A characterization of representation-finite algebras

by

Andrzej Skowroński and Michał Wenderlich (Toruń)

Abstract. Let A be a finite-dimensional, basic, connected algebra over an algebraically closed field. Denote by $\Gamma(A)$ the Auslander–Reiten quiver of A. We show that A is representation-finite if and only if $\Gamma(A)$ has at most finitely many vertices lying on oriented cycles and finitely many orbits with respect to the action of the Auslander–Reiten translation.

Let K denote a fixed algebraically closed field and A a finite-dimensional K-algebra (associative, with an identity) which we shall assume to be basic and connected. By an A-module is meant a finite-dimensional right A-module. Throughout the paper we shall freely use the terminology and notation introduced in [7]. In particular, we denote by mod A the category of A-modules, by rad(mod A) the Jacobson radical of mod A, and by $\operatorname{rad}^{\infty}(\operatorname{mod} A)$ the intersection of all powers $\operatorname{rad}^{i}(\operatorname{mod} A)$, $i \geq 0$, of rad(mod A). From the existence of the Auslander-Reiten sequences in mod A we know that rad(mod A) is generated by irreducible maps as a left and as a right ideal. By $\Gamma(A)$ we denote the Auslander–Reiten quiver of A whose vertices are the isoclasses of indecomposable objects in mod A and arrows correspond to irreducible maps, and by τ and τ^{-1} the Auslander-Reiten translations D Tr and Tr D, respectively. For the sake of simplicity we identify an A-module with its isomorphism class. The τ -orbit of an indecomposable A-module X is the family of non-zero modules of the form $\tau^n X$. $n \in \mathcal{Z}$, where \mathcal{Z} is the set of all integers. An A-module X is called *periodic* if $\tau^n X \simeq X$ for some $n \neq 0$. By a *path* from M to N in $\Gamma(A)$ we mean a sequence of vertices and arrows $M \to M_1 \to \ldots \to M_n \to N$ in $\Gamma(A)$. In this case, M is called a *predecessor* of N and N a *successor* of M. An oriented cycle is a non-trivial path from a point to itself. Recall that an algebra A is called *representation-finite* if $\Gamma(A)$ is finite. In [4] the following results were proved:

(a) An algebra A is representation-finite if and only if $\operatorname{rad}^{\infty}(\operatorname{mod} A) = 0$.

(b) If $\operatorname{rad}^{\infty}(\operatorname{mod} A)$ is nilpotent, then A is tame (in the sense of [1] and [8]).

(c) If A is either a tilted algebra or a standard selfinjective algebra then $\operatorname{rad}^{\infty}(\operatorname{mod} A)$ is nilpotent if and only if A is domestic (in the sense of [8]).

Representation-finite algebras are domestic and domestic algebras are tame (see [8]).

We shall prove here the following characterization of representation-finite algebras.

THEOREM. Let A be an algebra. The following conditions are equivalent. (i) A is representation-finite.

(ii) $\Gamma(A)$ admits at most finitely many vertices lying on an oriented cycle and the number of τ -orbits in $\Gamma(A)$ is finite.

(iii) $\operatorname{rad}^{\infty}(\operatorname{mod} A)$ is nilpotent and the number of τ -orbits in $\Gamma(A)$ is finite.

Proof. Obviously (i) implies (ii). Moreover, (iii) implies (i). Indeed, suppose that A is representation-infinite and satisfies (iii). Then the nilpotency of rad^{∞}(mod A) implies that A is tame and then, by the validity of the Brauer–Thrall II conjecture (for a proof, see for example [2]) and [1, 6.7], there are infinitely many pairwise non-isomorphic indecomposable A-modules X with $X \simeq \tau X$, impossible by the second part of (iii).

Therefore, in order to prove the theorem, it is enough to show that (ii) implies the nilpotency of $\operatorname{rad}^{\infty}(\operatorname{mod} A)$.

Observe first that, if $M_0 \to M_1 \to \ldots \to M_n \to M_0$ is an oriented cycle in $\Gamma(A)$, then either all modules M_i are periodic or $\tau^m M_i = 0$ (resp. $\tau^{-m}M_i = 0$) for some m > 0 and some *i*. Indeed, if one of the modules M_i , say M_0 , is not periodic and $\tau^m M_i \neq 0$ for all $m \ge 0$ (resp. $m \le 0$) and all *i*, $0 \le i \le n$, then the modules $\tau^m M_0$, $m \ge 0$ (resp. $m \le 0$) are pairwise non-isomorphic and lie on oriented cycles $\tau^m M_0 \to \tau^m M_1 \to \ldots \to$ $\tau^m M_n \to \tau^m M_0$, a contradiction to (ii).

Denote by $\Gamma^+(A)$ (resp. $\Gamma^-(A)$) the full translation subquiver of $\Gamma(A)$ formed by all non-periodic indecomposable modules X such that $\tau^n X \neq 0$ (resp. $\tau^{-n}X \neq 0$) for all $n \geq 0$. By the above remark, $\Gamma^+(A)$ and $\Gamma^-(A)$ are quivers without oriented cycles. Then there exist finite sets \mathcal{X} and \mathcal{Y} of indecomposable A-modules such that the following conditions are satisfied:

(1) \mathcal{X} (resp. \mathcal{Y}) intersects every τ -orbit in $\Gamma^+(A)$ (resp. $\Gamma^-(A)$).

(2) Every path in $\Gamma(A)$ with source and target in \mathcal{X} (resp. \mathcal{Y}) has all vertices in \mathcal{X} (resp. \mathcal{Y}).

(3) There is no oriented cycle in $\Gamma(A)$ consisting of modules from \mathcal{X} (resp. \mathcal{Y}).

(4) Every predecessor (resp. successor) of some module of \mathcal{X} (resp. \mathcal{Y}) belongs to $\Gamma^+(A)$ (resp. $\Gamma^-(A)$).

Denote by \mathcal{C}^+ (resp. \mathcal{C}^-) the full translation subquiver of $\Gamma(A)$ formed by all proper predecessors (resp. proper successors) of modules of \mathcal{X} (resp. \mathcal{Y}). We may assume that \mathcal{C}^+ and \mathcal{C}^- are disjoint. Observe that \mathcal{C}^+ (resp. \mathcal{C}^-) is a disjoint union of translation quivers of the form $(-N)\Delta$ (resp. $N\Delta$) for some quiver Δ without oriented cycles. Let \mathcal{D} be the family of all indecomposable A-modules which are neither in \mathcal{C}^+ nor in \mathcal{C}^- . Then \mathcal{D} is (up to isomorphism) finite; denote by d the maximum of dimensions of modules from \mathcal{D} .

Now let M and N be two indecomposable A-modules and $f: M \to N$ a non-zero map in rad^{∞} (mod A). Assume that M does not belong to C^- . We claim that f factors through a direct sum of modules of \mathcal{Y} . Since $f \in$ rad^{∞}(M, N), there exists, for each t > 0, a chain

$$M \xrightarrow{g_1} M_1 \xrightarrow{g_2} M_2 \to \ldots \to M_{t-1} \xrightarrow{g_t} M_t$$

of irreducible maps in mod A and a morphism $h_t \in \operatorname{rad}^{\infty}(M_t, N)$ such that $f = h_t g_t \dots g_1$. Then there exists $p \geq 0$ such that, for $t \geq p$, M_t does not contain direct summands from \mathcal{C}^+ . Applying the lemma of Harada and Sai [3] (for a proof we refer to [6, 2.2]) we conclude that, for $t \geq p + 2^d$, M_t is a direct sum of modules of \mathcal{C}^- . Observe that, for $s = p + 2^d$, $g_s \dots g_1$ is a linear combination of paths in $\Gamma(A)$ from M to indecomposable direct summands of M_s , hence lying in \mathcal{C}^- , which must factor through modules of \mathcal{Y} . Similarly, we show that, if N is not in \mathcal{C}^+ , then f factors through a direct sum of modules of \mathcal{X} . Let now $m = 2^d + 1$. We shall show that $(\operatorname{rad}^{\infty}(\operatorname{mod} A))^{2m} = 0$. It is enough to show that for each chain of morphisms

$$Z_0 \xrightarrow{u_1} Z_1 \xrightarrow{u_2} Z_2 \to \ldots \to Z_{2m-1} \xrightarrow{u_{2m}} Z_{2m}$$
,

where all Z_i are indecomposable A-modules and where the u_i belong to $\operatorname{rad}^{\infty}(\operatorname{mod} A)$, the composition $u = u_{2m} \dots u_1$ is zero. Since we assume that \mathcal{C}^+ and \mathcal{C}^- are disjoint, it follows that either u_i factors through a direct sum of modules of \mathcal{X} or u_{i+1} factors through a direct sum of modules of \mathcal{Y} . Consequently, for each $j, 1 \leq j \leq m$, we have $u_{2j}u_{2j-1} = \beta_j\alpha_j$, where $\alpha_j \in \operatorname{rad}(Z_{2j-2}, V_j), \beta_j \in \operatorname{rad}(V_j, Z_{2j})$ and V_j is a direct sum of indecomposable modules of $\mathcal{X} \cup \mathcal{Y}$. Let $\gamma_j = \alpha_{j+1}\beta_j$ for $j = 1, \dots, m-1$. Applying again the lemma of Harada and Sai, we conclude that $\gamma_{m-1} \dots \gamma_1 = 0$. Hence $u = \beta_m \gamma_{m-1} \dots \gamma_1 \alpha_1 = 0$, which finishes the proof of the theorem.

The following corollary is an immediate consequence of the theorem.

COROLLARY 1. Let A be an algebra such that $\Gamma(A)$ has no oriented cycles. Then A is representation-finite if and only if the number of τ -orbits in $\Gamma(A)$ is finite.

A. Skowroński and M. Wenderlich

Observe that wild hereditary algebras are representation-infinite and their Auslander–Reiten quiver does not contain oriented cycles (see [5]). Recall also that an algebra A is called *representation-directed* provided every indecomposable A-module is *directing*, that is, it does not belong to an oriented cycle $M_0 \to M_1 \to \ldots \to M_n \to M_0$ of non-zero non-isomorphisms between indecomposable A-modules M_i . It was recently shown in [9] that a connected Auslander–Reiten component consisting of directing modules has only finitely many τ -orbits and the number of such components is finite. Hence the above corollary also implies the following characterization of representation-directed algebras due to Ringel (see [7, 2.4]).

COROLLARY 2. An algebra A is representation-directed if and only if A is representation-finite and $\Gamma(A)$ has no oriented cycles.

The authors wish to thank the Polish Ministry of Education for its support under Research Project R.P.I.10.

References

- W. W. Crawley-Boevey, On tame algebras and bocses, Proc. London Math. Soc. 56 (1988), 451-483.
- U. Fischbacher, Une nouvelle preuve d'un théorème de Nazarova et Roiter, C. R. Acad. Sci. Paris Sér. I 300 (9) (1985), 259-262.
- M. Harada and Y. Sai, On categories of indecomposable modules I, Osaka J. Math. 7 (1970), 323–344.
- [4] O. Kerner and A. Skowroński, On module categories with nilpotent infinite radical, Compositio Math. 77 (1991), 313–333.
- C. M. Ringel, Finite-dimensional hereditary algebras of wild representation type, Math. Z. 161 (1978), 235-255.
- [6] —, Report on the Brauer-Thrall conjectures, in: Proc. ICRA II (Ottawa 1979), Lecture Notes in Math. 831, Springer, 1980, 104–136.
- [7] —, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.
- [8] A. Skowroński, Algebras of polynomial growth, in: Topics in Algebra, Banach Center Publ. 26, Part 1, PWN, Warszawa 1990, 535–568.
- [9] A. Skowroński and S. O. Smalø, *Directing modules*, J. Algebra, to appear.

INSTITUTE OF MATHEMATICS NICHOLAS COPERNICUS UNIVERSITY CHOPINA 12/18 87-100 TORUŃ, POLAND

Received 20 April 1990