A note on continuous linear mappings between function spaces

by

G. D. Spiliopoulos (Athens)

Abstract. Let $0: C_0(X) \to C_0(Y)$ be a linear continuous function. If 0 is an order preserving homeomorphism (an isometry from $C_0^c(X)$ to $C_0^c(Y)$), then the Tikhonov spaces X and Y are homeomorphic. This generalizes the well known theorem of Nagata that if $C_0(X)$ and $C_0(Y)$ are topologically isomorphic than X and Y are homeomorphic. If 0 is 1-1 and Y has caliber (τ, λ) (resp. is pseudocompact) then X has caliber (τ, λ) (resp. is pseudocompact), proving in this way that if $L_0(X)$ has caliber (τ, λ) then so does X. Related results for L-embedded spaces are obtained.

Introduction. Everywhere below, X, Y and Z stand for infinite Tikhonov topological spaces, $C_0(X)$ is the space of all continuous real-valued functions on X endowed with the topology of pointwise convergence, $C_0^c(X) = \{ f \in C_0(X) : \text{f bounded} \}$ and $C_0^c(Y) = \{ f \in C_0(Y) : \text{f bounded} \}$ endowed with the topology of uniform convergence. It is clear that the family of sets $V(x; G) = \{ f \in C_0(X) : f(x) \in G \}$ where G is open in R, is an open subspace of $C_0(X)$.

A space X has caliber (τ, λ), where τ, λ are infinite cardinals, if for every family y of non-empty open subsets of X such that $|y| = \tau$, there exists a subfamily $y' \subset y$ with $|y'| = \lambda$ and $|y| = \lambda$.

We denote by N_τ the family of open basic neighbourhoods of x and by $L_0(X)$ the unit function on $C_0(X)$. For $A \subset X$ and $f \in C_0(X)$, we write $f[A]$ for the restriction of f on A, $\text{supp} f = \{ x \in X : f(x) \neq 0 \}$ for the support of f, and \bar{A} for the closure of A in X.

Let $e: X \to C_0(\bar{C}_0(X))$ such that $e(x) = \delta_x$, where $\delta_x(f) = f(x)$ for $f \in C_0(X)$. The set of all finite linear combinations $s = a_1 \delta_{x_1} + \ldots + a_n \delta_{x_n}$ is denoted by $L_0(X)$. It is known (16) that $L_0(X)$ is the dual space of $C_0(X)$, while $C_0(X)$ is the dual space of $L_0(X)$. If θ is a continuous linear function from $C_0(X)$ to $C_0(Y)$, then the induced function $\theta^* \in L_0(Y)$ is defined by $\theta^*(y) = \theta(\bar{y})$ for $\bar{y} \in L_0(Y)$ and is also linear and continuous. For $y \in Y$, $\theta^*(y)(f) = \theta(f(y))$ for every $f \in L_0(X)$. Suppose that for $y \in Y$, $\theta^*(y) = a_1 \delta_{x_1} + \ldots + a_n \delta_{x_n}$, where $a_1, \ldots, a_n \neq 0$. The determining set of y in X with
respect to θ is defined to be the set $D(y, \theta) = \{x_1, \ldots, x_n\}$. When θ is clear from the context, we write $D(y)$ instead of $D(y, \theta)$. Obviously, for $f \in C_\mathcal{P}(X)$, if $f(x) = 0$ for every $x \in D(y)$, then $\theta(f)(y) = 0$. If $f(x) = 0$ for every $x \in D(y)$, then $\theta(f)(y) = 0$. Thus, if $f \in D(y)$ and $\theta(f)(y) = 0$ for $f \notin C_\mathcal{P}(X)$.

We claim that for $x \in X$, we have $D(y)$ if and only if for every $g \in \mathcal{P}$, there is an $f \in C_\mathcal{P}(X)$ such that $f \leq g$ and $\theta(f)(y) = 0$. Indeed, let $x \notin D(y)$. For $g \in \mathcal{P}$, such that $g \leq x$, and $f \in C_\mathcal{P}(X)$ such that $supp f \leq g$ and $\theta(f)(y) = 0$. Conversely, for $x \in D(y)$, any function $f \in C_\mathcal{P}(X)$ such that $supp f \leq g$, and $f \in D(y)$, satisfies $\theta(f)(y) = 0$. But this implies that $D(y)$ is in the case the set $H(y, \theta)$ defined in [2].

Lemma 1. Let $\theta: C(X) \to C(Y)$ be a linear continuous function and $x \in X$. Then the following assertions are true for $y \in Y$.

(a) Let $x_0 \in D(y)$ and $f, g \in C_\mathcal{P}(X)$ such that $f \mid D(y) \cap \{x_0\} = g \mid D(y) \cap \{x_0\}$. Then $f(x_0) - g(x_0)$ if and only if $\theta(f)(y) = \theta(g)(y)$.

(b) If $y \in A$, then $D(y) \subseteq \bigcup \{D(y): y \in A\}$.

(c) If θ is a homomorphism, then $D(y) \subseteq \{y\}$ if and only if $D(y) = \{x_0\}$.

Proof. (a) Immediate consequence of the definition of $D(y)$.

(b) Let $x \in D(y) \cap \bigcup \{D(y): y \in A\}$. Consider an $f \in C_\mathcal{P}(X)$ such that $f(x) = 1$ and $f(\bigcup \{D(y): y \in A\}) = 0$. Then $\theta(f)(y) = 0$ and $\theta(f)(A) = 0$, contradicting the hypothesis.

(c) Let $D(y) = \{x_0\}$. If $x_0 \notin D(y)$, there exists an $f \in C_\mathcal{P}(X)$ such that $f \mid D(y) = 0$ and $f(x_0) = 1$. Hence, $\theta(f)(y) = 0$, implying that $f \mid D(y)$ is a contradiction. Let $f_0 \in C_\mathcal{P}(X)$ such that $supp f_0 \subseteq C_\mathcal{P}(X)$ and $\theta(f_0)(y) = 0$. Then $f_0(x_0) = 0$. Let also $f_0 \in C_\mathcal{P}(X)$ such that $supp f_0 \subseteq C_\mathcal{P}(X)$ and $\theta(f_0)(y) = 0$. For a suitable $f \in C_\mathcal{P}(X)$, we obtain $\theta(f)(y) = 0$. Thus $\theta(f_0)(y) = 0$. Hence, $\{f_0, f_0 \mid D(y) = \{x_0\} \neq 0$, a contradiction.

Proposition 1. Let $\theta: C(X) \to C(Y)$ be a linear homomorphism such that $\theta(f)(y) = 0$, if and only if $f \in C_\mathcal{P}(X)$. Then the spaces X and Y are homomorphic.

Proof. Let $x_0 \in X$. Suppose that $D(x_0) = \{y_1, \ldots, y_n\}$, $n \geq 2$. According to Lemma 1(c), $D(y) \cap \{x_0\} = \emptyset$ for every $i = 1, \ldots, n$. Let $f = \bigcup \{f_i \mid D(y) \subseteq \{x_0\}\}$. For every $x \in X$, let $G_x \subseteq \mathcal{P}$ satisfying the conditions: $x_0 \notin G_x$ and $G_x \cap G_x = \emptyset$ if $x \neq x$. Let $f \in C_\mathcal{P}(X)$ such that $f(x) = 0$, $supp f \subseteq G_x$ and $f(x) = 1$ for every $x \in X$. Then it is immediate from Lemma 1(a) and the hypothesis that $\theta(f)(y) = 0$, if $x \notin D(y)$. Thus, the continuous function $f = \sum_i f_i$ satisfies $\theta(f)(y) = 0$, for every $i = 1, \ldots, n$.

We now select, for every $i = 1, \ldots, n$, $V_i \subseteq \mathcal{P}$ such that $V_i \cap Y = \emptyset$ if $i \neq i$, and $V_i \in C_\mathcal{P}(Y)$ such that $V_i \ni \theta(y) = \theta(y)(y) = 0$. Obviously, $\theta^{-1}(y)(x_0) > 0$ in view of Lemma 1(a). Hence, the function $h \in \mathcal{P}$, such that $h(x_0) = \sum_i h_i$ satisfies $h(x_0) = \theta(f)(y)$, for every $y \in Y$. However, we have $\theta^{-1}(h)(x_0) = \sum_i \theta^{-1}(h_i)(x_0) > 0$, a contradiction. Thus, $D(y) = \{y_0\}$ and according to Lemma 1(c), $D(y) = \{y_0\}$. We may now define a function $t: Y \to X$ such that $t(y) = x$ if $D(y) = \{x\}$. Lemma 1 implies that t is a homeomorphism.

A linear function $\theta: C(X) \to C(Y)$ is a lattice homomorphism, provided that $\theta(max (f, g)) = max \{\theta(f), \theta(g)\}$. Obviously, $g \geq 0$ then implies that $\theta(g) \geq 0$.

Corollary 1. Let $\theta: C(X) \to C(Y)$ be a lattice homomorphism and a homomorphism. Then X, Y are homomorphic.

Remark. It is easily observed that all the previous statements are valid for $\theta: C(X) \to C(Y)$.

It is known (the Banach-Stone theorem) that the compact spaces X and Y are homeomorphic if and only if there is an isometry T from $C(X)$ to $C(Y)$. One can easily observe, from the proof of this theorem (see [6]), that T implies the existence of a homeomorphism from $C(X)$ to $C(Y)$. The combination of these two properties gives an analogous result for the non-compact case.

Corollary 1.2. Let $\theta: C(X) \to C(Y)$ be an isometry. Suppose that θ is also a linear homomorphism from $C(X)$ onto $C(Y)$ and $\theta(1) = 1$. Then X, Y are homeomorphic.

Proof. Let $\theta(f) \in C_\mathcal{P}(Y)$ such that $\theta(f)(y) < 0$ for some $y \in Y$. Then $1 + \frac{\theta(f)}{1 + \theta(f)} = 1 \Rightarrow 1 + \frac{\theta(f)}{1 + \theta(f)} = 1 \Rightarrow \theta(f)^2 = \theta(f)$ and $\theta(f) = 0$. Thus f also takes negative values. Therefore, since θ maps nonnegative functions to nonnegative functions in both directions—according to Proposition 1—the spaces X, Y are homeomorphic.

Corollary 1.3 (Nagata [7]). If $\theta: C(X) \to C(Y)$ is a linear multiplicative homomorphism, then X, Y are homeomorphic.

Proof. Since every ring isomorphism from $C(X)$ to $C(Y)$ sends nonnegative functions to nonnegative functions ($f = h^2$ implies $\theta(f) = \theta(h^2)$), this is immediate from Proposition 1.

The following proposition has also been proved in Corollaries 1.29 and 1.21 of [4].

Proposition 2. Let θ be a linear, continuous, 1-1 function from $C(X)$ to $C(Y)$. Then if Y is pseudocompact, so is X.

Proof. Let $B = \bigcup \{D(y): y \in Y\}$. Obviously $B \neq \emptyset$. If $B \neq X$, there exists an f in $C(X)$ identically zero on B and $f(x) = 1$, for some $x \in X \setminus B$. Hence, $\theta(f)$ is identically zero on Y, contradicting the assumption that θ is linear and 1-1. Thus $B = X$. But, according to Proposition 2(a) of [2], B is bounded (the restriction to B of every $f \in C(X)$ is bounded), since θ is linear. Therefore, X contains a dense bounded subset and is pseudocompact (see [X]).
PROPOSITION 3. Let θ: $C_\lambda(X) \rightarrow C_{\lambda'}(Y)$ be continuous, linear and 1-1, and let τ, λ be infinite cardinals such that $\tau \geq \lambda > \omega$. Then if Y has caliber (τ, λ), so does X.

Proof. Let G be an open subset of X. Since $\bigcup \{D(y): y \in Y\} = X$ the set $V = \{y \in Y: D(y) \cap G \neq \emptyset\}$ is non-empty. We will prove that it is also open. Let $F = Y \setminus V$ and $y \in F$. Then $D(y) \cap G = \emptyset$. For every x_k, $k = 1, \ldots, n$, we can find an $f_k \in C_\tau(X)$ such that $\supp f_k \subset G$ and $\theta(f_k(y)) > 0$. However, $\theta(\sum_{k=1}^{n} f_k(y)) = \sum_{k=1}^{n} \theta(f_k(y)) > 0$ and $\theta(\sum_{k=1}^{n} f_k(y)) > 0$, since $f_k \in D(z) = 0$ for every $z \in F$; a contradiction.

Now let $\{G_i: i < \tau\}$ be a family of open sets in X. Then there exists a family $\{V_i: i < \tau\}$ of open sets in X such that $V_i = \{y \in Y: D(y) \cap G_i \neq \emptyset\}$ for every $i < \tau$. However, Y has caliber (τ, λ). Thus, there is an $A \subset \tau$, $|A| = \lambda$, such that $W = \bigcap \{V_j: j \in A\} \neq \emptyset$. Let $x_0 \in W$. Then $D(y_0) \cap G_j \neq \emptyset$, for every $j \in A$. Since $D(y_0)$ is finite, there is an $x_0 \in D(y_0)$ such that $x_0 \in \bigcap \{G_j: p \in A\}$, where $A \subset \tau$, $|A| = \lambda$. Thus, X has caliber (τ, λ). ■

It has been proved in [9] that X has caliber (τ, λ) if and only if τ is a caliber of $L_\mu(X)$. Proposition 3 gives a sufficient condition for X to have caliber (τ, λ).

COROLLARY 3.1. If $L_\mu(X)$ has caliber (τ, λ), where $\tau \geq \lambda > \omega$, so does X. ■

A space $Y \subset X$ is said to be L-embedded in X if there is a linear and continuous function θ from $C_\tau(Y)$ to $C_\lambda(X)$ such that $\theta(f) \upharpoonright Y = f$ for every $f \in C_\tau(Y)$. The following proposition is known (see [3]) for regular cardinals.

PROPOSITION 4. Let Y be L-embedded in X and let τ, λ be infinite cardinals. Then if X has caliber (τ, λ), so does Y. ■

In conclusion, I would like to express my deep gratitude to N. Kalamidas for his interest and kind help in my work.

References

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF ATHENS
Pantepontos, 121 84 Athens, Greece

Received 17 October 1990;
in revised form 18 March 1991