that (B, R) � ψ,
and suppose that this R is always ∆0

α relative to D(B). Then for the re-
lation R on A, R and its complement are both definable in A by recursive
infinitary Σα formulas in the language L (with finitely many parameters
from A).
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We turn to Question 3. Our result is for the case where ψ is a recursive
infinitary sentence in Π2|(R ∈ Σ1). The sentence ψ from Example 4 can
be taken to be of this form. If % is an R-formula, or an R-sentence, let
%+ denote the positive part. If % has no positive conjuncts, then %+ = >.
Note that every positive R-formula is consistent, and every R-sentence on a
structure A is consistent with the sentences true in A. Let ψ be a recursive
infinitary sentence in Π2|(R ∈ Σ1). We may assume that ψ has the form∧∧

i ∀ui

∨∨
j ∃vi,j (ϕi,j(ui,vi,j)&%i,j(ui,vi,j)), where for each i and j, ϕi,j is

an open L-formula and %i,j is an R-formula such that for any conjunct of
the form ¬R(x), x ⊆ ui.

A positive expansion family for ψ on A is a family S of positive R-
sentences for A such that

(1) S 6= ∅,
(2) for each σ ∈ S, i ∈ ω, and c ∈ Aui , there exist j ∈ ω, d ∈ Avi,j , and

τ a consistent R-sentence for A such that τ+ ∈ S, τ+ ` σ, τ ` %i,j(c,d),
and A � ϕi,j(c,d).

A positive expansion family for ψ on A is said to be formally Σ0
1 if

for some finite sequence c of elements of A, there is a recursive function
assigning to each positive R-formula σ(x) a recursive infinitary Σ1 formula
ασ(c,x), in the language L augmented by parameters c, such that for each
a ∈ Ax, σ(a) ∈ S iff A � ασ(c,a).

Here is the result on Question 3.

Theorem 2.3. For A a recursive L-structure, R a new relation symbol ,
and ψ a recursive infinitary sentence in Π2|(R ∈ Σ1), the following are
equivalent :

(1) for all B ∼= A there exists R such that (B, R) � ψ and R is r.e.
in D(B),

(2) there exists a formally Σ0
1 positive expansion family for ψ on A.

P r o o f. The proof that (2) implies (1) has the same pattern as in The-
orem 1.1.

Lemma 2.4. Let S be a positive expansion family for ψ on A, and sup-
pose that S is r.e. in D(A). Then there exists R r.e. in D(A) such that
(A,R) � ψ.

P r o o f. Fix a recursive enumeration (ik, ck)k∈ω of the pairs (i, c) such
that c ∈ Aui .

Claim. There is a procedure recursive in D(A) for choosing a sequence
(σn)n∈ω of elements of S such that

(1) σn+1 ` σn,
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(2) for each n, there is a consistent R-sentence σ for A such that σ+ =
σn+1 and for each k < n+ 1, there exist j and d such that σ ` %ik,j(ck,d)
and A � ϕik,j(ck,d).

Proof of Claim. Let σ0 be the first element of S that appears in an
enumeration. Given σn, we search for σn+1 with properties (1) and (2). The
search will succeed provided there is some σ ∈ S with these properties. We
first take σ′ ∈ S such that σ′ ` σn and the set {a : σ′ ` R(a)&∃k < n + 1
a ⊆ ck} is maximal. For each k < n+1, there is a consistentR-sentence τk on
A such that τk ` σ′, τ+

k ∈ S, and for some j and d, we have A � ϕik,j(ck,d)
and τk ` %ik,j(ck,d). We may assume that the negative conjuncts in any τk
all appear in σ′, and we may choose τ+

k+1 to imply τ+
k , which means that

τk+1 ` τk. Then σ = τ+
n has the desired properties, so we have the claim.

To complete the proof of Lemma 2.4, let R = {a : a is an r-tuple from
A and σn ` R(a) for some n}. Clearly, R is r.e. in D(A), and (A, R) � ψ.

The analogue of Lemma 1.3 for positive expansion families is clearly true,
and this combines with Lemma 2.4 to give half of Theorem 2.3—the fact that
(2) implies (1). To show that (1) implies (2), we again use forcing. Recall
the sentences ϕD

e (k) ↓ from our forcing language. In terms of these, we get,
for each e ∈ ω and each R-sentence σ on B, a sentence with the meaning
(B,WD(B)

e ) � σ. We now let σe denote the sentence with this meaning,
forgetting entirely the old use of the notation. We have (B,WD(B)

e ) � σ
iff (A, g) � σe. In general, σe will be a recursive infinitary Π2 sentence
with infinitely many constants. If σ is positive, then σe will be a recursive
infinitary Σ1 sentence, still with infinitely many constants. Given a positive
R-formula %(x) and a sequence b of distinct elements from B, we can find
a recursive infinitary Σ1 formula %e

b(x), in the language L, with no extra
constants, such that for all forcing conditions p with domain b, if p takes b
to a, then p  %(b)e iff A � %e

b(a).
We construct a generic copy B of A. If (1) holds, then there is some e

such that (B,WD(B)
e ) � ψ, and some forcing condition p forces the following

sentences:

(a)
∧∧

σ(σe ∨ (¬σ)e), where the disjunction here is taken over all R-
sentences σ for B,

(b)
∧∧

i∈ω,c∈Bui

∨∨
j∈ω,d∈Bvi,j (ϕi,j(f(c), f(d))&%i,j(c,d)e).

Let Sp be the family of positive R-sentences %(a) for A with the following
feature: for some q ⊇ p and some b, we have q(b) = a and q  %(b)e. The
following lemma will complete the proof of Theorem 2.3.

Lemma 2.5. The set Sp is a formally Σ0
1 positive expansion family for ψ

on A.
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P r o o f. Clearly, > ∈ Sp, so Sp 6= ∅. It must be shown that for each
σ ∈ Sp, i ∈ ω, and c ∈ Aui , there exist j ∈ ω, d ∈ Avi,j , and τ a
consistent R-sentence on A such that τ+ ∈ Sp, τ+ ` σ, τ ` %i,j(c,d), and
A � ϕi,j(c,d). Suppose σ arises from p′ ⊇ p. There exist q ⊇ p′, c′ ∈ Bui ,
j ∈ ω, d ∈ Avi,j , and d′ ∈ Bvi,j such that q(c′) = c, q(d′) = d, and
q  ϕi,j(f(c′), f(d′))&(%i,j(c′,d′))e. Let τ be the result of adding to σ all
of the conjuncts in %i,j(c,d). This τ has the feature we want. Therefore, Sp

is a positive expansion family for ψ on A.
It must be shown that Sp is formally Σ0

1 on A. Suppose that p maps b0

to a0. For any positive R-formula %(x) and any a ∈ Ax, we have %(a) ∈ Sp

iff there exist b, and possibly further elements b1 and a1, and q ⊇ p, such
that q takes b0

∧b∧b1 to a0
∧a∧a1, and q  %(b)e. For a particular b and

b1, we have the recursive infinitary Σ1 formula %e
b0∧b∧b1

(y,x, z), in the
language L, such that if q maps b0

∧b∧b1 to a0
∧a∧a1, then q  %(b)e iff

A � σe
b0∧b∧b1

(a0,a,a′). There is an effective procedure for determining,
given % and e, an index for a recursive infinitary Σ1 formula α%(y,x) which
is logically equivalent to the disjunction of the formulas ∃z %e

b0∧b∧b′(y,x, z).
The formula α%(a0,x) is the one that we assign to %(x). This completes the
proof.

Question 4. For α a recursive ordinal, when is it the case that for every
B ∼= A, there is a relation R such that (B, R) � ψ and R is Σα relative to
D(B)?

If ψ is Π1, this question is not interesting for α > 1. It is easy to
see that if D(A) is consistent with ψ, where ψ is a recursive infinitary Π1

sentence, then there exists R ≤T D(A)′ such that (A, R) � ψ. Our result on
Question 4 is for ψ in Πα+1|(R ∈ Σα). The definition of “positive expansion
family” is the same as for ψ in Π2|(R ∈ Σ1). A positive expansion family
for ψ is formally Σ0

α if for some finite sequence c of elements of A, there is
a recursive function assigning to each positive R-formula σ(x) a recursive
infinitary Σα formula ασ(c,x), in the language L augmented by parameters
c, such that for each a ∈ Ax, σ(a) ∈ S iff A � ασ(c,a). The result below
generalizes Theorem 2.3. We omit the proof, as it involves no new ideas.

Theorem 2.6. For A a recursive L-structure, R a new relation symbol ,
and ψ a recursive infinitary sentence in Πα+1|(R ∈ Σα), the following are
equivalent :

(1) for all B ∼= A, there exists R such that (B, R) � ψ and R is Σα

relative to D(B),
(2) there exists a formally Σ0

α positive expansion family for ψ on A.

§ 3. Some applications. Theorem 1.1 has an application involving
paths through trees. Let T ⊆ ω<ω be a tree, with level n consisting of
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functions having domain n. (If σ ∈ T and m < dom(σ), then σ|m ∈ T .)
Let S be the successor relation on T (for σ, τ ∈ T , (σ, τ) ∈ S iff τ = σ∧n
for some n). Let ψ say of a new unary relation symbol R that it is a path
(i.e., an infinite branch) through T . We can take ψ to be a finitary Π2

sentence logically equivalent to the conjunction of the following:

(1) ∀x∀y [(S(x, y)&R(y)) → R(x)] ,

(2) ∀x∀y∀z [(S(x, y)&S(x, z)&R(y)&R(z)) → y = z] ,

(3) ∀x [R(x) → ∃z (R(z)&S(x, z))] .

Corollary 3.1. If A ∼= (T, S) is a recursive tree, as above, then the
following are equivalent :

(1) for each B ∼= A, there is a path R such that R ≤T D(B),
(2) there is a non-empty subtree T1 of T (with level n consisting of func-

tions having domain n, as above) such that T1 is definable in A by a recursive
infinitary Σ1 formula ϕ(c,x) and every node in T1 extends to a path in T1.

P r o o f. It is obvious that (2) implies (1). We must show that (1) implies
(2). If (1) holds, then by Theorem 1.1, there is a formally Σ0

1 expansion
family S for ψ on A. We have fixed parameters c and a recursive function
assigning to each R-formula %(x) a recursive infinitary Σ1 formula α%(c,x)
such that %(a) ∈ S iff A � α%(c,a). Let C be the set of R-formulas %(y, x)
such that %(y, x) ` R(x). Let ϕ(c, x) be a recursive infinitary Σ1 formula
logically equivalent to

∨∨
%∈C ∃y α%(c,y, x). This formula defines the desired

subtree.

The form of the sentence ψ above is such that we could apply Theo-
rem 2.3 as well as Theorem 1.1. In general, if we apply Theorems 1.1 and 2.3
to the same sentence, we expect different results. However, for these paths
through trees, being relatively r.e. is equivalent to being relatively recursive.

Corollary 3.1 can be extended as follows, using Theorem 2.1. The proof
is the obvious modification of the proof of Corollary 3.1.

Corollary 3.2. If A ∼= (T, S) is a recursive tree as above, and α ≥ 1
is a recursive ordinal , then the following are equivalent :

(1) for each B ∼= A, there is a path R that is ∆0
α relative to D(B),

(2) there is a subtree T1 of T , definable in A by a recursive infinitary
Σα formula ϕ(c, x), such that every node in T1 extends to a path in T1.

Theorem 2.3 has an application involving homogeneous subsets of a
graph. Let A = (ω,G) be a non-directed graph. There is a recursive infini-
tary sentence ψ saying of a new unary relation symbol R that it is an infinite
homogeneous set. We can take ψ to be a sentence in Π2|(R ∈ Σ1), logically
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equivalent to the conjunction of the following family of sentences ψn:

ψ0 = ∀x∀y∀u∀v [(x 6= y&u 6= v&R(x)&R(y)&R(u)&R(v))
→ (G(x, y) ↔ G(u, v))] ,

and for n ≥ 1,

ψn = ∀x1 . . .∀xn∃y
[ ∨∨

1≤i<j≤n

xi = xj ∨
( ∧∧

1≤i≤n

xi 6= y&R(y)
)]
.

Corollary 3.3. If A = (ω,G) is a recursive non-directed graph, then
the following are equivalent :

(1) for all B ∼= A, there is an infinite homogeneous set R such that R is
r.e. in D(B),

(2) there is a recursive sequence of recursive infinitary Σ1 formulas
δn(a, x1, . . . , xn), in the language of A, such that

(a) if (an)n∈ω is a sequence such that A � δn(a, a1, . . . , an) for all
n, then {an : n ∈ ω} is an infinite homogeneous set ,

(b) there is a1 such that A � ϕ1(a, x1), and if A � δn(a, a1, . . . , an),
then there exists an+1 such that A � δn+1(a, a1, . . . , an).

P r o o f. Clearly, (2) implies (1) and (1) implies (3). To show that (1)
implies (2), note that if (1) holds, then by Theorem 2.3, there is a formally
Σ0

1 positive expansion family S for ψ on A. We have a recursive function
assigning to each positive R-formula %(x) a recursive infinitary Σ1 formula
α%(a,x) such that %(b) ∈ S iff A � α%(a,b). For each n ≥ 1, let Cn be
the set of positive R-formulas %(u, x1, . . . , xn) such that %(u, x1, . . . , xn) `
R(x1)& . . . &R(xn), and let dn(x1, . . . , xn) =

∧∧
1≤i<j≤n xi 6= xj . Let

δn(c, x1, . . . , xn) be a recursive infinitary Σ1 formula equivalent to the for-
mula dn(x1, . . . , xn)&

∨∨
%∈Cn

∃u α%(a,u, x1, . . . , xn). From the definition
of “positive expansion family”, and an examination of the meaning of the
sentences ψn, it is clear that (b) holds. The proof of (a) reduces to the
following claim:

Claim. If A � δn(a, a1, . . . , an), then {a1, . . . , an} is homogeneous.

P r o o f o f C l a i m. We can put the sentence ψ0 in the form ∃u∨∨
k(ϕk &σk), where u = (x, y, u, v), the disjunction is finite, and for each k,

ϕk is an open formula in the language of graphs, σk is an R-formula, and
one of the following holds:

(a) ϕk ` x = y ∨ u = v,
(b) σk ` ¬R(x) ∨ ¬R(y) ∨ ¬R(u) ∨ ¬R(v),
(c) ϕk ` G(x, y) ↔ G(u, v).
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The elements a1, . . . , an are distinct, and A � α%(a,d, a1, . . . , an) for
some d in A and some % ∈ Cn. Let c = (a1, a2, ai, aj), where 1 ≤ i <
j ≤ n. There exist k and a consistent R-sentence τ for A such that τ `
%(d, a1, . . . , an), τ+ ∈ S, and for some k, we have τ ` σk(c) and A � ϕk(c).
For this k, (a) and (b) are impossible. Therefore, (c) must hold, and so
A � G(a1, a2) ↔ G(ai, aj). This proves the claim.

R e m a r k. Suppose A is a recursive non-directed graph such that for
each B ∼= A, there is an infinite homogeneous set R such that R is r.e. in
D(B). Then the homogeneous set can be taken to be always of the same
color; that is, either

(1) for all B ∼= A, there is an infinite set R r.e. in D(B) with all pairs
(of distinct elements) in G, or else

(2) for all B ∼= A, there is an infinite set R r.e. in D(B) with no pairs
in G.

The first author prefers to use Theorem 2.3 to prove this, while the
second author prefers to use Corollary 3.3. Both proofs are easy, so we give
neither.

There is another application of Theorem 2.3, involving linear orderings.
Let L be the language of linear orderings, and let ψ say of a new unary
relation symbol R that it is non-empty and has no first element. A linear
ordering A has an infinite descending sequence of elements iff A can be
expanded to a model of ψ.

Corollary 3.4. Let A be a recursive linear ordering. Then the following
are equivalent :

(1) for each B ∼= A, there exists a descending sequence of elements
(bn)n∈ω recursive in D(B),

(2) for each B ∼= A, there is a set R r.e. in D(B) such that (B, R) � ψ,
(3) there is a recursive infinitary Σ1 formula ϕ(c, x) defining a non-

empty subset of A with no first element.

P r o o f. It is easy to see that (3) implies (1) and (1) implies (2). If
(2) holds, then by Theorem 2.6, there is a formally Σ0

1 positive expansion
family S for ψ on A. We have a recursive function assigning to each pos-
itive R-formula %(x) a recursive infinitary Σ1 formula α%(c, x) such that
%(a) ∈ S iff A � α%(c,a). Let ϕ(c, x) be a recursive infinitary Σ1 formula
logically equivalent to the disjunction of the formulas ∃u α%(c,x,u), where
` %(x,u) → R(x). This formula clearly defines a non-empty subset of A
with no first element.

§ 4. Conclusion. In the cases where ψ is more complicated than Π2,
it does not seem possible to extract from our forcing construction necessary
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and sufficient conditions (similar to those in Theorem 1.1) which answer
Question 1. We therefore pose the problem of determining whether there
exist such conditions when ψ is, for example, Π3.
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