Category theorems concerning \mathcal{I} -density continuous functions

by

Krzysztof Ciesielski (Morgantown, W.Va.) and Lee Larson* (Louisville, Ken.)

Abstract. The \mathcal{I} -density topology $\mathcal{T}_{\mathcal{I}}$ on \mathbb{R} is a refinement of the natural topology. It is a category analogue of the density topology [9, 10]. This paper is concerned with \mathcal{I} -density continuous functions, i.e., the real functions that are continuous when the \mathcal{I} -density topology is used on the domain and the range. It is shown that the family $\mathcal{C}_{\mathcal{I}}$ of ordinary continuous functions $f : [0, 1] \to \mathbb{R}$ which have at least one point of \mathcal{I} -density continuity is a first category subset of $\mathcal{C}([0, 1]) = \{f : [0, 1] \to \mathbb{R} : f \text{ is continuous}\}$ equipped with the uniform norm. It is also proved that the class $\mathcal{C}_{\mathcal{I}\mathcal{I}}$ of \mathcal{I} -density continuous functions, equipped with the topology of uniform convergence, is of first category in itself. These results remain true when the \mathcal{I} -density topology is replaced by the deep \mathcal{I} -density topology.

1. Introduction. The ordinary density topology on \mathcal{R} is defined to be the collection of all subsets of \mathcal{R} which have full Lebesgue density at every point [1]. The collection of all sets open in the density topology is denoted by $\mathcal{T}_{\mathcal{N}}$. The open sets in the ordinary topology are denoted by $\mathcal{T}_{\mathcal{O}}$. A function $f: \mathcal{R} \to \mathcal{R}$ is approximately continuous at a point x if it is continuous at x with the ordinary topology on the range and the density topology on the domain, and it is *density continuous* at x if it is continuous at x when $\mathcal{T}_{\mathcal{N}}$ is used on both the domain and the range. The spaces of everywhere ordinary continuous, approximately continuous and density continuous functions $f: \mathcal{R} \to \mathcal{R}$ are denoted by $\mathcal{C}_{\mathcal{O}\mathcal{O}}, \mathcal{C}_{\mathcal{N}\mathcal{O}}$ and $\mathcal{C}_{\mathcal{N}\mathcal{N}}$, respectively.

¹⁹⁹¹ Mathematics Subject Classification: Primary 54H15; Secondary 20M20, 26A18. Key words and phrases: *I*-density topology, *I*-density continuous functions, first category sets.

^{*} This author was partially supported by a University of Louisville Arts and Sciences Research grant.

K. Ciesielski and L. Larson

The structures of $\mathcal{C}_{\mathcal{O}\mathcal{O}}$ and $\mathcal{C}_{\mathcal{N}\mathcal{O}}$ are quite well understood, but $\mathcal{C}_{\mathcal{N}\mathcal{N}}$ is more difficult to study, mainly because it is closed neither under addition nor uniform convergence [4]. In particular, the relationship between density continuity and ordinary continuity is quite complicated. The definitions yield at once that $\mathcal{C}_{\mathcal{O}\mathcal{O}} \subset \mathcal{C}_{\mathcal{N}\mathcal{O}} \supset \mathcal{C}_{\mathcal{N}\mathcal{N}}$, but it is not hard to construct examples showing that

(1)
$$C_{OO} \not\subset C_{NN} \not\subset C_{OO}$$

[4, 5]. The following theorem is known [6].

THEOREM 1. Let $C_{\mathcal{OO}}$ be given the topology of uniform convergence. If C is the subset of $C_{\mathcal{OO}}$ consisting of functions with at least one point of density continuity, then C is a first category subset of $C_{\mathcal{OO}}$.

A combination of this theorem with the fact that every density continuous function is continuous on a dense open set can be used to show the following corollary [6].

COROLLARY 2. If C_{NN} is given the topology of uniform convergence, then it is a first category subset of itself.

Let \mathcal{I} be the collection of all first category subsets of \mathcal{R} and $E \subset \mathcal{R}$. A point $x \in \mathcal{R}$ is an \mathcal{I} -dispersion point of E if for every increasing sequence of natural numbers $\{t_n\}$ there is a subsequence $\{t_{n_m}\}$ such that

$$\limsup_{m \in \mathcal{N}} t_{n_m}(E - x) \cap (-1, 1) \in \mathcal{I}.$$

The point x is an \mathcal{I} -density point of E if it is an \mathcal{I} -dispersion point of E^c . Using this category density instead of Lebesgue density, the \mathcal{I} -density topology, $\mathcal{T}_{\mathcal{I}}$, is defined to consist of all Baire sets $E \subset \mathcal{R}$ such that every point of E is an \mathcal{I} -density point of E [9, 10].

 $\mathcal{T}_{\mathcal{I}}$ has many properties in common with $\mathcal{T}_{\mathcal{N}}$, but $\mathcal{T}_{\mathcal{N}}$ is completely regular while $\mathcal{T}_{\mathcal{I}}$ is not. To remedy this, a topology coarser than $\mathcal{T}_{\mathcal{I}}$, called the *deep* \mathcal{I} -*density topology*, is introduced in the following way. A point x is a *deep* \mathcal{I} -*density point* of the set $E \subset \mathcal{R}$ if there is an ordinary closed set $F \subset E \cup \{x\}$ such that x is an \mathcal{I} -density point of F. Using the idea of deep \mathcal{I} -density, the *deep* \mathcal{I} -*density topology*, $\mathcal{T}_{\mathcal{D}}$, is defined in the by now familiar way [7]. $\mathcal{T}_{\mathcal{D}}$ is completely regular [7].

Given these two topologies based on \mathcal{I} -density, the \mathcal{I} -density continuous functions, $\mathcal{C}_{\mathcal{II}}$, and deep \mathcal{I} -density continuous functions, $\mathcal{C}_{\mathcal{DD}}$, are defined in the natural way.

It is reasonable to ask if the known properties of the density continuous functions can be proved in the case of the \mathcal{I} -density and deep \mathcal{I} -density continuous functions. The purpose of this paper is to establish Theorem 1 and Corollary 2 using these topologies in place of the density topology.

80

2. Comparison with $C_{\mathcal{OO}}$. The purpose of this section is to prove that the \mathcal{I} -density continuous and deep \mathcal{I} -density continuous functions have the same relationship to the ordinary continuous functions as do the density continuous functions. First, in analogy to (1), it is known [5] that

(2)
$$\mathcal{C}_{\mathcal{I}\mathcal{I}} \subset \mathcal{C}_{\mathcal{D}\mathcal{D}} \not\supseteq \mathcal{C}_{\mathcal{O}\mathcal{O}} \text{ and } \mathcal{C}_{\mathcal{I}\mathcal{I}} \not\subseteq \mathcal{C}_{\mathcal{O}\mathcal{O}}.$$

Moreover, the containment in (2) is proper [5]. To give some idea of just how delicate the situation is, note the following lemma [2], [5, Example 5.7].

LEMMA 3. There exists a convex C^{∞} function that is not deep \mathcal{I} -density continuous.

To proceed further toward the proof of a theorem similar to Theorem 1, some more definitions must be introduced.

If A is a measurable subset of \mathcal{R} , then its measure is denoted by m(A). A set of the form $\bigcup_{n \in \mathcal{N}} [a_n, b_n]$ or $\bigcup_{n \in \mathcal{N}} (a_n, b_n)$ is a right interval set if $b_n > a_n > b_{n+1} > 0$ for all $n \in \mathcal{N}$ and $a_n \to 0$. The definition of a *left interval set* is obvious. Any set which is the union of a right and left interval set is just called an *interval set*. The following lemmas give useful techniques for constructing \mathcal{I} -density open sets [3], [10, Theorem 2].

LEMMA 4. If $B = \bigcup_{n \in \mathcal{N}} (a_n, b_n)$ is a right interval set and there exists a positive number c such that

$$(b_n - a_n)/b_n > c$$

for every $n \in \mathcal{N}$, then 0 is not an \mathcal{I} -dispersion point of B.

LEMMA 5. If $\bigcup_{n \in \mathcal{N}} [a_n, b_n]$ is a right interval set with

$$\lim_{n \to \infty} (b_n - a_n)/b_n = 0,$$

then there exists an increasing sequence $\{n_m\}_{m\in\mathcal{N}}$ of natural numbers such that 0 is an \mathcal{I} -dispersion point of $\bigcup_{m\in\mathcal{N}}[a_{n_m}, b_{n_m}]$.

THEOREM 6. Let $C_{\mathcal{I}}$ denote the class of all continuous functions f: [0,1] $\rightarrow \mathcal{R}$ which have at least one point of \mathcal{I} -density continuity. Then $C_{\mathcal{I}}$ is a first category subset of $\mathcal{C}([0,1])$.

Proof. We will show that there exists a dense \mathbf{G}_{δ} subset E of $\mathcal{C} = \mathcal{C}([0,1])$ such that every $f \in E$ is nowhere \mathcal{I} -density continuous.

For every $n \in \mathcal{N}$ denote by D_n the set of all $f \in \mathcal{C}$ such that for every $i = 1, 2, \ldots, 2^n$, f is linear and nonconstant on every interval $[(i-1)2^{-n}, i2^{-n}]$. Note that $D_{n+1} \supset D_n$ for every $n \in \mathcal{N}$ and $D = \bigcup_{n \in \mathcal{N}} D_n$ is a dense subset of \mathcal{C} .

For $f \in \mathcal{C}$ define

$$||f||_n = \max_{i=1,2,\dots,2^n} |f(i2^{-n}) - f((i-1)2^{-n})|.$$

We claim that for each open set U in \mathcal{C} , there exists an $n \in \mathcal{N}$ and a function $f \in D_n$ such that the ball in \mathcal{C} centered at f of radius $||f||_n$ is entirely contained in U. To see this, first find an $m \in \mathcal{N}$ and an $f \in D_m$ such that $f \in U$. Since U is open, there is a $\delta > 0$ such that the open ball of radius δ centered at f is contained in U. Using the uniform continuity of f, we can find an n > m such that if $|x - y| < 2^{-n}$, then $|f(x) - f(y)| < \delta$. From this it is clear that $f \in D_n$ and $||f||_n < \delta$. The claim becomes evident.

We now start the construction of the \mathbf{G}_{δ} set E as the intersection of dense open sets W_k .

Let $k \ge 1$ be an integer and let U be a nonempty open subset of C. Choose f and $n \ge k$ as above. For $j = 0, 1, 2, \ldots, 2^{n+1}$, define

$$g(j/2^{n+1}) = f(j/2^{n+1}).$$

If $i2^{-n} \leq j2^{-n-1} < (j+1)2^{-n-1} \leq (i+1)2^{-n}$, where $i \in \{0, 1, 2, \dots, 2^n - 1\}$, put

$$L_i = (i2^{-n}, (i+1)2^{-n}), \quad M_j = (j2^{-n-1}, (j+1)2^{-n-1})$$

and let $K_j = [a_j, b_j]$ be an interval concentric with M_j such that

$$m(K_j)/m(M_j) = 1 - 1/2^n = 2m(K_j)/m(L_i).$$

Choose $I_j^0 = [c_j, d_j]$ concentric with the interval $f(M_j)$ and such that

$$m(I_j^0)/m(f(M_j)) = 1/2^n$$

Define the function g to be linear on each of the intervals $[j2^{-n-1}, a_j]$, $[a_j, b_j]$, and $[b_j, (j+1)2^{-n-1}]$ in such a way that $g([a_j, b_j]) = [c_j, d_j] = I_j^0$. (See Fig. 1.) Thus, if

$$J_j = f(M_j) = g(M_j)$$

then

$$m(g(K_j))/m(g(M_j)) = m(I_j^0)/m(J_j) = 1/2^n , m(g^{-1}(I_j^0))/m(g^{-1}(J_j)) = m(K_j)/m(M_j) = 1 - 1/2^n .$$

Note that g is contained in the open ball centered at f of radius $||f||_n$. Thus, $g \in U$.

Let W_U^k be the open ball centered at g of radius

(3)
$$\varepsilon_k = 2^{-n-1} \min_{i=1,2,\dots,2^n} |f(i/2^n) - f((i-1)/2^n)| > 0.$$

Obviously $W_k = \bigcup \{ W_U^k : U \text{ is open and nonempty in } \mathcal{C} \}$ is open and dense in \mathcal{C} , so that $E = \bigcap_{k \in \mathcal{N}} W_k$ is a residual set in \mathcal{C} . We will show that if $h \in E$ then h is nowhere \mathcal{I} -density continuous.

Fig. 1. The function g(x)

Let $x \in [0,1]$ be arbitrary. We will choose intervals $I_m, m \in \mathcal{N}$, such that h(x) is an \mathcal{I} -dispersion point of $\bigcup_{m \in \mathcal{N}} I_m$, but x is not an \mathcal{I} -dispersion point of $h^{-1}(\bigcup_{m \in \mathcal{N}} I_m)$. This will prove that h is not \mathcal{I} -density continuous at x.

Let $m \in \mathcal{N}$. We have $h \in W_m$, so there exists a set U, open in \mathcal{C} , such that $h \in W_U^m$. Let g be the center of W_U^m . Let $n \geq m$ be the number given in the construction of W_U^m . Let $i \in \{0, 1, 2, \ldots, 2^n - 1\}$ be such that $x \in [i2^{-n}, (i+1)2^{-n}]$. Put

$$L_m = [i2^{-n}, (i+1)2^{-n}].$$

Let

$$\begin{split} M^1 &= ((2i)2^{-n-1}, (2i+1)2^{-n-1}), \quad M^2 = ((2i+1)2^{-n-1}, 2(i+1)2^{-n-1}), \\ \text{and let } M_m \in \{M^1, M^2\} \text{ be such that } h(x) \notin g(M_m). \text{ Put } J_m = g(M_m) \\ \text{and let } I^0_m &= [c_j, d_j], K_m = [a_j, b_j] \text{ be as in the construction of } g. \end{split}$$

Thus we have

$$\frac{\mathrm{m}(I_m^0)}{\mathrm{m}(J_m)} = \frac{1}{2^n} \le \frac{1}{2^m} \quad \text{and} \quad \frac{\mathrm{m}(K_m)}{\mathrm{m}(M_m)} = 1 - \frac{1}{2^n} \ge 1 - \frac{1}{2^m}$$

Define $I_m = [c_j - \varepsilon_m, d_j + \varepsilon_m]$. As $h(x) \notin J_m$, we can choose a subsequence $\{I_{m_i}\}_{i \in \mathcal{N}}$ of $\{I_m\}_{m \in \mathcal{N}}$ such that the union of all intervals in the sequence $\{I_{m_i}\}_{i \in \mathcal{N}}$ is a left or right interval set at h(x). Without loss of generality we may assume that it is a right interval set at h(x). As, for each $i \in \mathcal{N}$, I_{m_i} and J_{m_i} have a common center and

$$\lim_{i\to\infty} \mathrm{m}(I_{m_i})/\mathrm{m}(J_{m_i}) = 0\,,$$

Lemma 5 says that we can choose a subsequence $\{I_{m_{i_j}}\}_{j\in\mathcal{N}}$ of $\{I_{m_i}\}_{i\in\mathcal{N}}$ such that h(x) is an \mathcal{I} -dispersion point of $\bigcup_{i\in\mathcal{N}} I_{m_{i_j}}$.

On the other hand, by the way ε_n was chosen in (3), $K_n \subset h^{-1}(I_n)$. Thus, using Lemma 4, the fact that $x \in L_m$ for every $m \in \mathcal{N}$ and

 $\lim_{j \to \infty} \mathbf{m}(K_{n_{i_j}}) / \mathbf{m}(L_{n_{i_j}}) = \lim_{j \to \infty} \mathbf{m}(K_{n_{i_j}}) / (2\mathbf{m}(M_{n_{i_j}})) = 1/2 > 0$

we conclude that x is not an \mathcal{I} -dispersion point of $\bigcup_{j \in \mathcal{N}} K_{n_{i_j}}$. Thus x is not an \mathcal{I} -dispersion point of $h^{-1}(\bigcup_{j \in \mathcal{N}} I_{n_{i_j}})$. This finishes the proof of Theorem 6.

3. Comparison of $C_{\mathcal{II}}$ and $C_{\mathcal{DD}}$ to themselves. Recall that a function $f : \mathcal{R} \to \mathcal{R}$ is in the class Baire*1 if for each nonempty perfect set P there exists an open interval I such that $I \cap P \neq \emptyset$ and the restricted function $f|_{I\cap P}$ is continuous [8]. It is clear from the definition that any $f \in$ Baire*1 must be continuous at each point of a dense open set. This useful property is true of the functions in $C_{\mathcal{DD}}$ [3], [5, Theorem 4.1(iv)].

THEOREM 7. $C_{DD} \subset \text{Baire}^*1$.

THEOREM 8. The spaces C_{DD} and C_{II} , equipped with the topology of uniform convergence, are of the first category in themselves.

Proof. We only prove this for the class $\mathcal{C}_{\mathcal{DD}}$ as the other case is essentially the same.

Let $\{I_n\}_{n\in\mathcal{N}}$ be the sequence of all open intervals with rational endpoints and let C_n be the family of all deep \mathcal{I} -density continuous functions that are continuous on I_n in the ordinary sense. By Theorem 7, $\mathcal{C}_{\mathcal{D}\mathcal{D}} = \bigcup_{n\in\mathcal{N}} C_n$. Also, it is evident that the sets C_n are closed in $\mathcal{C}_{\mathcal{D}\mathcal{D}}$ equipped with the topology of uniform convergence. Finally, for any function $f \in C_n$ and any of its neighborhoods $U \subset \mathcal{C}_{\mathcal{D}\mathcal{D}}$, it is easy to slightly modify a function gsuch as in Lemma 3 in such a way that $g \in U \setminus C_n$. Thus, the sets C_n are nowhere dense.

References

- A. M. Bruckner, Differentiation of Real Functions, Lecture Notes in Math. 659, Springer, 1978.
- [2] K. Ciesielski and L. Larson, Analytic functions are *I*-density continuous, submitted.
- [3] —, —, Baire classification of *I*-approximately and *I*-density continuous functions, submitted.
- [4] —, —, The space of density continuous functions, Acta Math. Hungar., to appear.
- [5] —, —, Various continuities with the density, *I*-density and ordinary topologies on R, Real Anal. Exchange, to appear.

- [6] K. Ciesielski, L. Larson and K. Ostaszewski, Density continuity versus continuity, Forum Math. 2 (1990), 265–275.
- [7] E. Lazarow, The coarsest topology for I-approximately continuous functions, Comment. Math. Univ. Carolin. 27 (4) (1986), 695–704.
- [8] R. J. O'Malley, Baire*1, Darboux functions, Proc. Amer. Math. Soc. 60 (1976), 187–192.
- [9] W. Poreda, E. Wagner-Bojakowska and W. Wilczyński, A category analogue of the density topology, Fund. Math. 125 (1985), 167–173.
- [10] W. Wilczyński, A category analogue of the density topology, approximate continuity and the approximate derivative, Real Anal. Exchange 10 (1984/85), 241–265.

DEPARTMENT OF MATHEMATICS	DEPARTMENT OF MATHEMATICS
WEST VIRGINIA UNIVERSITY	UNIVERSITY OF LOUISVILLE
MORGANTOWN, WEST VIRGINIA 26506	LOUISVILLE, KENTUCKY 40292
U.S.A.	U.S.A.

Received 11 February 1991