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On composants of the bucket handle

by

Jan M. Aarts and Robbert J. Fokkink (Delft)

Abstract. The permutations of composants induced by homeomorphisms of the bucket
handle are studied. It appears that the only possible permutations are induced by iterates of the
shift homeomorphism, We also show that non-zero composants of the bucket handle can be
mapped onto cach other by continuous bijections.

1. Indroduction. The principal motivation for the results in this paper is an old
question of Knaster and Kuratowski: “Are all composants in the bucket handle which
do not contain the zero point homeomorphic?” (the bucket handle and its zero point
are defined in Scction 2 below). The only step towards an answer to this question is
a result of Bellamy, which states in what way the shift map on the bucket handle
permutes composants (see [Bel]). Subsequently Debski proved that this is the best one
can get by considering homeomorphisms of the bucket handle. In other words, if
a homeomorphism of the bucket handle maps one composant S onto another
composant 7, then there exists an iterate of the shift which also maps S onto 7! One of
our main theorems states that Debski’s result also holds for homeomorphisms of locally
compact subspaces of the bucket handle (see Theorem (3.7) below for the exact
statement).

Another of our objectives is to show that there exist continuous bijections between
any two composants which do not contain the zero point. This result can be proved by
deleting the zero point from the bucket handle. We show that the complement of the
zero point admits transformations which map one composant bijectively onto another
composant. By deleting the composant of the zero point one gains even more freedom
and we are led (o the [wllowing conjecture: the bucket handle minus the composant of
the zero point is homogeneous,

Section 2 contains the necessary definitions and a short review of the results of [A-M].
In Scction 3 we study the homeomorphisms of locally compact subsets of the bucket
handle. The approach of [A-M] is generalized to so-called minimal matchbox manifolds
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with the help of a theorem of Gutek. In Section 4 the homeomorphisms of the bucket
handle are classified up to isotopy. This appears to be a new result. An interesting
corollary of the results in this section is a different proof of Watkins’s classification
theorem for Knaster continua. Finally, in Section 5 continuous bijections between
composants are constructed.

2. Notation and preliminaries. The set of positive integers is denoted by N. The
Cantor set {0, 1}" is denoted by %, the open interval (—1, 1) by # and the interval
[—1,1] by ~.

The bucket handle is defined as follows. Let 4 be the usual Cantor middle third set
in [0, 1], which we think of as a subset of the real axis in the planc. Connect elements of
% by semicircles:

(1) the semicircles in the upper hall plane with center (1/2, 0) which connect
elements of %,

(2) for all n > 1, the semicircles in the lower half plane with center (1423, 0)
which connect elements of %.

Fig. 1. The bucket handle

The continuum " which is the union of the semicircles in (1) and (2) is called the
standard Knaster continuum or bucket handle. The element 0 of the Cantor middle third
set ff < A is called the zero point of o, It is the only element of #" which does not lie in
the interior of an open set homeomorphic to 4 x .#. Therefore all autohomeomorphisms
of o fix the zero point.

There are various ways to define the bucket handle and we will encounter several
thro.ughout this paper. In Section 3 the bucket handle is represented [ollowing Gutek, in
Section 4 it is defined as an inverse limit, and finally in Section 5 it is described as ;.he
attractor of the horseshoe map.

’ The 2-solenoid &, is defined as the intersection of 4 descending sequence of solid
ton. 2= (){T,|neN}. Bach T,,, is wrapped twice longitudinally in 7. without
folding back (see [Dan]). It is well known that the topology of the 2~solenoi21 and the
bucket handle are intimately connected. This will become apparent in Section 4.
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A subset C of a continuum X is a composant if for some point p, C is the set of all
points x such that x and p are elements of a proper subcontinuum of X. In the case of
the bucket handle or the 2-solenoid the only proper subcontinua are arcs. Consequently,
the composants arc equal to the arc components.

We give a short review of the results and definitions of [A-M].

(2.1) DERINITION. A separable metric space X is called a matchbox manifold if for
each x& X there is a zero-dimensional space S, such that S, x # is homeomorphic to an
open neighborhood of x. In this paper S, is homeomorphic to the Cantor set for all
xeX.

The 2-solenoid and the bucket handle minus the zero point are examples of
matchbox manifolds. Indeed, they are the only examples which we will encounter in this
paper.

Let X be a matchbox manifold such that S, is homeomorphic to € for all xeX.
Suppose that V is a closed neighborhood of yeX such that ¥ is homeomorphic to
% x # under 2 homeomorphism which induces a homeomorphism of the interior V° of
Vto € x #. Then V is called a matchbox neighborhood of y or simply a matchbox. The
arc components of V are called the matches. The topological boundary 8V, correspon-
ding to ¥ x {~1, 1}, is called the set of end points. The set of end points is divided into
a top which corresponds to ¥ x {1} and a bottom which corresponds to % x {—1}. These
notions of top and bottom depend upon the homeomorphism between € x # and the
matchbox. In general we will make no distinction between V and % x # (see for instance
the notation in the lemma below). The following result is ubiquitous in the proofs in this
paper, though hardly ever mentioned:

(2.2) Lemma (Lemma of the long box). Let J be an arc in the matchbox manifold
X with initial point x, and end point x,. Suppose that Vi and V, are matchbox
neighborhoods of x, and x, respectively; V; is homeomorphic to §;x J (i =1, 2). There
exists a matchbox V homeomorphic to Sx.# such that:

(1) x; is an element of Sx{—1} = §;x{~1},

(2) x, is an element of Sx {1} =8, x{1},

(3) Sx{~1} is a clopen subset of Syx{—1},

(4) Sx {1} is a clopen subset of S,x{1}.
Stated less accurately, the lemma says that there is a long box V with bottom contained in
the bottom of Vy and top contained in the top of V,.

The following result of Aarts and Martens generalizes a theorem of Keynes and
Sears for compact spaces [K-S]. Recall that the suspension of a homeomorphism
h: X — X of a topological space X is defined as the quotient space of X x.# obtained
by the identification of the top and the bottom via h: Z(X,h) =X xS/{(x,1)
~ (h(x), —1)}.

(2.3) THEOREM. Let ¢: X x R — X be a flow without rest points on a one-dimensional
separable metric space X. Then there exists a zero-dimensional space § and a homeomor-
phism f: 8 — S such that X is topologically equivalent to the suspension Z (S, f).
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In the next section we shall see that there exists a representation of the bucket
handle which is similar to a suspension. It is well known that the 2-solenoid admits
a flow without rest points and can be represented as the suspension of a homeomor-
phism of the Cantor set (see Example (3.4)(a)).

3. Minimal matchbox manifolds. In this section we discuss an analogue of the
theorem of Aarts and Martens for certain one-dimensional spaces which we call
minimal matchbox manifolds.

(3.1) DerFiNiTION. Let X be a compact matchbox manifold. X is called a minimal
matchbox manifold if:

(1) every arc component of X is dense,

(2) all matchboxes are homeomorphic to € x ..
In particular, every point of X is two-sided recurrent, ie. for each x in X the arc
components of X\{x} are dense.

The important feature of a minimal matchbox manifold is that any one of its
matchboxes determines the topological type of the entire space. That is the content of
Theorem (3.3) below. Note that the 2-solenoid ., is a minimal matchbox manifold and
that " is not a minimal matchbox manifold because of its special point zero. However,
A" ~{0} is a minimal matchbox manifold as all of its arc components are dense. We
shall find that all results for minimal matchbox manifolds in this section hold for A, il
slightly modified as Example (3.4)(b) shows. This is a consequence of the fact that the
results in this section also hold for locally compact spaces. For instance, a careful
examination of the proof of Gutek’s theorem shows that it remains valid in the case of
locally compact spaces. Since we are interested only in the specific case of the bucket
handle we do not go into these details any further.

Recall that a homeomorphism of a topological space is minimal if the only closed in-
variant subsets are the empty set and the space itself. In other words, all orbits are
dense. In view of Theorem (2.3) a minimal matchbox manifold X admits a flow
n: X xR — X without rest points if and only if it can be represented as the suspension
over the Cantor set of a minimal homeomorphism #, ie, X ~ % (%, h). Since X is
a minimal matchbox, the elements xeX are two-sided recurrent. In other words,
both =({x} x[0, c0)) and =m({x}x(—co0,0]) are dense. This follows from the
fact that the limit sets e (x) = ("} {cl(n({x} x [n, oo)))lneN} and a(x) = () {el (r({x}
x(—o0, —n]))|neN} are invariant under n. We conclude from the minimality of the
matchbox manifold that w(x) and «(x) are equal to X,

There exists a correspondence between the autohomeomorphisms of X and the
clopen subsets of %. Since elements of X are two-sided recurrent, the return map hy:
A— 4 is well defined for any clopen subset 4 of @:

hy(x)= K (x) with n(x) = min{n> 0| (x)e 4}.

Note that A is homeomorphic to the Cantor set. The suspension Z (4, h,) of the return
map over A is also homeomorphic to X. Consequently, there are various choices for the
homeomorphism h yielding a suspension £ (%, h) homeomorphic to X. Suppose that the
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return maps h, and hy are conjugate: doh, = hyoq for some homeomorphism
¢: A— B. In that case the suspensions (4, h,) and Z (B, hp) are homeomorphic, The
homeomorphism ®: X(A, h,) — Z (B, hy) is defined as & (a, £) = (¢ (@), t). As is shown
in [Aar] the converse also holds, which leads to the following theorem:

(3.2) TunoREM. Let X and Y be minimal matchbox manifolds represented by (%, g)
and Z (%, h) respectively. Then X and Y are homeomorphic if and only if there exist clopen
subsets A, B <% such that the return maps g, and hy are conjugate.

This theorem was used in [A-I] to present an elementary proof of the classification
theorem for solenoids (cf. [Bing] and [McC]). Since there are only countably many
clopen subsets of %, it is not so difficult (o list all the possible return maps. This
approach can also be used for minimal matchbox manifolds in general. Indeed, the
following theorem of Gutck [Gut] can be used to formulate analogues of Theorems (2.3)
and (3.2) for minimal matchbox manifolds.

(3.3) TunoreM. Let X be a minimal matchbox manifold. There exists a continuous
involution t: @ x {—1, 1} =% x{—~1, 1} without fixed points such that X is homeomor-
phic to € x.#/x, the quotient space of identified end points x ~ 7 (x).

The involution 7 is an analogue of the return map for flows. In general it depends
hon the choice of a matchbox in X, just as in the case of a return map, and can be
described as follows.

Let @ x.# be a matchbox in X. Two end points of this matchbox are equivalent if
they can be connected via an arc in the complement X\% x #. Every equivalence class
contains precisely two elements and the involution 7 simply switches the elements of
each class. Consider the special case that X admits a flow without rest points. Things
can be arranged in such a way that = maps the top onto the bottom. In other words, in
that case the quotient space % x #/z is equal to the suspension of a homeomorphism of
the Cantor set.

The 2-solenocid and the bucket handle can be represented by means of an
involution as in Theorem (3.3). This is shown in the following examples.

(3.4) BxampLes. (3) The 2-solenoid can be represented as a suspension over the
Cantor set as follows: the homeomorphism o:.% — % is defined as

a0y 83, 8y 0) = (1, Gy, B30 .0,
a(ly 1,1, ey 1,0, 8 Sraty o) = (0,0, 0,000, 0, 1, 8y, G, - s
0((1, 1., ], avy 1, 1, --~)=(01 07 01 ay 0, 0:-~-)-

The homeomorphism o« is called the adding machine on the 2-adic integers. .As
a result the 2-solenoid &,~X(%,«) admits a flow without rest points
@ Z(#, ) xR — 3 (%, «) which can be described as follows. Let [x]€Z denote the
integer part of the real number x; the action of R on &, is defined by

?((, 8), 1) = (@ (8), t+5—[t+5]).
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A homeomorphism h of &, is orientation preserving if it preserves the sign of the
action of ¢, in other words, if for all y and for all 6 such that y = ¢ (9, ¢) for some t > 0,
we have h(y) = @ (h(5), s) for some s> 0; otherwise h is orientation reversing.

It is to be observed that two orientation preserving homeomorphisms g, h on &,
are isotopic if and only if they induce the same permutation of the composants. The
isotopy between g and h can be constructed by means of the flow ¢: For every xe %,
there exists a unique #(x)eR such that ¢ (g(x), £(x)) = h(x). Since g and h preserve the
orientation of &, the function t: &, - R is continuous. Therefore the isotopy
H: #,x[0,1] -, given by H(x, u) = ¢(g(x), u-t(x)) is well defined.

(b) The bucket handle can be represented as follows: the involution 7: € x {—1, 1}
=@ x{—1, 1} is defined as

(@), )=(@), 1) with §,=0 iff §,=1,
(@), =) =7(0,0, .0, 0, 1, &y uass oy —=1) = (0,0, ..., 0,1, &, Frs15..), —1),
7(0,0,..), =1)=(0,0,..), —1).

The involution has a fixed point since £ contains the special point zero. The quotient
space € x #/t is homeomorphic to the bucket handle. Note that t flips the tail of the
elements (3;) of the Cantor set. We claim that two elements (&), 0) and ((¢;), 0) are in the
same composant if and only if (6;) and (g;) have equal or opposite tail, i.e., for some neN
either &, = ¢, for all i > n or §, = &, for all i > n. One of the inclusions is obvious: since
7 flips the tails, two elements in the same composant must have the same or opposite
tails. The reverse inclusion is not completely obvious, but it can be explained with the
help of Figure 2 below. Suppose that x and y are elements of the Cantor set such that
the tails of x and y are equal or opposite from the nth coordinate onwards, The Cantor
set is divided into 2"~ “blocks, in each of which the points have the same first n— 1
coordinates.” It is illustrated in Figure 2 in which way the involution  ties

T 1]

00 01

\ -

Fig. 2. The action of 7

i
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these intervals together. Note that © fixes the block of points whose first n—1
coordinates are equal to 00...01. On this interval it leaves the first n coordinates
invariant and it flips the tail.

Apply 7 as many times as needed to transport x into the interval which contains -
Now it may happen that the transport of x has a tail opposite to the tail of y, In that
case one has to go on and transport x into the interval of y via the interval which
corresponds to 00...01. Then the tail is reversed and x is transported onto y. This
explains why x and y are elements of the same composant.

As explained above the involution depends on the choice of the matchbox. Let %,
be the subset of elements (8,) e % with first coordinate equal to 0. Consider the matchbox
#ox[~1/2,1/2] in the bucket handle. The involution 7, on the end points of the
matchbox %, x [—1/2, 1/2] is identical to the involution 7 itself. Only T, leaves the first
coordinate O invariant:

{To (©, 3)=(05),3% with §;, =0,

% (6), =3 =1(0,0,...,0,1,8,, 8ys1s ..., -3=(0,0,...,0,1, 8, 8+1, ...), —3).

Therefore the map o: ¥ x[—1/2, 1/2] » % x[—1/2, 1/2] defined by o ((5)2;, )
= ((6:41)f1, ) can be extended to a homeomorphism of the bucket handle onto jtself.
This homeomorphism o is called the shift homeomorphism or simply the shift on the
bucket handle. ’

As a result the composant of ((8), 0) is mapped onto the composant of {(z), 0) by
some iterate of the shift if and only if (5)) and (¢,) have equal or opposite shifted tails. In
other words, for some neN and me Z either 6, = ¢4, for all i > n or §; = &..,, for all
i2n The shift homeomorphism o fixes two composants: the one which contains
elements of the zero level ¥ x {0} with constant tail and the one which contains elements
of €x {0} with alternating tail. The other composants are not fixed by . This is
essentially Bellamy’s result [Bel].

Note that different iterates of the shift induce different permutations on com-
posants.

It is a consequence of Gutek’s theorem that this procedure to construct the shift
homeomorphism can be applied more generally to minimal matchbox manifolds, as will
be shown below.

(3.5) DrrNiTION. Let U, ¥ be matchboxes in minimal matchbox manifolds X and
Y respectively. The involutions vy: U — dU and t,,: 8V — 8V on the end points of
U and V respectively are conjugate with respect to matches if there exists a homeomor-
phism h: dU — 8V between the end points such that

(1) hoty =1, 0h,

(2) if u, and u, are elements of the same match in U, then h(u,) and h(u,) are
elements of the same match in V.

The following theorem is an analogue of Theorem (2.3). It shows that the
construction of the shift homeomorphism of 4 in Example (3.4)(b) is typical for
minimal matchbox manifolds.

4 — TFundamenta Mathematicae 139.3


Artur


200 J. M. Aarts and R. J. Fokkink

(3.6) THEOREM. Two minimal matchbox manifolds X and Y are homeomorphic if and
only if there exist matchboxes U < X and V < Y such that the involutions on the end
points ty, T, are conjugate with respect to matches.

Proof. Necessity. Suppose that h: X — Y is a homeomorphism; obviously A maps
matchboxes onto matchboxes. Let U be an arbitrary matchbox in X and let V be its
image in Y. The homeomorphism h restricted to the end points of U conjugates the
involutions 7, and 7, with respect to matches.

Sufficiency. According to Gutek’s theorem the quotient spaces U/t, and V1, are
homeomorphic to X and Y respectively. Since the conjugating homeomorphism
between , and 1, respects matches, it can be extended to a2 homeomorphism between
the quotient spaces. '

In order to find the permutations induced by the autohomeomorphisms of " we
could check the involutions on end points of matchboxes, following the approach in
[A-F]. However, in the next section we will get these permutations by using results from
algebraic topology. Instead Theorem (3.6) is employed to show that Bellamy’s result
cannot be improved by considering homeomorphisms of a locally compact subset of ",
as we will now point out.

(3.7) THEOREM. Let X be a locally compact subset of the bucket handle # which
contains at least one composant of A'. The permutation induced by an autohomeomor-
phism of X on the set {C|C = X is a composant of '} corresponds to the permutation
induced by an autohomeomorphism of A",

Proof Note that the proof of the necessity in Theorem (3.6) holds for general
matchbox manifolds (i.e., without the assumption that S as in Definition (2.1) equals the
Cantor set). We apply this to X, a locally compact subset of # which contains
a composant of .

Since X is a dense and, consequently, an open subset of 4, the matchboxes of
X are matchboxes in #". Suppose that h: X - X is an autohomeomorphism of X.
Assume that it maps a matchbox U onto a matchbox V. The involutions t; and Ty AT
defined on dense subsets E, F of the end points of U, V respectively. Two end points of
E (or F) are equivalent if they can be connected by an arc in the complement of U (or V)
in X. In other words, ; and 1, are the restrictions of the involutions v, and Ty to the
end points of U and V respectively. The homeomorphism h: U — 8V restricted to
h: E~F is a conjugating homeomorphism between 1, and 7, with respect to matches.
Therefore h satisfies the conditions (1) and (2) of Definition (3.5) on a dense subset of the
end points. By continuity h conjugates the involutions t, and T with respect to end
points. It follows from Theorem (3.6) that there exists a homeomorphism of #° which
permutes composants in the same way as h. In other words, the approach of Bellamy
cannot be improved by considering homeomorphisms of a locally compact subspace of
the bucket handle.

4, The class group of the bucket handle. We are interested in the permutations on
composants that can be induced by a homeomorphism of the bucket handle. Obviously,
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if two such homeomorphisms are isotopic, they induce the same permutation on the
composants. As we shall see below, the converse also holds. Therefore we can list all
permutations if we can list all homeomorphisms up to isotopy. It is the objective of this
section to calculate the class group %I (K) which is defined as the group of homeomor-
phisms of 2" up to isotopy. We do this by lifting homeomorphisms of the bucket handle
to the 2-solenoid & ,: the class group of the 2-solenoid can be calculated by means of
algebraic topology. This method to study homeomorphisms of the bucket handle is well
known. It is employed by Bellamy [Bel] and in a slightly different setting by Debski and
Tymchatyn [D-T].

To this end we give yet another description of the bucket handle and the
2-solenoid: the bucket handle is topologically equivalent to the inverse limit of the unit
interval # =[—1, 1] with bonding map ©: # — .# between successive terms given by
t(x) = 2x?>~1 (r is conjugate to the tent map). The zero point of the bucket handle
corresponds to (1, 1, 1, ...) and the shift on the bucket handle corresponds to the map
(e)is1 = (xi41)%% 1 of the inverse limit space.

Similarly, the 2-solenoid %, can be defined as an inverse limit of the circle group
S§* = {zeC|lz| = 1} with bonding map x: S! — §! given by «(a) = 2% It follows that the
2-solenoid is a compact abelian group with identity element e = (1,1, ...). The flow ¢ from
Example (3.4)(a) is defined on the inverse limit space as ¢ ((z)), 1) = (€%° 7" 2); at time 1 the
first coordinate has rotated once, the second has rotated by the angle =, etc.

This description of the bucket handle and the 2-solenoid can be employed to define
the map n: &, —» A as n((z,-)) =(Rez). Note that n is well defined as z—Rez
commutes with the bonding maps. According to Lemma (4.1) below « has a lifting
property. (Note: this map = was used by Bellamy in [Bel] in order to describe the
action of the shift on the composants of the bucket handle. Bellamy attributed the
definition of = to J. W. Rogers, Jr)

Let y: &, — &, be the complex conjugation on coordinates which maps (z) onto
(£). It has the identity element as its only fixed point. It is to be observed that Y
is an orientation reversing homeomorphism of the 2-solenoid. Indeed, (e (x, 1)
= ¢(p(x), ~1t) as follows from the definition of @ above,

It is a-consequence of the definition of x that it is equal to the quotient map
q: &3~ &,fy, which implies that = restricted to &,—{e} is a 2-1 covering map. The
proof of the following homotopy lifting property of = is almost verbatim the same as the
prool of the homotopy lifting property for covering maps on manifolds. A similar result
is contained in [D-T].

(4.1) Lumma. Let H: (A" —{0}) x [0, 1] — "~ {0} be a continuous map. Then there
exists a lift H: (,~{e})x[0, 1] = &, —{e} such that Hon = nof.

Proof. Let f: o —{0} —» o —{0} be a continuous map. We show that f can be
lifted to a map f* &, ~—{e} -, ~{e}. It then follows in a standard way (e.g. [Spa])
that a homotopy H: (# —{0})x[0,1]~ A —{0} can be lifted to a homotopy
B: (#,~{e})x [0, 1]~ &, —{e}. For every xe¥,—{e} there are two choices for J/
A uniform choice has to be made.
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We start with a point x,€ 5, —{e} and choose one of the preimages of 1 (r (x,)) as
J(xo). Since 7 is a local homeomorphism, there exists a map f: U —» %,—{e} on
a matchbox neighborhood U of x, such that it covers f on a neighborhood of 7 (x,).
Now f is extended to &,—{e} in a way similar to the procedure in the case of
a covering map on a manifold. Let x be an element of &, — {e}; there exists an arc 4 in
&, —{e} which connects x to an element ye U. The arc f on(4) is covered by two arcs
in &,—{e}. One of the arcs has end point f'(y). The image J'(x) is defined to be the other
end point of this arc. As a consequence of the lemma of the long box, the map f'defined
in this way is continuous. .

Note that foy also covers f, it corresponds to the other choice of F (o). Indeed, for
any continuous map g: # —{0} = # —{0} there exist exactly two lifted maps on
&;—{e}. As a result the deck transformation y commutes with lifts: yo J' = foy.

The class group €1(&,) is the group of homeomorphisms which preserve the base
point ¢, up to base point preserving isotopy. Note that homeomorphisms and isotopies
of the bucket handle fix the zero point, hence so do the lifts. The zero point accidently
corresponds to 1.

In the following lemma methods from algebraic topology and the theory of
topological groups are employed to calculate %!(5,). We want to emphasize, however,
that the method from [A-F] combined with Theorem (3.6) can also be used to calculate
%1(") more directly,

The group of topological isomorphisms on &, is denoted by Iso ().

(4.2) Lemma. The class group %1(5,) is naturally isomorphic to Iso ().

Proof. First we indicate that every continuous map from &, to the circle §! is
homotopic to a continuous homomorphism. It follows from the continuity theorem for
Cech cohomology that the first Cech cohomology group H*(&,) is isomorphic to the
(discrete) group of 2-adic rationals Q, = {n/2"n, me Z} (see [Spal, p. 358). The first
Cech cohomology group is isomorphic to the group of continuous maps from &, to St
up to homotopy. Also the group of 2-adic rationals Q; is isomorphic to the Pontryagin
dual group of &,. The Pontryagin dual is the group of homomorphisms from &, to §*
(see [H-R], p. 403). Consequently, H(%,) is isomorphic to the Pontryagin dual of &,
(see also [McC], p. 198). Indeed, it is proved in [H-M], p. 211, that for a connected
compact abelian group in general the first Cech cohomology group and the Pontryagin
dual group are naturally isomorphic. Consequently, a map from &, to the circle §* is
homotopic to a continuous homomorphism and no two homomorphisms are homo-
topic.

Next we show that a continuous base point preserving map from &, onto itself is
homotopic to a continuous homomorphism. Let f: &, =, be a continuous base
point preserving map. We denote the projection of f onto the ith coordinate of the
inverse limit &, by f;. As pointed out above there exists a (base point preserving)
homotopy F,: &, x [0, 1] — S* such that F, restricted to &, x{0} equals f, and F,
restricted to %, x {1} is a homomorphism, The bonding map k: S* - §* is a covering
map. It has the homotopy lifting property. The homotopy F, can be lifted to
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a homotopy F,: &, x[0, 17— §* which is equal to f, on the bottom &, x {0}. By
a connectedness argument the lift F, is a homomorphism on the top. Either Fy(x-y, 1)
is equal to F,(x, 1) F,(y, 1) or it is equal to —F,(x, 1)-F,(y, 1); these are the two
elements in the fiber over F, (x-y, 1). Since & , is connected, there is one uniform choice
of the sign for all x, ye &,. If x, y are both chosen to equal the identity element, we see
that the uniform choice has to be F,(x-y, 1) = F,(x, 1)- F,(y, 1).

The process of lifting homotopies can be continued by induction. There exist
lifted homotopies F, for all ieN which are homomorphisms on the top. The
infinite product of all these maps defines a homotopy between fand a continuous
homomorphism.

Finally, we show that in the case that fis a homeomorphism it is isotopic to
a topological isomorphism of &,. A homeomorphism permutes the composants of #,,
hence so does the homomorphism homotopic to f. Therefore this homomorphism must
be an isomorphism. It follows from Bxample (34)(a) that a homeomorphism on &, is
isotopic to an isomorphism.

(4.3) THEOREM. ¥1(¥,) = ZDZ/2Z.

Proof. According to Lemma (4.2) the class group of the 2-solenoid is naturally
isomorphic to the group of isomorphisms Iso (). By Pontryagin duality, this group is
equivalent to the isomorphism group of the 2-adic integers Iso(Q,). The latter is
generated by x— —x and x-»2x. Under Pontryagin duality these correspond
to the coordinatewise complex conjugation y and the shift on the 2-solenoid,
U((Z()i'?: 1)~= ((ZH-.l)im= 1)~

From Lemma (4.1) we obtain a map %1(:") - €1(&,). For any homeomorphistm
h: A" — A" there exist two lifted homeomorphisms of &, (recall that a homeomorphism
of o fixes zero). One of these lifts is orientation preserving, the other reverses the
orientation. For instance the orientation preserving lift of the shift on the bucket handle
is the shift on the 2-solenoid. The orientation preserving lift of & is denoted by . The
homomorphism it %1(A) - €1(,) which maps the isotopy class of & onto the isotopy
class of f is well defined. Its image equals the infinite cyclic subgroup of #I(¥,)
generated by the shift on the 2-solenoid.

We claim that i is a monomorphism. Suppose that g and h are homeomorphisms of
the bucket handle such that § and A are isotopic; it is to be shown that g and h are
isotopic. According to Example (3.4)(a), § and # induce the same permutation on the
composants of &,. It was also pointed out in Example (3.4)(a) that an isotopy H
between § and A can be defined by using the flow ¢: H(x, s) = o (F(x), s-t(x)). We
show that this isotopy covers an isotopy between g and k; this would certainly establish
the claim that i is a monomorphism. In order to do that we excessively use the
commutativity properties of the deck transformation 7.

As has been observed at the end of the proof of Lemma (4.1), F(y (x)) = 7 (§ (x)) and
K(y(x)) = 7 (A (x)). Also, as a consequence of the fact that y reverses the flow ¢, we have

(@ (), —tx) =@ (pEE), @) =(e@E), t(x) =7 (Ax) = k().
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Hence by definition £(y(x)) = —t(x). These two commutativity properties of y add up to
show that H projects to an isotopy between g and h:

Hyx), ) =o(§0®), st ) = 0 (3 ({F), s —1(x)
=9(e(@60, s 1) = 7(H (x, 1)).

This implies that the isotopy H covers an isotopy in . It follows from Theorem 4.3)
that the class group of " is generated by the shift on the bucket handle.
We have established the following result, announced in the introduction:

(4.4) TueorREM. The class group of the bucket handle is an infinite cyclic group
generated by the shift: €l(A) = Z.

As remarked in Example (3.4)(b), different iterates of the shift induce diffe-
rent permutations on the composants. Therefore two homeomorphisms of the
bucket handle are isotopic if and only if they induce the same permutation on the
composants.

The results of this section can be extended to arbitrary Knaster continua. These are
defined by piecewise linear bonding maps on the interval (see [Wat]). If we do not
consider the point zero, Knaster continua are minimal matchbox manifolds. As in the
case of the bucket handle, Knaster continua are covered by solenoids. Lemma (4.1) on
lifting continuous maps of the bucket handle can be generalized to the lifting of
continuous maps between general Knaster continua. The proof remains the same.
Consequently, two Knaster continua are homeomorphic if and only if the solenoids
covering them are homeomorphic. The classification of Knaster continua as carried out
in [Wat] thus corresponds to the classification of solenoids.

Also the class group of a general Knaster continuum can be calculated
by the same methods as above. Some Knaster continua are very rigid. For in-
stance, the class group of the (2, 3, 5, 7, ...)-solenoid (every prime number occurs
exactly once) equals Z/2Z, and so does the class group of the underlying Knaster
continuum,

5. Continuous surjections between composants. The following description of the
bucket handle is well known in the theory of dynamical systems. The bucket handle
A is described as the attractor of a Smale horseshoe map. The composants of 4" are the
unstable leaves of the horseshoe. The construction is more geometrical in nature than
the definitions of 2 we encountered above.

Let Ry =10, 1Jx[0,1] be the unit square in the plane. Now suppose
A=T[0, 11x{1/2} is the middle line of R,, which we identify with [0, 1] via the
projection on the first coordinate. The polygonal region R, is the union of
Ay = [0, 1/31x [0, 11, M, =[1/3, 2/3]x [2/3, 1] and B, =[2/3, 11x[0, 1]. We call
A, the left leg of R, and B, its right leg. The horseshoe map Q: R, — R; maps R,
homeomorphically onto R,. It is a linear contraction on [0, 11 [0, 1/3] and
[0, 11x[2/3,1], in a way suggested by the figure below.

icm
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The descending sequence of regions Ry = R, R, > ... is defined as R; = @ (Ry),
the left leg of R, is defined to be the set ©~*(4,) and similarly its right leg is Q'=* (B,).
The horseshoe is defined in such a way that the middle line 1 intersects only the legs of

(RO

R

st

G :
0 182813 2A3 1

o 2

Fig. 3. The horseshoe map

each region R;. Indeed, 4 M R, is the union of 2' intervals of which 2~* belong to A4, and
2'~1 belong to B;. Without loss of generality we may assume that these 2/ intervals equal
the standard intervals at the ith step of the construction of the Cantor middle third set.
The bucket handle is defined as the intersection of the regions, & = (\{R:|ieN}. The
middle line A intersects " in the Cantor middle third set. We picture the regions R, to
be polygonal, ie., they are a finite union of rectangles in the plane. To every R; an
orientation is assigned: the bottom of R; is the intersection of A, [0, 1]x {0}
= [0, 1/3"] x {0}, the top is equal to B, [0, 1]1x {0} = [2/3}, 1/3'"1] x {0} for i > 0.
The orientation of the legs is induced by R;; the left leg 4, has bottom [0, 1/37] x {0},
the right leg B; has top [2/3', 1/3*~11x {0}.

We exhibit a relation between the intervals in R;n 4 and By N /1', The reason why
we are interested in this relation becomes clear in the proof of Theorem (5.1) below.
There the intervals in R, A arc mapped onto intervals in Bjiq A A

The orientation of R, induces an ordering of the 2* intervals of R, n A: as the region
runs from the bottom to the top, the intervals are arranged according to the order of
intersection. For example the first interval is [0, 1/3"], the second is [1—1/3%, 1], etc.
Similarly, the orientation of the right leg By, in R,.; induces an ordering of the 2}
intervals of B, n A Notice that each interval in R, n 1 contains exactly one interval of
Bivin A We claim that the jth interval of R;n A is a neighbor of the jth interval of
Byy. 1 n A This follows from the observation that B, runs in the opposite direction to
Ry its top is equal to [2/3'**, 1/3'] x {0}. This is a subset of [0, 1/3"] x {0}, the bottom
of R;. Hence, the last interval of B;..; N A is contained in the first interval of R; N A.
Similarly, the first interval of By.; N4 is contained in the last interval of R;nA.
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We conclude that the first interval in B;..; N A is equal to [2/3, 7/3'*1] x {0}, the left
third interval of the top of R;. Consequently, the first interval in B;., N 1 is a neighbor
of the first interval in R; n 4. The right leg B, continues to run up and down side by
side along R;. As a result the jth interval of B;.; ~ A is a neighbor of the jth interval of
R;nA.If R; runs up, the interval in B;+; N 1 is to the right, if R, runs down, it is to the
left.

The middle third set % and {0, 1}™ are identified in the standard way via the
homeomorphism (8;) =} 12 1 26,/3". Elements of % are in the same interval of R, ~'A if
and only if they have equal first i coordinates. Expressed in terms of {0, 1}V, the
neighbor relation between the intervals above becomes: (§) is contained in the Jjth
interval of R; n A and (¢;) is contained in the jth interval of By..1 N 4 for some j if and
only if

() (5, 63, ..

This follows from the observation that §; = 0 if R, runs upwards through the interval
containing (4;), and &, = 1 if it runs downwards. The relation (x) is needed in the proof of
Theorem (5.1) below.

(5.1) TeeoREM. Let C and D’ be non-zero composants of A'. There exists an injective
continuous map ¢: A —{0} — 2"~ {0} which maps C onto D.

o> Bi-1, 5-1, 0) = (&1, 83y -vv5 Ei—1, &> Eiv 1)

Proof. We show that for any pair of non-end points o, fe% there exists
a continuous injection ¢: A" — {0} — A — {0} which maps  onto B. The map ¢ is an
infinite composition of certain homeomorphisms ¢ A — A which are defined in
a similar fashion for all i. This is a well known method in topology (see [vM], Chapter
6). Every ¢, is a squeeze and stretch map from R; onto R;y;. The squeeze part is
a contraction from R; onto the left leg A;,,. The stretch part expands a small
neighborhood of 0 and contracts the complement (see Fig. 4). If these neighborhoods
are chosen to be sufficiently small, then an infinite composition of ¢;’s converges to
a continuous map on A —{0}. To be more precise: the small neighborhood of zero
expanded by the stretch map is denoted by U,. If the neighborhoods U, satisfy the
following two properties:

(1) Uirs = ¢,(U),

@ N{UilieN} = {0},
then every point of # —{0} is contained in a neighborhood which is expanded only
finitely many times, Therefore an infinite composition of ¢, converges on A" - {0}, Here
is the detailed description.

Let §; =10, 1/3"]x[0,¢] be a small rectangle in R,. Squeeze R, into the
left leg A;4q1 in such a way that each of the 2 intervals in R,n A is mapped
linearly into itself. Then the image of S; is stretched onto the left leg Ay,
the complement of the image of , is pushed into the right leg B, . This is done in such
a way that the composition ¢, of the squeezing and the stretching maps the intervals of
R;n 4 linearly onto the intervals of By, n 4, preserving the order of the intervals as
defined above,
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Fig. 4. Squeezing and stretching

According to the relation (x) above in terms of (5,) the squeeze and stretch map ¢,
acts as ‘
0y, 93, ...

ie, it inserts &; at the ith coordinate. Note that the composants of £ are infinite unions
of horizontal and vertical arcs since the R, are polygonal. The squeezing map is defined
in such a way that it maps horizontal arcs linearly onto horizontal arcs, and similarly
verticals linearly onto verticals. Moreover, the conditions (1) and (2) above are satisfied.

Suppose that « and f# are two non-end points of the middle third set. In other
words, o and f have non-constant tail. Let «, =0 and f, =1; there exists a first
coordinate neN such that f§, = 0, The composition ¢,-; 0¢,—20...04, adjusts & on
the first n coordinates: ¢,~1 0 ¢p-30...0¢, (z) and B have the same first n coordinates.
In general we can transform a coordinate o, into a block (@, & ..., &, o). Therefore if
« and f are non-end points, an infinite composition of those transformations alters
o into B. Hence, a suitable composition ¢ =...0 ¢y 0 din-1y0...0 ¢y, of certain ¢;'s
maps o onto f. If the rectangles Sy, are chosen sufficiently small, then ¢ is a well defined
continuous map on ¥ - {0}.

Note that ¢ maps the middle third set injectively into itsell. Let x, ye % be two
consecutive elements of a composant, hence x and y are connected by a polygon
P A For some neN the image ¢y0 duy-1)0...0 ¢ty (P) is disjoint from Sy 41,
hence P is stretched only a finite number of times. The subsequent squeezes are all linear
on the edges of P. This implies that ¢ is injective on P, and since ¢ is also injective on &,
it is an injection on "~ {0} which maps the composant of & onto the composant of f.

(5.2) Remark. The image of ¢ is a subset of A ~{0} of first category.

The map in the proof of Theorem (5.1) is still far from a homeomorphism between
composants. One would hope that the deletion of the zero composant would offer
sufficient freedom to construct homeomorphisms between any pair of composants. Still,
this is far from obvious and we do not even know the answer to the following question:
is the 2-solenoid minus one composant homogeneous?

» Oje 1 51, 5i~|~u ---)“"(51, 52, ooy Oy, gz, 5(, Oit1, o)
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A note on continnous linear mappings
between function spaces

by

G. D. Spiliopoulos (Athens)

Abstract. Let (: C,p(X)— C,(Y) be a linear continuous function. If § is an order preserving
homeomorphism (an isometry from C*(X) to C¥(Y)), then the Tikhonov spaces X and Y are
homeomorphic. This generalizes the well known theorem of Nagata that if C,(X) and C,(Y) are
topologically isomorphic then X and Y are homeomorphic. If 0 is 1-1 and ¥ has caliber (t, 4) (resp.
is pseudocompact) then X has caliber (z, 4) (resp. is pseudocompact), proving in this way that if
L,(X) has caliber (z, 4) then so does X. Related results for L-embedded spaces are obtained.

Introduction. Everywhere below X, Y and Z stand for infinite Tikhonov topological
spaces, C,(X) is the space of all continuous real-valued functions on X endowed with
the topology of pointwise convergence, C¥(X)={f¢e C,(X): f bounded} and
CX¥(X) = {f e C(X): f bounded} endowed with the topology of uniform convergence. It
is clear that the family of sets ¥ (x; G) = {feC,(X): f(x) e G} where G is open in R, is
an open subbase of C,(X).

A space X has caliber (v, A), where 1, A are infinite cardinals, if for every family y of
non-empty open subsets of X such that |y| =z, there exists a subfamily y, = y with
(171 #@ and |y| =4

We denote by N, the family of open basic neighbourhoods of x and by 1, the unit
function on €, (X). For A &z X and [ €C,(X), we write f| 4 for the restriction of fon 4,
supp /' = {xa X: f(x) # 0} for the support of f, and A for the closure of 4 in X.

Let e: X -» (f,,((fl,(X)) such that e(x) = £, where £(f) = f(x) for fin C,(X). The
set of all finite lincar combinations z = a, %, + ... +a,%, is denoted by L,(X). It is
known ([1]) that L, (X) is the dual space of C,(X), while C,(X) is the dual space of
Ly, (). X1 0 is a continuous linear function from C,(X) to C,(Y), then the induced
function (* [rom L, (Y) to L, (X) defined by 6* () = y o0 for ye L,(Y) is also linear and
continuous, For ye ¥, 0*(y)(f) = 0(f) () for every f in C,{(X). Suppose that for yeY,
0*G) = a, %, + ... +a,%,, where ay, ..., a, #0. The determining set of y in X with

[——
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