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On compositions and products of almost continuous functions
by

Tomasz Natkaniec (Bydgoszcz)

Abstract. (MA) Each function f defined on the interval I = [0, 1] into I which takes every
value ye! in each non-degencrate subinterval J of 1 is a composition of two almost continuous
functions. A real function defined on [ is a product of two almost continuous functions iff it has
a zero in each subinterval in which it changes sign.

L. Introduction. We shall consider the following classes of real functions. o7, €onn
and 2 are the classes of almost continuous functions, connectivity functions and
Darboux functions, respectively. Let 4 and B be intervals. 2*(4, B) denotes the class of
all functions f: A - B which take on every value yeB in each non-degenerate
subinterval of A, and @¥(A, B) (2**(4, B)) is the class of all f&@*(4, B) such that for
every ye B and every non=degenerate subinterval J < A the set f~*(y)nJ is countable
and non-empty (has cardinality continuum). For 4 = B = R (where R denotes the real
line) we shall write simply %* %§ and %**. Notice that we have the following
inclusions: '

o < Gonnc D, D§,D*ch*c,
and all these inclusions are proper.

IL It is obvious that 2 is closed under composition, unlike & [5]. Since & = 2,
the class of all compositions of two almost continuous functions is included in 2. The
foregoing also suggests the following question.

ProsreM. Is cach Darboux function a composition of (two) almost continuous
functions? ([7], independently [10], and [2] for connectivity functions).

The general answer is unknown to the author. There are, however, some partial
results,

J. Ceder [2] proved that under the Martin Axiom there exists a function f* defined
on I'=[0, 1] into I which is not a connectivity function but is a composition of two
connectivity functions. The proof of Ceder’s theorem yields the following result.
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VFACT 1. (MA) Every f 693(1;1) is a composition of two almost continuous
Sfunctions.
Moreover, the following theorem is proved in [10].

Fact 2. (MA) Every fe@**(1,1) is a composition of two almost continuous
Sfunctions.

The purpose of the first part of the present paper is to obtain the analogous result
for _@*(I , D).

Now we recall the definition and some information concerning almost continuity.
A function f: X — Y is almost continuous if for each open set G < X x Y such that
f < G there exists a continuous g: X - Y such that g = G. (We make no distinction
between a function and its graph.) f is a connectivity function if the restriction of f to
C is connected whenever C is connected [12].

A closed set K = XxY is called a blocking set for a function f: X — Y iff
Kn f =0 and Kng # J for every continuous function g: X — Y. Clearly f is almost
continuous iff it has no blocking set. Every blocking set of a function defined on an
interval J of R into R contains an irreducible blocking set whose x-projection is
a non-degenerate subinterval of J [5]. Thus if a function f defined on an interval J into
an interval K intersects each closed set in JXxK whose x-projection contains
a non-degenerate interval, then f is almost continuous.

If 4 is a planar set, we denote its x-projection by dom(A).

In the proof of Lemma 1 we shall assume that the union of less than ¢ (continuum)
nowhere dense sets is a set of the first category. This is a consequence of Martin's Axiom
or of the Continuum Hypothesis [11].

Lemva 1. (MA) Let J be an open subinterval of I = [0, 1]. If f e 9*(J, I) satisfies
either .
(*)  for each yel, f~1(y) is of the first category,
or
(%)  there exists yel for which f~1(y) is of the second category at every xe/J,

then f is the composition of two almost continuous functions: g in D*(J, J) and h in
a*(J, I).

Proof. We shall employ some ideas from [2]. Let {K,: o < ¢} and {K}: « < c} be
well-ordered families of all closed subsets of J x.J and J x I such that dom(X,) and
dom(K;) are non-degenerate intervals for each a < ¢ For every ordinal & < ¢ we shall
choose (by induction) sequences of points (x,, y)eK,, (v, w)eKy, sets 4,
B,, C,s D, = J and functions g,, h,, k,, t, for which the following conditions will be
satisfied: :

(1) L, =K,nUp<slgpuky) # @ then (x,, y)eL, and 4, = B, =@ =g, = h,. If
L,=© then:

(a') (xan Yw.)EKai ‘xa¢ Up<,(AﬂUC,3), yu¢Uﬂ<a(BﬂUDﬂ)‘
(®)  A.nUp<aldpuC) =@, 4, is a countable dense subset of J, x,ed, and
A< FTHS ().
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(@ B, is a countable dense subset of J, y,eB, and B,n|Js<u(B,uDj) = @.

(d) Let (Ao be a partition of 4, into countably many disjoint sets each of which
is dense in J, let x, € A0 and let (b, )i be the sequence of all elements of B, with
buo = Y, We define g,: 4,~ B, by g,(x)=b,, for xe4,,, n=0,1,..., and
a function h, on B, by h,(x) = f(x,) for each xe B,

@ I M,=Kin(Upealyut)Uh) # @ then (v, w)eM, and C,=D,=0

=k,=t,. If M,= then:

€ (v, w)EKL, v, Uﬂl:aBﬂUU[ﬁ<aD/J-

®  C,is a countable dense subset of J, C, = f71(w,) and Cun({UpsadsoUs<a )
=@,

(@ D, is a countable dense subset of J, D“m(U,,g“B,,uUﬂqD,,) =@ and n,eD,.

(h)  Let (Cymi=o be a decomposition of C, into countably many disjoint sets each of
which is dense in J and let (d,n)5u0 be the sequence of all points of D, with
dy0 = v,. We defline k,: C,— D, by k,(x)=d,, for xeC,,, n=0,1,..., and
tye D= {w,} by t,(x)=w, for xeD,.

Such a choice is possible. Indeed, assume that L, = @. First notice that K, (J x {1}) is
nowhere dense in Jx {1} for each AGU,,Q(B,,UD,,). Indeed, otherwise there exists
anon-empty subinterval J; < J such that J, x {4} = K,. Let f =min{y: 1eB,uD,}.If
AeBy (eDy) then it follows from the density of dom(g,) (dom(ky) that g;nK,
# 0 (k;nK, # @) and consequently L, # @, a contradiction. Thus dom (K, (I x {4}))
is nowhere dense in dom(X,) and using MA we find that

E, = dom(K )\ | (dom(K, (I x(B,uDp)ud,uCy)
Pea

is residual in dom(X,).
Now we choose x, & E, as follows. We consider two cases. If f satisfies () then

Fy= Ea\”g (/" (S ) of " (wp) # @

and we can choose x, & F,. If f satisfies (++) then there exists ye I for which f~*(y) is of
the second category at each xeJ. Let G = Jf"*(y). This set is of the second ca-
tegory in dom(K,) and therefore GNE,#@. We choose x,eGnE,. Since
card({Jy<a(4,w Cp)) < ¢, using MA we conclude that H, = G\ J<a(4; Cy)is dense in
J and we can choose a'countable set A, < H, dense in J with x,e4,. Then
Ay [ (%), Fix y,et with (%, y)€K,. Since x,&E,, V,&|Jp<By U Dy). Since
card(| Jp<«(By U Dp)) < «, there exists a countable subset B, = J\p<a(ByL Dy) dense in
J which contains y,. Then (x,, y,} and A,, B, satisfy (1).

Similarly we can prove that there exist (v,, w,), Cy» D, for which (2) holds. Assume
that M, = @, As above we prove that dom (K, (J x {A})) is nowhere dense in dom(K5)
for each Ae{f(x,), wy: <o,y < a}, Thus

H, = dom(K)\[ | dom(Kin(Ix {f (xp})u U dom(Kin (I x{ws})]
[ 111 fea
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is residual in dom(Ky). Let (v,, w,)e K, and v,eH,. Then w, # f(x;) for B <« and
w, # W, for B < 0. Choose a countable set D, = J\(Up<z By Up<aDy) dense in J such
that v,eD,. Since feP*(J, I), f~'(w,) is dense in J, and we choose a countable set
C, = f*(w,) dense in J. Since /™ (W) (Upsa4s Up<a Cp) = 9, C, is disjoint from
each 4, f < a, and each Cy, B < a. This finishes the choice of C,, D,, (v,, w,) satisfy-
- ing (2).
Now observe that for each xeJ we have either f(x) = w, for some o < ¢ or
Jfx) = f(x,) for some o < ¢ In fact, for a fixed xeJ there exists « < ¢ such that
’K; < Jx{f (x)}. Then either f(x) = f(x,) for some § < ot or f (x) = wy for some f§ < o
Let y(z) = v, if f(z) =w, and y(z) =y, if f(2) = f(x,). Now define

ga(x)
gix) = {km(x)

y(x)

h(x) for xedom(h,),
h(x) = {t“(x) for xedomd(t,),

0 for x¢ | Ju<.(dom(h,) Ldom(z,)).

for xedom(y,),
for xedom(k,),
for x¢(Ju< (dom(g,)udom(k,),

o<,

o<,

Then f = hog. Since g intersects each blocking set in J x J, it is almost continuous. If J,
is a non-degenerate closed subinterval of J and if yeJ, then gn(J 1 x{y}) # @. Thus
geP*(J,J), and g is almost continuous. Similarly, h is almost continuous and
he2*(J, I). This finishes the proof.

Lemma 2. Let f: I - R be almost continuous. If g: I — R is continuous then J+gis
almost continuous [107, [4].

LeMMA 3. Assume that C is a closed nowhere dense subset of I, {0, 1} = C and let
(I)i=1 be the sequence of all components of the complement of C. If [+ I =R satisfies
J@) =0 for each xeC, 0eC~(f|(I\C), x) for xeC\{0}, OeC*(f|(I\C), x) for
xeC\{1} and f|I, is almost continuous for each neN, then f is almost continuous.

The symbols C*(f, x) and C~(f, x) denote the unilateral cluster sets of I at x.

Proof. Let G be open in I xR such that f = G. For each xeC we define open
intervals U, in I, ¥, in R such that (x, 0)e U, x ¥, = U, x ¥, = G and the end points of
U, (other than 0 and 1) do not belong to C. Since C is compact, there exists a finite
covering Uy, ..., U, of C. Let V = (., V.. Now let U, ..., U, be the components
of | i, U,, such that if xe U,, ye U, fori <j, then x < y. Then C = Uyu...wU, and
U,nU;=@ for i+#]. Moreover, O Uy, 1€U, and the other end points of the
U; (0 <i<n) do not belong to C. For each i = 0, ..., n we choose [a,,, as;41] = U,
such that CnU; = Cn[ay,, ay+y] and ay, az4;€C. (It can happen that a,, = dai41.)
Additionally, set a; =0 and 3,4, = 1. Then for each i = 0, v h=1, (@141, G2142)
is a component of I\C. Thus f|(ai41, Gz 2) is almost continuous. Since
06C™(f, a2+ 1)NC™(f, Gzi2), f1[82141s azis2] is almost continuous (4], Lemma
3.4). Then there exists a continuous function it (@141, @2i42] — R such that g, < G
and g,(az:+1) = g,(a21+3) = 0 ([4], Lemma 3.3). The function ¢: I >R defined as

- ©
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g =128 g0 (I\Ur=o(@ai, azi41))x {0} is continuous and contained in G, which
completes the proof. ‘

LEMMA 4. Assume that J is a closed interval (or J = R), C is a closed nowhere dense
subset of I, {0, 1} < C and (I,)%., is the sequence of all components of N\C.Iff: I=Jis
such that f |1, is almost continuous for eachn = 1,2, ...and if C*(f, ¢,) = C™(f, d,) = J
where I, =(c,, d,), n=1,2,..., then f is almost continuous.

Proof. Let G be open in I xJ such that f = G. For each xe C we define open
intervals U, = I, ¥, & J such that (x, f(x))e U, x ¥, = U, x ¥, = G and the end points
of U, (other than 0 and 1) do not belong to C. Let {x,, ..., x,} be a subset of C such
that € = U, v...0U,,. We can assume that if U,nU, #@ then U, =T, or
U, c U,, (we can partition some U, if necessary) Now we choose a sequence
Ugs ..., U of sets from the covering {U,: 1 <i<n} such that U, =[¢;, 4], ¢, =0,
dy=1,4d, < ¢ fori<jand [d;, ¢iy,] is contained in some component I,, = (a,, b,) of
I\C. Then a, €U, and b, € U,..;. For every i we choose k(i) < n such that U, c U,y

Let V=V, fori=0, ..., k. Since ¥, = C*(f, a,) and Vi+, = C™(f; b,), there exist t,,
v, such that 1,eU, t;>a,, v,€U;.y, v, <b,, f(t)eV, and f(v)eV+,. Let

Gy = (G (I, x I\{t} x I\ U{v} x (J\Vit 1))
This is an open neighbourhood of f|1, and it follows from the almost continuity of

S I, that there exists a continuous function g;: I, —J contained in G;. Then g,(t)e ¥,
and g,(v)e V1. We define g: I —J as follows:

S(x) for xe{0, 1},
gi(x) for xe[t,v],i=0,..., k-1,
linear on each interval: [0, ty], [vy, 1] and
[U‘, tH'l]: i= 1, reey k—1.

This function is continuous and contained in G, which finishes the proof.

THEOREM 1. (MA) Each fe9*(I,1) is a composition of two almost continuous
Junctions.

Proofl Let fe@*(I,I) and let A=A, U A,, where 4, is the union of all open
intervals J < I such that for each ye I the set £ ~*(y)nJ is of the first category and A4, is
the union of all open intervals J < I for which there exists y €I such that f ~*(y)nJ is of
the second category at each x e J. Observe that 4 is open and dense in I. Indeed, assume
that a non-empty open interval K < I is disjoint from A;. Then there exists yel for
which K f~1(y) is of the second category, Let Z = {xe Kn f™*(»): Kn f~1(y) is of
the second category at x}. This set is of the second category and therefore it is dense in
some non-empty subinterval J < K (see eg. [8], pp. 51-52). It is obvious that
F™H(»NJ is of the second category at each x&J and consequently, Kn A, # @. Thus
C = I\4 is closed and nowhere dense. Let (I,)2% 1 be the sequence of all components of
A. Then each f|I, satisfies either (¥) or (+) of Lemuma 1. It follows from that lemma that
for each neN there exist almost continuous functions g,e 2*(l,, I,) and hneg*(ln, I
such that f|I, = h,0g,.

g(x) =
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Now we define g, h: I —1 as follows:

= for xeC,
9(x) = g xy for xel,n=1,2,...,

f(x) for xeC,
h(x) =
{h,,(x) for xel,n=1,2,...

Of course, f =hog. By Lemma 3, g, = g-—id is almost continuous. The almost
continuity of g =g, -+id and h follows from Lemmas 2 and 4, respectively,

Since every almost continuous function defined on I is a conneetivity function [12],
we obtain

COROLLARY. Every fe@*(I, 1) is a composition of two connectivity functions,

I It is well known that each real-valued function defined on an interval can be
_expressed as a sum of two almost continuous functions [6]. On the other hand, a general
function may not be a product of Darboux functions [9] and therefore, it may not be
a prodﬁct'of almost continuous functions. J. Ceder proved in [1], [3] that f is a product
of two Darboux functions iff it has the following property:
(JC)  f has a zero in each subinterval in which it changes sign,
In this section we shall prove that every function f with the property (JC) isa product of
two almost continuous functions. From this theorem and the theorem of Ceder the
following corollaries follow immediately:
(1) f is a product of two almost continuous functions iff' [ has the property (JC)
and (since every almost continucus function is a connectivity function)
(2 fis a product of two connectivity functions iff’ it has the property (JC).

We begin with several lemmata.

LemMA 5. If g and h are almost continuous Sfunctions on an open interval J then there
exists a continuous function s such that g+s and h—s are almost continuous with cluster
sets at the end points of J equal to [— o0, o0].

" Proof. Let J = (a, b). We can choose a sequence (J,), of pairwise disjoint, open
subintervals of J such that:

@ J, =(a, b, and ¢, = (a,+b,)/2 for each neN,
(i) Jo, N a and Jyupy 2 b,
(i) if J,nJ, # & then n=m,
Let s be the function defined by
0 for x¢J,J,
lg@)+n  for x=c,, rn)=0,1,
=lget=n  for x =¢,, r(n) =2, 3,
@) +n  for x == c,, r(n) =4, 5,
=|hX)|~n  for x =c,, rn) =6, 7,
linear on [a,, c,], [¢, b,], n=0,1,...
where r(n) is the remainder of the division of n by 8.
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Then s is continuous, and supC* (g-+s, @) = sup C~ (g +s, b)= o and
infC*(g-+s, a) =infC" (gy+s, ) = —c0. Since the sum of an almost continuous
function and a continuous [unction is almost continuous [4], [10], g+s is almost
coptinuous and its cluster sets at « and b are intervals, ie. C *(g+s, a)
= C7(g+s, b) = [—w0, ov]. Similarly we can verify that h—s is almost continuous and
C"(h—s, a) = C" (h—38, b) == [0, c0].

LemMA 6. Let [ be a function defined on an open interval J. If JS>0(r f<0)on
J, then there exist almost continuous functions g, h such that S =ghonld, the cluster sets
of g at the end points of J are [0, o] if [ > 0 and [~00,0]if f <0, and the cluster sets
of h at the end points of J are [0, w].

Prool Assume that /> 0 on J. Then In(f) is the sum of two almost continuous
functions ¢, and Ay on J. By Lemma 5 we can take ¢y and h; to have cluster sets
[—co, 0] at the end points of J. Then f = exp(yy)-exp(h;) and the functions
g = exp(gy) and h = exp(h,), being the compositions of the almost continuous functions
¢y and h; with the continuous function exp, are almost continuous [5]. Moreover, the
cluster sets of g and h are [0, w] at the end points of J.

When [ <0 carry out the above argument for —f.

LumMA 7. Let [ be a real function defined on an open interval J = (a, b) having the

almost continuous functions ¢, h such that f = g-h and:

(1) i a¢A and K is a component of JNA with acK, then C*(g,q)
= C"(h, @)= [0, 0] iff >0 onK and C*(g, a) = [~c0, 01, C*(h, 4) = [0, c0]
if/<0onK,

(12) if aed then there exists u Ssequence (c,) in A such that ¢, a,
C ' (.C], cZn) = CW (hv Can 1) = [05 (73] and C‘ (g) CZIH‘I) = C+(h» C.Zn) = [_ws 0]:
or  CM(gycp) =CY(hycy)=[0, 0] and C*{g, cours)= C*(h, cans1)
= [~00, 0] for each neN (hence C*(g, a) = C*(h, a)=[—cw, w]),

(1.3)  the analogous lefi-hand conditions hold for b.

Proof. There are four possible cases: a, b¢ A;a¢ Aand be A; aed and b¢ A; and
a, be A. We shall consider e.g. the case when a¢ 4 and he 4. The set A can be arranged
in an increasing sequence (4,) which converges to b, Put ¢y = a, J, = (gy-1, 4,) and
Jo= [1J, for neN. Then there exists an increasing sequence (k,) such that ky > 1 and
cither fi, > 0 for each neN or f, < 0 for each n. We put ¢, =a, forn=1,2,... By
Lemma 6 for each ne N there exist almost continuous functions v, and w, such that
Sl = v,w, and € (v, ¢,) = C" (w,, ¢,) = (—1)"[0, 0] (ie. [—o0, 0] if n is odd and
[0, co] il n is even) when fi, > 0 and C™ (v, ¢,) = C~(w,, ¢,) = (—~1)"[ ~c0, O] when
S, < 0. Next we define ¢y, = (sgn f, )'v, and k= w,. For m¢ {k,: neN} we choose
almost continuous functions g,,, h, which satisfy the condition of Lemma 6. Set

h(x) for xeJ,, neN,

g,(x) for xelJ,, neN, f
g0 = { hx) = {O for xe A.

0 for xeA;

§ = Fundamenta Mathematicae (39,1
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Then f = g-h. Lemma 3 yields the almost continuity of g and h. Moreover, it is obvious
that g and h have the properties (7.1)—(7.3).

For every interval K and each function f on K let a( f, K) denote the following statement.

a(f,K) there exist four points yxo, Yx1, Vko2» Vx3€K such that yyo < g,
<yk2<yrs and  CT(f, yko) = C7(f, yx2) = [0, 0],  C*(f, yx1)
= C7(f, yk,3) = [—0, 0].

Observe that in Lemma 7, if the set A is infinite, then afg, J) and a(h, J) hold.

LemMa 8. Assume that C is a non-empty, closed and nowhere dense subset of a closed
interval J = [a, b], (J,), is the sequence of all components of J\C and f is a real function
defined on J. Let A" denote the family of all components J,, for which the condition a(f, J,)
holds. Let f have the following properties:

f1J, is almost continuous for each n with cluster sets at the end points of J, equal

(8.1)
to [0, co] or [0, 0] or [—c0, c0],

(82) i xo is the right (left) end point of some J,, then f(xo)eC"(f, x,)
(f(x)e CT(f, xo)),

(8.3) if xoeC is the right (left) end point of no component of J\C, then there exists

a sequence (J,,) of components of J\C such that J, > xq (J; ~ xo) and all J,
belong to A'. )

Then f is almost continuous.

Proof. Let G = J xR be an open set including f. For each x& C we choose two
intervals U,, V, such that:
M (x, f(x)eU,xV, <G,
(ii) the end points of U, (other than those of J) do not belong to C,
(iii) if xo, is the left (right) end point of some component K of J\C then
sup(U,)eK (inf(U,)eK),
(iv) if x, is the left (right) end point of no component of J\C, then there exists
‘a component K e for which inf(K)eU,,, sup(U,)eK and yg, e U,, (respectively:
sup(K)eU,,, inf(U,)eK and yg,eU,).
From the covering {U,: xe C} of the compact set C we choose a finite subcovering
{U,p» .+, Uy, }. Moreover, we can assume that:
(v) aeU,, and beU,,
i) if €AU, = CnU,, then i =},
(vii) if i< then sup(U,) < sup(U,).
Now we choose a sequence of pairwise disjoint open intervals Uy, ..., U, such that
(vii) Cal iUy =CA o U, =C and U,c U, for i=0,...,n,
(ix) @(U;, x;) holds, ie. there exist )
c;e(inf(U), min(CAU)], die[max(CAT), sup(U))

such that C*(f, d)nC™ (£, ¢) > [0, 0] ([—00, O]) if £ (x) >0 (f(x) < 0).
First we consider the sets U, and U, . There are two possible cases.
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(8) xo is the left end point of a component J,, and x, is the right end point of
a component J,,,. Then by (vi) and (vii) it follows that C~(x,, x,) = & and consequently
no = hy. Set z = §(xq+X,).

(b) Either x, is the lelt end point of no component or x, is the right end point of no
component. Then either the right end point of U, or the left end point of U, belongs to
some component Ke ' Let ze(yy,1, Yk 2).

Now we define the intervals Uy = U, n(~o0, z) and W, = U,,n(z, o). Then
Uy U,y Wya Uy, Ca(UgU W) = Cn(U,, AU, UynW, =0, UynU,, =@ for
i=2,..., nand moreover, p(U,, x,) and ¢(W,, x,) hold. Assume that we have defined
intervals Ug,..., Uy (k<n) and W, such that U, U, for i=0,...,k
Wiri€Us,» Cn(Upu. . .WU W W) = CnUgu...0U, ), if i<j then
sup(U) < inf(Uyy5),  sup(Uy) < inf(Wsy), i=0,..,k and
@(Wis 1, X 1) hold,

Ifk+1 = nthen U, = W,,.,. Otherwise we consider W, , and Us,,,- In the same

and (U, x) for

way as in (a) and (b) we define Uysq and Wiy,

Let V=V, for i=0,...,n Then it follows from (ix) that
VinC(f, ¢) # & # V,nC"(f, d) and we can choose s, t;e U, such that s, < ¢;, t; > d,
and f(s), f(t)eV,. For each i =0, ..., n—1, [t s;4] is included in some component
of J\C and consequently, f; = f|[t;, 8+1] is almost continuous. Hence there exists
a continuous function g, < G N[t ;411X R such that g,(t,)e V; and g,(s;+1)€ V1. We
define a function g in the following way: g(x) = g,(x) for xe[t;, Si+11,i=0,...,n—1,
and g is linear on each [, t], i =0, ..., n. Then g is continuous and contained in G.
Thus f is almost continuous,

LeMMA 9. Let C be a subset of a closed interval J which includes no non-empty
dense-in-itself subset. Let f be a function on J with the property (JC) for which
C=[f =0]. Then there exist almost continuous functions g, h such that f = g-h and

(9.1) ifais an end point of J then the cluster sets of g and h are [0, o] or [—c0, 0] if

a¢Cnint(J), and [—o0,00] if ae Cnint(J).

Proof. Let A, be the union of all open subintervals K of J such that KnC is
discrete and infinite and let 4, be the union of all open subintervals K of J\A, such that
K~ Cis finite (or empty). Then A = A;U A4, is open and since C includes no non-empty
dense-it-itself subset, A is dense in J, Consequently, D = J\A is closed, nowhere dense
and included in C. Let (J,), be the sequence of all components of 4, or A;. Then:

(i) if x, € D is the lelt end point of some J, and the right end point of some J,, then
either x,eJ,NC or xyeJ, NC (hence either J, = Aq or J,, = 4g),

(i) if xo € D\{b} is the left end point of no component of J\D = A then there exists
a sequence (J, ) such that J, < A, and Jy, ~ X,

(ili) the analogous right-hand condition holds for each x, in D\{a}.

The condition (i) follows immediately from the fact that every isolated _point of
C belongs either to 4, or to ;. To verify (i) let x,€ D\{b} be the left end point of no



Artur


68 T. Natkaniec

component of J\D. Suppose that (x,, xq+d)nA,=@ for some &>0. Then
E = (x¢, Xg+6)nD # @ and, by (i), E has no isolated point. Consequently, E is
dense-in-itself, a contradiction with the properties of C.

For every n let f, = f|J, and let g,, h, be almost continuous functions for which
Jo=9g,h, and the conditions (7.1)-(7.3) hold. Set

1
g(x):{f(x) for xeD, h(x)={

g(x) for xeJ,,neN; h(x) for xeJ,, neN.

for xeD,

Observe that every component K of 4, satisfies the conditions «(g, K) and a(h, K).
Thus g and h satisfy all assumptions of Lemma 8 and therefore they are almost
continuous. Moreover, it is easy to see that g and h satisfy (9.1).

Remark. If C satisfies the assumptions of Lemma 9 then it is nowhere dense and
if C is infinite then A, is non-empty and consequently, the conditions a(g, J) and a(h, J)
hold.

Lemma 10. Let S be a function defined on a closed interval J having the property
(JC). Suppose that C = [ f = 0] is nowhere dense, the maximal dense-in-itself subset D of
C is non-empty, and moreover:

(10.1)  if K is a component of J\D then f|K is almost continuous,

(10.2)  if (a, b) is a component of int[f > 0] (int[f < 0]) then C*(f, a)= C~(f, b)
=[0, 0] (= [~00,0], . .

(10.3)  if aeC is the left (right) end point of no component of J\C then there exists
a sequence (K,) of components of J\C such that K, ~a (K, 7a) and
sgn(f|K,) = (=1)"

Then f is almost continuous.

Proof. Let G be an open neighbourhood of f. For every x from D we choose open

intervals U,, V, such that:
() (x,f M) eU,x ¥, =6,

(ii) the end points of U, (other than those of J) do not belong to C,

(iii) if x, is the left (right) end point of some component K of J\D, then
sup(U,)eK (inf(U, )eK),

(iv) if xoeD is the left (right) end point of some component K of J\C then
sup(U,)eK (inf(U,)eK),

(v) if x, €D is the left (right) end point of no component of J\C then there exists
a component K of J\C such that sup(U,,)e K (inf(U, )eK) and f|K > 0 if S (x) >0,
FIK <0 if f(xo) <O.

A choice for xéD of U, satisfying (v) is possible by (10.3). From the covering
{U,: xeD} of the compact set D we choose a finite subcovering {U
Additionally, we assume that:

(vi) the left end point of J belongs to U, and the right one to U, ,

(vii) if DAU,, « DAU,, then i =},

(vii) if i <j then sup(U,,) < sup(U,).

1
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Now we define (inductively) a sequence of open intervals Uy, V,, Uy, V,,..., U, V.,
(n < m < 3n) such that:

(x) D e oV, and Uy, ..., U, are pairwise disjoint,

) VnCH(f, d) # B # VnC™(f,¢;) for i=0,...,m where ¢;=min(U;nC)
and d; = max(U;n C),

(i) UyxVeGlori=0,..,m
First we consider U, and U, . There are two possible cases. .

(@) If f(xo)=0 (or f(x;)=0) then we put Uy=U,n(~c0,2), Vo=V,
W, = U, N(z, ), where z = inf(U,) (or z = sup(U,). ~

(b) Now let f(x¢)f (x;) # 0. Let d = max(U,,nD) and ¢ = min(U,,~D). Then
d s ¢. We shall consider the following subcases.

(b.0) ¢ > d. Then (by (vii) and (viii)) (d, ¢)n D is empty and we have the following
possibilities.

(6.0.0) (d, )N C is infinite. Then, by (10.3), there exist zq, z; €(c, d)\C such that
7o <z, and fiZ)>0 (fE)<0) if fl)>0 (f(x)<0) for i=0,1 Set
UO= Uxoh(“ooi ZO): V;)::: on’ VVJ,::U:AIH(ZI’ OO)' )

(b.01) (d, )N C is finite. Let K, and K, be the components of (4, c)\C which are
contiguous to ¢ and d, respectively.

(00.1.0) If sgn(f|K,) =sgn(f(x,) and sgn(f|K)=sgn(f(x,)) then we put
Uy = U, N(—00, 2¢), Vo = V¥, and W, = U, n(z;, ), wherczoeK.,,, z,eK, and z; < z;.

(6.0.1.1) I sgn(f|K,) # sgn(f (xo) then let zye DU, (notice that z, <d). By
(10.3) we can choose t,, t, € U,, U, N U, such that ty < t;,(ty, t,)ND # @ and £y, ¢y .
belong to components Ko, K, of J\C for which sgn(f|Ko)= sgn(f (xo)) and
sgn(f|K,) =sgn(f]K,). In this case we define U,=Ugn{—o,1L) Vo=V,
U, = (to, t))s Vi =V, Uy = (24, 2), where zeK,, ¥, =V, and W, = U, Nz, ©).

(6.0.1.2) The case sgn(f]K,) # sgn(f(x,) is similar to (b.0.1.1).

(b.1) ¢ <d. Then (¢, d)nD #@. Let zoeDn(c, d). By (10.3) we can choose
to, t; €U, 0 (c, d) such that t < ty, (to, t)ND # @ and &, 1, belong 'to component-s
Ko, K, of I\ for which f K, >0 (f|K;<0)if f(x) >0 (f(x) <0),i=0,1.In this
case we define Up=Ug,r(—o0,t), Vo=V, U= (to, t1), V1=V, and

=U Ly, 00).
" Ass’:;x:e( t111at v)/e have defined intervals U, Vo, U ¥y, +oo» Uigys Vg and Wiy such
that :
D("\(UQU. Y U((k)U Wesi) = Dm(UJ‘nU e U"uM)’

UxV,eG for i<tk), Wiss < Ukt

sup(U) < inf(U;44) for i < t(k),

and (x) holds for Uy, Uy, ..., Ugiys Wet1- herwi

If k+1=n then we put m=tk)+1, U,=W, Aand V=V, Otherwise we
consider Wi, and Uyyy, and in the same way as in (a), (b), we define Uw+1,
s Uty Ve ry (Where 0 < t(k+1)—t(k)< 3), and Wesz.

sup(Uyg) < inf(Wes 1),

Vx(k)~1~l.) ree
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In this way we obtain a sequence of intervals which satisfy (ix)—(xi). By (x) we can
choose s;, v;€ U, such that s; < ¢;, v; > d; and f(s), f(v;)eV,. For each i <m, [v;, 5;41]
is included in some component of J\D and consequently, by (10.1), f; = f|[v;, si+1] is
almost continuous. Thus there exists a continuous function g; € GN[v;, S+ 1] X R such
that g,(v)eV; and gi(si+1)€Vi+1. Let g be defined by g(x) = g,(x) for xe[v;, 81441,
i=0,..., m—1, and linear on each [s;, v;] for i =0, ..., m. Then g is continuous and
included in G. Hence f is almost continuous.

Remark. Under the assumptions of Lemma 10 the condition ea(f, J) holds.

LemMmA 11. Let f be a function on J = [a, b] with the property (JC). Suppose that
C = [f = 0] is nowhere dense, the maximal dense-in-itself subset D of C is non-empty and
either

(11.1) DeTxeNC: f(x) >0,
or
11.2) Dc{xe\C: f(x)<0}.

Then there exist almost continuous functions g, h on J such that f = g-h and moreover,
g and h satisfy (10.2) and (10.3). (Hence the conditions o(g, J) and o(h, J) hold.)

Proof. Let (J,) be the sequence of all components of J\C. We choose (by
induction) a sequence (#;) of ‘ﬁ'nite families of components of J\C such that:

(i) if (11.1) holds then of;, = {J,: f|J, >0, neNN\i<n #; for each meN,

@) if (11.2) holds and (11.1) does mnot hold then X, < {J,: f|J,

" <0, neNN\Ji<n A for each meN, '

(iif) | ) A, = {xeJ: g(x, D) < 1/m} and ofx, |J ;) <2/m for each xeD and
meN, where g(x, A) denotes the distance from x to A4,

@iv) if (11.1) holds, x, is an end point of some component K of J\D,
xoe{xeK\C: f(x) >0} and K, = X for some K, €#;,—, then there exists K, e,
such that K, = K and g(x,, K,) < o(x4, K,),

(v) the similar condition holds if we assume (11.2).

Let %= 2, Ay and % = ()20 Hai4y. Observe that

(vi) for each x,eD there exists a sequence (J; ) which converges to x, such that
Jy, €% if nis even and J, €., if n is odd. Hence xer_Z:nm.

Moreover,

(vii) if (J,,,) is a sequence of intervals from .%,u %, and (J,, ) converges to x,, then,
by (iii), x,eD,

. (viii) if K is a component of J\D, a is an end point of K and ae K N Ukue,),
then, by (iv), saeKn|{J %, i=0, 1. ‘

For each J, e %u.%, let f, = f|J,. By Lemma 6 there exist almost continuous
functions g,, h, such that |f,| = g,°h, on J, and all cluster sets of g, and h, at the end
points of J,, are [0, co]. Moreover, if a,, b, are the end points of J, then g,(a,) = |1 (4,),
9n(bn) = 1f O, hy(ay) = hy(b,) = 1.
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Let (T), be the sequence of all components of J\({JZ,u{J % uD). By the
definition of D every T, satisfies the assumptions of Lemma 9 and consequently, there
exist almost continuous functions s,, ¢, such that f|T, = s,-t, and 5, t, satisfy (10.2) and
(10.3). Set

f(x) f()l' JCE(DU{H, b})\U {am bn: (am bn)E%Ugl},
g(x) = {Sgn(f(x))'(—-l)‘gn(x) for xel,, J,e %, i=0,1,
s5,(¢) for xeT,, neN,

1 for xe(Du{a, BI\U{a,, b,: (a,, b)e UL},
h(x) = {(ml)ih,,(x) for xel,, J,e 4, i=0,1,
£,(x) for xeT,, neN.

Then f = g*h and g, h satisfy (10.2). Moreover, it is obvious that (10.3) holds if a¢D, or
ifaeD and a is an end point of some component K of J\({J (ZouL)uD).IaeD, ais
an end point of some component K of J\D and ae K U(&Lou ), then (10.3) follows
from (viii). Finally, if ae D and a, / a (a, \ a) for some sequence (a,) in D, then (10.3)
follows from (vi).

Now we shall verify (10.1), e.g. for g. Let K = (a, b) be some component of J\D.
There are four possible cases: a, b¢M = K n|J(£,u.%); ae M and b¢M; a¢M and
beM;and a, be M. Consider e.g. the case a¢ M and be M. Then there exists a sequence
a,eC such that ag =4, a, # b and (a,-1, a)e UL U{T,;: neN} for each neN.
Consequently, each g|[a,-,, a,] is almost continuous and therefore, g|K is almost
continuous (see [4], Lemma 3.5). Since g and h satisfy all assumptions of Lemma 10,
they are almost continuous. Moreover, the conditions «(g, J) and w(h, J) hold.

Lemma 12. Assume that C is a nowhere dense subset of the interval J and the
maximal dense-in-itself subset D of C is non-empty. If f is a real function on J with the
property (JC) and C = [f = 0], then f is the product of two almost continuous functions
g and h which satisfy the conditions (g, J) and w«(h, J).

Proof. Let A be the union of all open subintervals K of J such that KnD # &
and x&{zeK\C: f(z) > 0} for each xeKnD, and let B be the union of all open

subintervals K of J\A such that KnD 5@ and xe{zeK\C: f(z) <0} for each
xeKnD. List all components of 4, B and J\(AUBUD) in a sequence (J,),. Then:

(i) E=J\J,J, is a closed nowhere dense subset of D,

(i) if J, is a component of J\(AuBuD), then J,AC has no non-empty
dense-in-itself subset, ‘

(iii) a point x, & E\{a} is either the right end point of some component J,, or there
exists a sequence (J, ) such that J, 7 x, and J, = AUB for each neN,

(iv) the similar left-hand condition holds for points x, in E\{b}.
The condition (i) follows from the obvious fact that the end points of each J, belong to
D, and (ji) follows from the definition of D. To verify (i), let (xg—9, xo)n A = @ for
some x, & E\{a} and § > 0. Then either (x,—&, xo)ND is empty and x; is the right end
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point of some J,, or there exists an interval K < (xq—9, x,) such that KnD # @& and
f(x) <0 for each xeK\C. Then K = B and consequently, (xo—9, x,) meets some
component of B.

Let f, = f|J, for each neN. For J, < AUB let g,, h, be almost continuous
functions such that f, = g,'h, and «(g,, J,), a(h,, J,) hold. (Such functions exist by
Lemma 11.) For J, = J\(AuBuD) it follows by (ii) and Lemma 9 that f, is the product
of two almost continuous functions g,, h, which satisfy (9.1).

Now define
_Jfe) for xeE, for xeE,
969 = {gn(x) for xeJ,, neN; hlx) = {h (x) for xeJ,, neN.

It is obvious that f = g-h. Since a(g, J,} and a(h, J,) hold for every component J, of
AU B, Lemma 8 shows that g and h are almost continuous. Since AU B is dense in J,
a(g, J) and w«(h, J) hold too.

LemMA 13. Let f be a function on an interval J for which the set [ f = 0] is of the
first category and dense in J. Then f is a product of two almost continuous functions in
2*(J, R).

Proof. Let (KL,)“<c be the sequence of all closed subsets of JxR whose
x-projection'is a non-degenerate interval such that every set stands in this sequence
exactly twice. We choose by induction a sequence (x,, y,)€ K, such that:

(@) if x, = x, for some o, f < ¢, then y, = =0 and f(x,) =0,

(i) y, =0 if f(x)=
Assume that we have chosen (x4, y,) for B < o Let E, = dom(K)\[f = 0]. This set is
residual in dom(K,) and therefore card(E,n L) = ¢ for each subinterval L of dom(K,).
Let F,= E\{xg: f <o}. This set is dense in dom(K,). We have two possibilities:

v (@) If (x,0)¢K, for some xeF,, then we put x,=x and y, =y such 1hat
(x, y)eK,.

(b) If (x, 0)& K, for each x&F,, then (because K, is closed) dom(K,) x {0} = K,.
We choose xedom(K,)N[f = 0] and put x, = x, y, = 0.

It is obvious that (x,, y,) satisfies (i) and (ii). Now, if x = x, for some o < ¢ and
K, # K for each B <, then define g(x) =y, and h(x) = f(x)/g(x) if y, #0, and

h(x) = 1if y, = 0. If x = x, for some & < c and K, = = K, for some f§ < «, then h(x) =
and g(x)= f(x)/h(x) if y, # 0, and ‘g(x) =1 if Yy =0. If x 5 x, for each a <, then
gx)=f(x), hx)=1

It is easy to observe that f = g-h and g, he @*(J, R). Since g and h meet each
blocking set in JxR, they are almost continuous.

In the next lemmata we shall assume that a union of less than ¢ nowhere dense sets
is a set of the first category (e.g. under MA).

Lemma 14. (MA) Let f be a function on an interval J Sor which [f = 0] is of the

second category at each point of J. Then f is a product of two almost continuous functions
in 2*(J, R).
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Proof Let (K,)u<, be the sequence of closed subsets of J x R defined in the proof
of Lemma 13. We choose (inductively) a sequence (x,, y,)a<. such that (x, ¥,)eK, and
x,e[f=0] for a <c. Assume that (xj, y,) are chosen for f <o, where « < c. By
Martin’s Axiom, E, = dom(K)n[f = 0]\{x,: f <o} # @ and we choose x,e E, and
¥, With (g, ya)ek Now assume [irst that x = x, for some a < ¢. If K, = K, for each
B < o, then define g(x) = y, and h(x) = 0. If K, = K, for some § < o, then g(x) = 0and
h(x) = y,. I x # x, for each o <c¢, then q(x) Jf(x) and h(x)=1. Then f =g-h,
g, he@*(J, R) and ¢, h are almost continuous.

LomMa 15, (MA) Let f be a function on an interval J with [ f = 0] dense in J. Then
1 is the product of two almost continuous functions g, h in @*(J, R). (Hence a(g, J) and
a(h, J) hold.)

Proof Let 4 < J (B < J) be the set of all points at which [f = 0] is of the first
(second) category. Let (J,), be the sequence of all intervals K < J such that K is
a component of 4 (= int(4)) or int(B). Then C = J\U,, J, is closed and nowhere dense.

Let f, = f{J, for neN. For each n such that J, = 4 (J, = B) let g,, h, be almost
continuous functions in #*(J,, R) and f, = g,h,. Define
f(x) for xeC, 1 for xeC,
B h =
4&) {g/n(x) for xeJ,, neN; C) h,(x) for xeJ,, neN.

It is obvious that f = g-h, g, he %*(J, R) and «(g,
Lemma 8, g and h are almost continuous.

J,), a(h, J,) hold for each neN. By

THEOREM 2. (MA) A real function defined on the interval 1is a product of two almost
continuous functions iff it has a zero in each subinterval in which it changes sign.

Proof. Let f be a function on I with the property (JC). Let C = [[f = 0]. Let A4,
be the union of all subintervals of I in which C is dense, let 4, be the union of all
subintervals J of I for which JnC is nowhere dense and includes a non-empty
dense-in-itself subset, and let 4, be the union of all subintervals K of I for which KnC
is infinite and includes no non-empty dense-in-itself subset. List all components of 4,
4y, Ay and IN({Ji<3 4,0 C) in a sequence (J,),. Then:

@ D =N|J,J, is a closed nowhere dense subset of C,

(i) J has a constant sign on every J, < I\(Ji<s 4, C),

(i) each x, & D\{1} is either the left end point of some J, or there exists a sequence
(i) such that J, S x, and Jy, e Agud,ud, for neN,

(iv) the analogous right-hand condition holds for each x in D\{0}.

The first two conditions are obvious. We shall verify (iif). Fix x, in D\{1}. Assume that
(x> Xo+O)N(dgud Udy) =@ for some &>0. Since (xg, Xo+d)Ndo=62,
E = (x%o+6)NC is nowhere dense. Since (xo, Xo+8)nA; =@, E contains no
non-empty dense-in-itself subset. Since (X, Xo+8) N A, = &, E is finite. Therefore x, is
the left end point of some component of I\(Ji<s4uC). .

For each neN let f, = f'|J,. By Lemma 15 (respectively: Lemmata 12 and 9), if
J, = Aq (respectively 4, and A;) then f, is the product of two almost continuous
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functions g,, h, which satisfy the conditions a(g,, J,) and af(h,, J,).

If J, is a component of I\(( Ji<34;uC) then by Lemma 6 there exist almost
continuous functions g,, h, such that f, = g,-h,, the cluster sets of h, at the end points of
J, aze [0, o] and the cluster sets of g, at the end points of J, are sgn(£,)-[0, c0]. Set

_Jf(x) for xeD, () = 1 for xeD,
909 = g.(x) for xeJ,, neN; " h()  for xeJ,, neN.

It is obvious that f = g-h, Since g and h satisfy all assumptions of Lemma 8, they are
almost continuous.

This completes the proof that every function with the property (JC) is a product of
two almost continuous functions. The opposite implication follows immediately from
the fact that a product of two Darboux functions has the property (JC).

Remark. Theorems 1 and 2 remain true for real functions defined on the whole
real line.
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