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Minimal paradoxical decomposition
for Mycielski’s square

by

Glen Aldridge Sherman (Toronto, Ont.)

Abstract. We give a precise lower bound (six) for the number of pieces required in a bounded
paradoxical subset of the hyperbolic plane, where the paradoxical subset is required to have
positive Lebesgue measure. The lower bound is realized in particular by Mycielski’s square.
Analogous results are given for the sphere S2 Let D be a closed disc of radius  in S2. We give
a precise lower bound for the number of pieces required in a paradoxical subset of D, where the
paradoxical subset is required to have positive Lebesgue measure. The lower bound is six if
0<r<mf2 five if n/2<r<m, and four if r =7

DEerFINITION 1. A subset X of the hyperbolic plane H? (resp. the sphere S?) is said to
be (m, n)-paradoxical if X is nonempty and there are subsets 4,,..., 4,,, By, ..., B, of
X, and hyperbolic (resp. spherical) isometries f1, ..., f,» 91, ---» g, such that P, = {4},
P, ={B;} and P, = {f;(4)} v {g;(B))} are each partitions of X. For convenience we
always consider m < n. We also consider the pieces A;, B; to be nonempty.

DerFINITION 2. We say that X is k-paradoxical if X is (m, n)-paradoxical for some
m and n with m+n=k.

We are particularly interested in k-paradoxical sets which have positive (non-
zero) Lebesgue measure. Such sets exist in $? according to the Banach-Tarski
paradox.

The Banach-Tarski paradox is that any two subsets W, X of S? with nonempty
interiors are equivalent by finite decomposition [BT]. This means that there is a finite
partition {W,, ..., Wy} of W, and a finite partition {X,, ..., Xy} of X, such that W;is
isometric to X, fori =1, ..., N. It follows that any subset of S? with nonempty interior,
in particular any Lebesgue measurable subset of S? with nonempty interior, is
k-paradoxical for some sufficiently large k. For example, Robinson has shown that the
whole of S? is 4-paradoxical [R].

Mycielski has proven the Banach-Tarski paradox for H?: any two bounded sets
with nonempty interiors in H? are equivalent by finite decomposition [M]. It follows
that any bounded subset of H? with nonempty interior, in particular any Lebesgue
measurable bounded subset of H? with nonempty interior, is k-paradoxical for some
sufficiently large k. For example, and this is the key step of Mycielski’s proof, a square of
arbitrarily smail diameter is k-paradoxical for some k.
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We will show that Mycielski’s square is in fact 6-paradoxical (Theorem 4). More
importantly, we will show that k=6 is the absolute lower bound for a bounded
k-paradoxical subset of H? with positive Lebesgue measure (Theorem 1).

We will show also that analogous results hold in % where instead of requiring that
the k-paradoxical set X be bounded, we require that X be contained within a (spherical)
closed disc of radius r. The absolute lower bound (for a k-paradoxical subset of §? with
positive Lebesgue measure contained within a disc of radius r) will depend on the
radius r. If ¥ = (so that there is no restriction on the size of X), the absolute lower
bound is k = 4. Certainly k < 4 from the work of Robinson, and k > 4 follows from
Lemma 1 below. We will show that if n/2 < r <, the absolute lower bound is k = 5
(Theorems 3, 6), and if 0 < r < n/2, the absolute lower bound is k = 6 (Theorems 2, 5).

It is known that if we drop the requirement that the paradoxical set X has positive
measure, the absolute lower bound is k = 4 in the case of H?, and in the case of S? there
are absolute lower bounds of k =2, 3,4 when r=m, /2 <r <, 0 <r < 1/2 respec-
tively [S].

We will use the symbol y for Lebesgue measure on both H? and 52 and the symbol
i for a certain extension of x4 which is now to be defined.

We work in the Poincaré disc model of H2 (H? is identified with the open unit disc
x?+y* <1 and the hyperbolic metric is given by dh?=4(1~x%—y%)~2dx?
+4(1—x*—y*)"2dy?)

Let m, be Lebesgue measure in the plane. Then if E is any m,-measurable subset of
the disc, its hyperbolic Lebesgue measure is given by

R(E) = [4(1—x*—y*)"?dm,.
E

Hyperbolic Lebesgue measure y is countably additive, complete, and invariant under
hyperbolic isometries. Banach showed that m, may be extended to a finitely additive,
total (defined on all subsets of the plane) measure #i, which is invariant under Euclidean
isometries [B]. For all subsets E of the disc, we define

A(E) = [4(1—x?—y*) "2 difi,.
E
The measure fi is finitely additive, total, and invariant under those hyperbolic isometries
that fix (0, 0) in the model, since these are in fact Euclidean isometries, and the quantity
1—x?—y? is invariant under these isometries.

We identify $* with the unit sphere x2+4y*+2z% = 1 and consider the paramet-
rization of the sphere given by

F(8, 2) = (1—2%)"2cost, (1 —2z%)*?*sind, z),
If E is any Lebesgue measurable subset of the sphere, we have
H(E) = m, (F~1(E)),

since cylindrical projection preserves area. Spherical Lebesgue measure u is countably
additive, complete, and invariant under spherical isometries. For all subsets E of the

6e(0, 2n), ze(—1, 1).
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sphere we define
A(E) = 1y (F~(E)).

The measure /i is finitely additive, total, and invariant under those spherical isometries
that fix or interchange the points (0, 0, 1) and (0, 0, —1).
We will use the word “measurable” to mean p-measurable.

LEMMA 1. There is no (1, n)-paradoxical subset of H? or S* with positive finite
Lebesgue measure.

Proof If X is (1, n)-paradoxical, there are subsets 4, B,,..., B, of X, and
isometries f, gy, ..., g, such that P, = {4}, P, = {B;} and P, = {f(4)} u {g,(B)} are
each partitions of X. From Py, p(4) = u(X), so from P;, we have u{{Jg;(B))
= p(X)—p(X) = 0. Each g;(B;) is measurable with measure zero, by completeness of .
From P,, we have u(X)=0. =

THEOREM 1. There is no bounded S-paradoxical subset of H* with positive Lebesgue
measure.

Proof. A 5-paradoxical subset is either (1, 4)-paradoxical or (2, 3)-paradoxical. In
light of Lemma 1, it suffices to show that there is no bounded (2, 3)-paradoxical subset
of H? with positive Lebesgue measure.

‘We prove a slightly stronger result: let X and Y be bounded subsets of H? with
#(X) = u(Y). Suppose there are subsets A;, 4,, By, B,, B; of X, and isometries f;, f5,
91> 2, g5 such that P, ={4,, 4,} and P, = {B,, B,, By} are partitions of X, and
Py ={f1(41), f2(42), 9, (By), 9,(B,), 5 (Bs)} is a partition of Y. Then u(X)=0.

Without loss of generality, f; is the identity. We write f =j,. Also let
M =g,(B;)Ug,(B;)Ugs(B;) so that P, = {4, f(4,), M} is a partition of Y. There
are two cases. The proof is most difficult when f is a rotation of infinite order, and this
is reserved for Case 2. In both cases we will appeal to the following simple identity.

For any measurable sets E, T and injective measure-preserving function g, we have

HENg(T)=p(g(g* BN T))
=pu(g *E)nT)
= lxg—xm (s)du(s) = ;IEH{Q(S)}Idu(S)-

)

(since g is injective)

(since g is measure-preserving)

Case 1: f is not a rotation of infinite order. Write (/') for the group of isometries
generated by f We claim that there is a measurable transversal T of the orbits
determined by the action of {(f) on HZ2 Furthermore, if E is measurable, then

@ K#(E) = [ |E 0 Orb (s)] du(s).
T

If f is a translation or a parallel displacement, there is a pair of non-intersecting lines
L,, L, such that f is equivalent to reflection in L, followed by reflection in L,. If f is
a glide reflection, there is a pair of ultraparallel lines L,, L, with a common perpendicular
L, such that f is equivalent to reflection first in L, , then in L,, and then in L. In each of
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these cases, let T be the infinite rectangle bounded by L, and f(L,), including the
boundary L, but not f(L;). Then T is a measurable transversal of the f-orbits as
required. Applying (1) with g = f k and summing over all k in Z, we obtain

Y rEASUT) = [ 3 BN {f*@}Hdus),
keZ T keZ

which is equivalent to (2) since Orb(s) consists of the countably many distinct points
cen ST, 5, (), ... for all s in T.

If f is reflection in the line L, let T be one of the two closed half-planes with
boundary L. When s lies in L, the orbit Orb(s) consists of a single point. Otherwise,
Orb(s) consists of two distinct points. We apply (1) with g = f° kfor k =0, 1 to obtain

HEAT)+R(ENF(T) = [(E {$}I+E {f (@)} dus),
T
which is equivalent to (2) since Orb (s) consists of the two points s, f (s) for almost all sin T.

If f is a rotation of finite order n with fixed point O, let T be an infinite sector with
vertex O and angle 2r/n, including all the points of one of its two bounding rays but no
point of the other except the point 0. Apply (1) with g = f* for k in {0, 1, ..., n—1}
to obtain

n—1

3 W(En ) = | kzo IE o {4} dus),

which is equivalent to (2) since Orb(s) consists of the n distinct points
8, f{8)s -vn /P 1(s) for all s in T\{O}.

We have established the claim (2) in all cases.

Now observe that |Y n Orb (s)] i$ finite for each orbit Orb(s); if f is a reflection or
a rotation of finite order, then |Orb(s)| is finite, and in the other cases we use the fact
that Y is bounded.

From the partition P, = {4, f(4,), M} of Y we see that

|Y N O1b (s)] = |4, 0 Orb(s)| +1f (4,) N Orb ()| + [M n Orb ()|
= |4, N Orb(s)|+|4, N Orb(s)| +|M n Orb(s)| = |X N Orb(s)| +|M N Orb(s)|.
By (2) we have
{IM 0 Orb(s) dp(s) = g 1Y 1 Orb (s)| dufs) — 5 [X n Orb(s)du(s)
T . .

= u(Y)—p(X)=0.

This means that there is a subset P of T of measure zero such that M n Orb (s) is empty
except when s is in P. Hence, M is contained in the set {J{f*(P): ke Z} which has
measure zero. Therefore, M is measurable, and u(M) = 0 by completeness of u. Since
g:(B) = M, we have u(g,(B)) = 0 (again by completeness of u), so u(B) = 0. We see
from the partition P, of X that u(X)=0.

Case 2: f is arotation of infinite order. (It is futile to seek a measurable transversal
of the f~orbits as in Case 1; every transversal is necessarily nonmeasurable.) Let O be the
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fixed point of f. Without loss of generality, we identify O with the center of the Poincaré
disc, so that g is invariant under those hyperbolic isometries that fix O.

Let ~ be the smallest equivalence relation on H*\{0} which satisfies s ~ f (s) for
all s in X. This guarantees that each resulting equivalence class [s] satisfies

(3) Xnlsl=Xn /D).
We describe the equivalence classes. If [s] is a class of finite cardinality n, then
[s1={t, (), f>(®), ..., /" (1)} for some t where the elements ¢, (1), f>(£), ..., f* "2 ()

all lie in X, but f ~* () and f"~* () do not lie in X. Indeed, the set of all “first elements” ¢,
of classes of cardinality n, is the measurable set

L=fX)nXnfT X)) n..of " 2(X)n f7H (X,
(T, is a transversal of the classes of cardinality n) The union of all the classes of
cardinality n is
S, =Tuf(L)u(T)u...u " (T).
There are three types of infinite class:

0 [s1={t, S (®),f2@), ...} where t,f(®),f*@),...eX but f~1(t)eX"
@) [s]={tf"@,f%@),...} where f~1(t),f 2(t), ...€ X but te X"
() [s1={... 2@, /"4, .S O, f2 (@), ...} where f*t)eX for all k in Z.
Accordingly, we define
T,=fXYNXnf" Y X)nf2X)n...,
So=T,uf(T)UIHT)u...,
To=XnfX)nf Xn...,
S—o= T—mUfhl(T'-m)Uf—Z(T—m)U'“s
S, =..0fX)nf M X)nXnf(X)n fA(X)N...
(T, is a transversal of the infinite classes of type (i); S,, is the union of all infinite classes
of type (i); etc. Note that we do not exhibit a measurable transversal of the classes of
type (iii).)
Let I be the set of symbols {1, 2,3, ...; w, —, z}. Then {S;: iel} is a partition of
H®\{0}. We establish some properties of the sets S,.
SuBLEMMA 1. We have
(@) p(S,) = u(S-4) =0.
(b) M NS)=0, for all i in I
© pXnS)=u(YNnS), for all i in L
@) p(MnS,)=0, for all nin {1,2,...}.
(&) u(MnS)=0.

Proof. For (a), if D is any disc with center O, the set S, n D has finite measure but
is also the disjoint union of the countably many congruent measurable sets T, N D,
S(T,n D), f*(T, N D), ... Therefore, u(S,, n D) = 0. Since this is true for D of arbitrarily
large radius, we have p(S,) = 0. Similarly, u(S-,)=0.
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For (b) and (c), since each S; is a union of equivalence classes, equation (3) implies
XnS; =X f1(S) Then, since 4, = X, we have 4, \ S; = 4, N f~*(S). Therefore,
A(A,N8) = @A, 0 fH(S)) = A(f (4D N S)).

From P, we have
R(Y N S) = (4, nSY+A(f(4) 0 S)+AMAS)
= (A, N S)+ (A, N S)+AM N S)
=pu(X NSY+A(MnS).
Summing both sides over I yields

AV =pQO+T AMANS),

el

50 A(MnS;)=0 for all i in I, and hence, u(X N S;) = u(YnS,) for all i in I
To prove (d), we first establish ‘

) KENS,) = [ |En[s]du(),
Tn

for any measurable subset E of H2 Equation (1) with T =T, and g = f* is
RENSHT) = [IEf (9l duls).

. Tn

Summing over k in {0, 1, ..., n—1}, we have
n—1 n—1
2 EEANHT) = [ X IEn ff©)lde),
k=0 Tnk=0

which is equivalent to (4) since [s] consists of the n distinct points s, f (s),
all sin T,.

Since A, = X, we have A, [s] = A, f~*([s]), for each class [s] from (3).
Therefore,

e [ (s) for

|4, N 8]l = |4, 0 f7HESD)
=|f (420 f7(TSD)]
= /)l

Therefore, from P, we have
1Y n [s]l = 4y N [sTi+1f () [s]]+ M A [s]
= A 0[Sl +14, A [SI+IM A [s]] = X A [s]+IM A [s]]

(since f is injective)
(again since f is injective).

Then by (4),
Tj 1M [s1ldp@s) = [ Y [s)due)— § 1X nIs]ldu(s)

Tn Ty
(Here we have used (c)) It follows that u(M nS,) =0 for each n in {1,2,..}.
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Property (e) follows from (a) and (d), since {S;: iel} is a partition of H*\{0}.
SuBLEMMA 2. A(M) =0.
Proof. Property (b) holds in particular when i = z. Combine this with (e).

Sublemma 2 does not follow from (b) alone, since i is only finitely additive. Also,
we do not claim that M is measurable. If indeed (M) = 0, then x(X) = 0 immediately,
by the same reasoning as in Case 1.

Write D, for the closed disc of radius r with center O. Let r be least such that
u(DinS,) = 0; this is possible since S, is contained in the bounded set X.

SuBLEMMA 3. u(M n D) = 0.

Proof. Write
MnDi=MnDinSH)uMnDinS,)c(MnS)uDins,).

The last expression is a set of measure zero, by property (¢) and the choice of r.
Ifr = 0, then u(M) = 0, and u(X) = 0 immediately, as mentioned above. Therefore,

assume r > 0, and define the annulus N, = D,\D,_,, where 0 < & <r. Now let Q be the

intersection of N, with a “small” sector of D,. Call such a set Q a bite of D,.
SuBLEMMA 4. If Q is a bite of D,, then u(QnX)>0.

Proof. Since f has infinite order, the sets f*(Q) cover N,. Thus,

N,nS. = (/4Qn5s.)

keZ

= U (“@n f x)

keZ

(since S, = () f*(X))

= f@enx.
keZ .
Therefore, if u(Q N X) =0, then u(N,n S,) =0, but x(S, n N;) > 0 by minimality of r.
The proof now breaks into three subcases depending upon how-many of the g;’s fix O.
Subcase 1: g, (0) # O and g, (0) # O. (g5 may or may not fix 0.) The union of the
discs g7 *(D,) and g5 *(D,) does not cover 8D,, so there is some bite Q, as described
above, such that g, (Q) = D¢ and g,(@) = D;. Thus, if je{1,2},

g;(B;nQ)= gj(Bj)ngj(Q) cMnDi.

By Sublemma 3, u(M N Df) = 0, so we have u(gj B;n Q)) = 0. Therefore, (B, n Q) =0
and u(B, N Q) = 0, so By n Q is measurable, and p(B; N Q) = (X n Q). By Sublemma
4, u(XnQ)>0, 50 g35(B;n Q) is a subset of M with positive measure, but this is
impossible since F(M)=0 (by Sublemma 2).

Subcase 2: g, (0) # O, but g, and g; both fix 0. Then /i is invariant under g, and
g, as well as under . The disc g7 * (D,) does not cover dD,, so there is some bite Q such
that g, (Q) = Di. Now, o

g,(B;nQ)=g,(B)ng(Q) = M D
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Therefore by Sublemma 3, ll(g1 (B, nQ)) =0, so u(B;nQ)=0. Thus,
B Q)= A(B; N Q)+ (B, nQ)+A(Byn Q)

=B, N Q)+ (B3N Q).
Then

1(X) = u(Y) = G(A) + (S (A)) + A (g1 (B,))+ 892 (B2) + it (95 (B))
= ﬂ(A1)+ﬂ(Az)+ﬂ(g1 (B1))+ﬂ(Bz)+/j(Bs)
Z J(A)+AA)+AB, N Q)+ E(B; N Q) = u(X)+p(X N Q),

and we have a contradiction since u(X n Q) > 0 by Sublemma 4.
Subcase 3: gy, g5, g5 all fix O. Then j is invariant under all the g, as well as under
f- Thus, '

1(X) = p(Y) = E(A)+A(f (42)+ (91 (B))+ (92 (Bo) +A(g5(By)
= f(A})+ [{A,)+ E(By)+ A (By) +(By) = u(X)+u(X).
Therefore p(X)=0. m

THEOREM 2. Let D be a closed disc in S* of radius less than /2. There is no
S-paradoxical subset of D with positive Lebesgue measure.

The terminology in the proof is the same as that in the proof of Theorem 1.

Proof. In light of Lemma 1, it suffices to show that there is no (2, 3)-paradoxical
subset of D with positive Lebesgue measure. We prove a slightly stronger result: let X, Y
be subsets of S with u(X) = u(Y) and X < D. Suppose there are subsets A, A,, By,
B,, By of X and isometries f;, f5, g;, 9, y; such that P, ={d4,, 4,} and
P, ={B,, B;, By} are partitions of X, and P, = {f,(4,), f,(4,), 9, (By), 9 (B3), g5 (Bs)}
is a partition of ¥ Then u(X)=0.

Let f, M be as in Theorem 1. There are three cases.

Case 1: f has finite order. We find a measurable transversal T of the forbits.

If f is a rotation of order n with axis O0', or a rotatory reflection of order n with
axis 00, let T be the lune with vertices O and 0, and angle 2n/n, including all the
points of one of its two bounding great semicircles but no point of the other except the
points O and O'.

If f is reflection in the great circle C, let T be one of the two closed hemispheres
with boundary C.

Equation (2) holds in all cases as in Theorem 1. Also, |Y n Orb (s)| is finite since
|Orb(s)| is finite. It follows that u(M) =0, so u(X) = 0.

Case 2: f is a rotation of infinite order. Let 00’ be the axis of f. Without loss of
generality, we identify O with the point (0, 0, 1), so that /i is invariant under the
spherical isometries that fix or interchange the points 0 and 0",

Let S, be as in Theorem 1. Write D, (p) for the closed disc with radius r and center P
Let r be least such that u(D,(0F n§,) = 0. (Possibly r > n/2.) If r = 0, we get u(M)=0
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(and hence p(X) = 0), so assume r > 0. Every bite Q of D, (0) contains points of X (in
fact (@ N X) >0 as in Sublemma 4), so the boundary of D,(0) is contained in the
closure of X, but X is contained in the given closed disc D. We have

0D, (0) = cl(X) < D.
Similarly, let s be least such that u(D (0¥~ S,)=0, and obtain
aD,(0') < D.

Since D has radius less than m/2, onc of the radii r, s must be less than /2, Without loss
of generality, r < m/2.

The remainder of the proof is the same as in Theorem 1, Case 2. Note that the
inequality r < m/2 is necessary in Subcase 1; if r > n/2, the union of the discs g7 *(D,)
and g5 '(D,) might contain 4D,.

Case 3: f is a rotatory reflection of infinite order. Let S, be as in Theorem 1. If S, is
empty, u(M) =0, so let seS,. Then Orb(s) =S, = X =D, so cl(Orb(s)) = D, but
cl(Orb(s)) is either a great circle or a pair of antipodal circles and so cannot be
contained in D. m

TueoreM 3. Let D be a closed disc in S* of radius less than . There is no
4-paradoxical subset of D with positive Lebesgue measure.

Proof. In light of Lemma 1, it suffices to show that there is no (2, 2)-paradoxical
subset of D with positive Lebesgue measure. We prove a slightly stronger result: let X, ¥
be subsets of $? with u(X) = u(Y) and X < D. Suppose there are subsets 4,, 4,, B, B,
of X and isometries fi, f;, g1, g, such that P, ={A,, 4,} and P, = {B,, B,} are
partitions of X, and Py = {f; (41), f,(4,), 9, (By), g2 (B,)} is a partition of ¥. Then
1(X)=0.

Without loss of generality, f; is the identity. Write f =f,. Let M = g, (B;) U g, (B,).
There are two cases.

Case 1: f has finite order. The proof is the same as in Theorem 2, Case 1.

Case 2; f has infinite order. Then f is either a rotation of infinite order or
a rotatory reflection of infinite order. In either case let OO’ be the axis of f, and identify
O with the point (0, 0, 1) so that j is invariant under the spherical isometries that fix or
interchange the points O and 0. Let S, be as in Theorem 1. There are two subcases.

Subcase 1: g, neither fixes nor interchanges the points O and O'. Let S be the
semigroup generated by f and g,. We show that § contains two rotations F, G of
infinite order which have different axes. Let F = f2. If g, has infinite order, let G = g3.
If g, has finite order n, the element g;'=gi™! lies in S, so let G =g, Fgi*.

Consider the partition

{8, gy (X), 82 g, (By), Sin g1 (B2)}

of g, (X). Since S g, (B;) = Scn M, it has measure zero (as in Sublemma 1(e)). The
sets S, N g, (X) and g, (X) are clearly measurable, so it must be that the set S;n g, (B,)
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is measurable. It has the same measure as its image under g,gi*, but the latter is
contained in M. Since jI(M) = 0 (as in Sublemma 2), we have p(S5 Mg, (B,)) = 0. Hence,

) y(S,ngl(X))=/1(g1(X)).

Now,
.“(Sz Ny (X)) < :“(X N Q1(X))

< ,“(!/1 (X))a

but by (5) the inequalities become equalities and we have u(X)= (g, (X))
= u(X ng, (X)). It follows that for any measurable subset E of §2, we have

(since S, = X)

©) LENX) = u(g,(E)nX).
Also,
1S, g1 (X)) < u(S))
=p(S.nf(S) (simce S, = f(S,)
SpuXnfX) (since S, = X)
< pu(X).

Again by (5), the inequalities become equalities. We have u(X)= pu( 1(X)
= p(X n f(X)). It follows that for any measurable subset E of $%, we have

Q) K(EAX) = u(f (B) n X).
A simple induction using (6) and (7) shows that
® HENX) =uw(EnX),

for all w in S and all measurable sets E. We wish to show that p(X) = 0. Suppose not.
Let E be a disc of diameter ¢ such that u(E n X) > 0. Let ¢ be the center of E. Since
S contains F and G, the set {w(c): weS} is dense in S Therefore the discs w(E) cover
52, and by (8), each disc contains points of X. Since ¢ may be taken arbitrarily small, it
follows that X is dense in S?, which contradicts the inclusion X < D.

Subcase 2: g, fixes or interchanges the points O and 0, and g, fixes or

interchanges the points O and O'. Then /i is invariant under both ¢, and g, as well as
under f. Thus,

p(X) = u(¥Y) = G(A)+A(f (A2)+ (9, (B1)+ (9 (By)

= AA)+E(A)+A(B)+(By) = u(X)+p(X).
Therefore, p(X)=0. m

DermiTioN 3. Fix 6 > 0. Let K and L be perpendicular geodesics in H2. Let K (and
K, be the two equidistant lines to K at a distance ¢/2, and let L, and L, be the two
equidistant lines to L at a distance §/2. Mycielski’s square consists of the open subset of

H? bounded by K, K,, L, and L,, together with those points of the boundary which
lie in K, uL,.
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THEOREM 4. Mycielski’s square is 6-paradoxical.

Proof. Let X be Mycielski’s square. Mycielski proved the existence of four
hyperbolic translations f, f;, g, g, with the following properties.

() f; and f, fix the line K and generate a free abelian group.

(i) g, and g, fix the line L and generate a free abelian group.

(i) X = fi (X)) v 7 (X).

(i¥) X = g7 (X)u gz (X). _

(v) The group <{fi,fs, 91, g2 is the free product of the groups <{fi,f,> and
Y15 G27-

We will define subsets 4;, A;, 45, By, B,, B; of X such that

P = {AI’ Ay, As},
Py = {Bu B, 33},

and Py = {f; (4, f2(42), 43, 9;(By)s 95 (Bs), B3}

are each partitions of X, thus showing that X is (3, 3)-paradoxical. Let G be the infinite
graph with vertex set V(G) =X and edge set

E(G) = {{x7 (P(x)}: (pe{flafb gls 92}: XEX= (P(x)EX}
Let G, be the subgraph of G with edge set

E@G)) = {{x, o)} @e{fi.fo}, xeX, o(x)eX}.
Let G, be the subgraph of G with edgé set
E@G,) = {{x, p(¥)}: pe{gy, 9.}, xe X, o(x)eX]}.

Let G, be a connected component of G. It suffices to show that each vertex of G, can be
assigned to exactly one set in each of the three desired pa;titions, in a manner consistent
with the action of the translations.

Each connected component of G, which meets G, must lie entirely within G, since
each connecting path in G, is also a path in G. Similarly, each component of G, which
meets G, lies entirely within G,. Let {C;} be the set of connected components of G,
which lie in G,. Let {D,} be the set of connected components of G, which lie in G,

Let H be the infinite bipartite graph with vertex set ¥ (H) = {C;} v {D,} and edge
set E(H) = V(G,), where x is an edge of H connecting C; to D; exactly when
xeV(CYn V(D) )

We show that the graph H is connected. To find a path in H connecting
a component C of G, to a component D of G, let xqe; X;...€,%, be a path ir} Gy
connecting some element x, of ¥ (C) to some element x, of V(D). Each edge ¢, is either
an edge of G, or an edge of G,. It follows that some subsequence S of Xg, Xy, ..., X, i.s
a sequence of edges in H connecting C to D. Precisely, xq€8 if e, €E(G,); x,eS if
e,€E(Gy); if ie{l,...,n—1}, then x;e§ if either ¢, E(G,) and e+, €E(G,), or
¢eE(G) and e, €E(G))
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We show that the graph H has at most one cycle. Suppose that H has more than
one cycle. Then there is an edge x, of H such that H\x, still has a cycle and is still
connected. Let D, be the component of G, which contains x,. Let

Dyx;Cx,D,%3C5. .. %y 1Cp-1%,D,

be a walk in H\x, which starts at D,, follows a path to the nearest vertex of a cycle of
H\x,, travels once around the cycle and then returns along the same path back to Do,
so D, = Dy. If D, lies on a cycle of H\x,, then the walk is simply around that cycle.
Following the walk, we never need to backtrack immediately at a particular edge, that
is, x; % X;+q for iin {1, ..., n—1}. Also x4 % x, and x, # X,, since x,, x, € E (H\xo). It
follows that there are nonidentity elements wy, w,, Wy, ..., W, of {g;, ¢, > and noniden-
tity elements vy, vs, Vs, ..., Vo—1 Of {f1, [, such that wy(xe) = x;, v (x,)=x,,
Wy (X,) = X3, -oes Dpey(Xy-q) =%, and w,(x,) =x,. Thus, the direct isometry
W, Up—1...0y Wy fixes xg.

Similarly, let C, be the component of G, which contains x,. There is a walk

“Coxy D%, Cy%3D5.. . Xpye 1 Dy 1 %, G,y

in H\x, which, by the same method as above, yields a direct isometry v, Wy, -1 ... W; v
that fixes x,. Since the group {fi, f3, ¢, 9, is the free product of the groups { f, /2>
and {g,, 9,7, the two direct isometries fixing x, do not commute, and this contradicts
the fact that the action of the group of direct hyperbolic isometries on H? is locally
commutative.

We now describe the assignment of elements of V(G,) to sets of the partitions.
There are two cases.

Case 1: H has exactly one cycle. Let the cycle be
Dyx,Cyx3D3%,C5.. . %y-1Cp-1%,D,

with D, = D,. The assignment of points of V(G,) to sets of the partitions is
accomplished in countably many steps.

Step L. We assign elements of ¥ (C,) to sets of P,. The point x, lies in ¥ (C,). Since
X c fi Y (X)u 51 (X), there is a sequence

Xy, @10%1)y Pa01(X1)s @3 0504 (xy), ...

of elements which lie in X, and hence in V' (C,), where each ¢, is cither f; or f,. For
i,j >0, we have

Oron P01 (X1) # Qi joe e Pitt Ppev Pr04 (X)),

since the translation ¢;+;...;+; is not the identity of the free abelian group {fi,f>>-
This means that the points of the sequence are all different, so there is no ambiguity in
the following assignment.

Assign x; to A, if ¢, =fi. k=1 or k=2)

Assign @;... 0,0, (%)) to 4, if @4y = f;, for each i in {1, 2, 3,...}.

Assign all other elements of V(C,) to A,.
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Each element of V(C,) has now been assigned to exactly one of the sets in Py, and
the process has nccessarily assigned each element of ¥ (C,)\x, to exactly one of the sets
of Pj. )

Step 2. Assign the clements of V(D,) to sets of P,. Beginning with the element x,
of V(D,), we obtain a sequence

Xz, 1 (%3)s @203 (X2), 030,01 (%2), -

of distinct elements of ¥ (D,) where each ¢ is either g, or g,.

Assign x, to By if ¢ = g.

Assign ;... ¢, ¢y (x3) to B, if ¢4 =g, for each i in {1,2,3,...}.

Assign all other elements of V(D,) to Bj.

Each element of V' (D,) has now been assigned to exactly one of the sets in P, and
the process has necessarily assigned each element of ¥ (D,)\x, to exactly one of the sets
of P,. (This completes Step 2.)

Observe that since x, lies in both C, and D, its place in all three partitions has
now been assigned.

In Step 3 we assign elements of ¥ (C,) to sets of Py, by the method of Step 1, using
a sequence beginning with the element x,. In Step 4 we assign elements of ¥ (D,) to sets
of P,, by the method of Step 2, using a sequence beginning with the element x,. We
continue in this way, modelling the odd-numbered steps after Step 1, and the
even-numbered steps after Step 2, until we have completed Step #. At this point, each
element of

V€YUV (Cu...uV(Cph-y)
has been assigned to a set in P,, each element of
VDy)uV(D)u...uV (D)
has been assigned to a set in P,, and each element of
V(ICHUV(D)UV(CluVDyu...u V(C,-)uV(D,)

has been assigned to a set of P,. Notice that the placement of x; in P; is not determined
until Step n.

The remainder of the assignment consists of alternately applying Steps A and B
below ad infinitum, beginning with Step A.

Step A. For each element x in ¥ (G,) which has been assigned to P,, but has not
yet been assigned to P, let C be the component of G, containing x. Since C does not lie
in a cycle of H, no point of C other than x has been assigned to a set in a partition.
Assign all the elements of ¥(C) to sets in P, by the method of Step 1, using a sequence
beginning at x.

Step B. For each element x which has been assigned to P,, but has not
yet been assigned to P,, let D be the component of G, containing x. Assign
all the elements of V(D) to sets in P, by the method of Step 2. using a sequence
beginning at x.
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Case 2: H is acyclic. Let D, be any somponent of G, which lies in G,. Assign all
the elements in V(D) to the set By of P,. Then alternately apply Steps A and B above
ad infinitum, beginning with Step A. m

DerFINITION 4. Let K and L be perpendicular geodesics (great circles) in S2. Let p be
one of the two points of intersection of K and L. Let K, and K, be the two circles
equidistant to K at a distance d < n/4, and let L, and L, be the two circles equidistant
to L also at a distance d. The condition d < n/4 ensures that the K; meet the L. The
open subset of $2 which contains p and is bounded by K, K,, L, and L, is called
a square in S2

THEOREM 5. Every square in S is 6-paradoxical.

Proof. It suffices to find rotations fi, f5, g1, g, satisfying the conditions (i), ..., (v)
listed in the proof of Theorem 4. Clearly, there are rotations g, g, which satisfy
conditions (i) and (iv). Project the sphere stereographically onto the complex plane so
that K is identified with the unit circle, and L with the real line. There are real numbers
a, b, ¢, d satisfying a®+b? = 1 and ¢®+d* = 1 such that we may write the g; as maps
from C to C as follows: :

g, (2)=(az—b)/(bz+a) and g,(z) = (cz—d)/{(dz+c).

Let u and v be complex numbers of modulus one which are independent transcendental
elements over Q(a, b, ¢, d). The numbers u and v may be chosen so that the rotations

fi@=uz and f,(z)=vz

satisfy conditions (i) and (iii). It can be shown that property (v) then follows from the
transcendence of u and v. m

THEOREM 6. The open hemisphere is S-paradoxical.

Proof Let K, L, f3, g5, g, be as in Theorem 5. Write /' = f,. Let X be one of the
two open hemispheres bounded by K. The rotations g, and g, must be chosen so as to
satisfy condition (iv), but in place of condition (iii), we have simply f(X)= X.

We will define subsets A4;, A,, B,, B,, By of X such that P, = {4, 4,},
P, ={By, By, B;}, and Py = {4, f(4,), g; (By), 95 (B,), B,} are each partitions of X,
thus showing that X is (2, 3)-paradoxical. As in Theorem 4, define infinite graphs
G, G;, G, each with vertex set X and with edge sets

E(G) = {{x, o®)}: pe{f, 91, 92}, x€X, 0 (x)eX},
E(G)) = {{x,f(x)}: xeX},
E(G)={{x, 9(0)}: pe{gy, g2}, XX, p(x)eX}.

Let G, be a connected component of G, and define the graph H as in Theorem'4. The
hemisphere is more complicated than the squares for two reasons.

First, there is the possibility of a 2-cycle in H. Indeed, the rotation fy, has a fixed
point x in X. If C is the component of G, containing x, and D is the component of G,
containing x, then x and g, (x) are two edges connecting C to D in H. This actually
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presents no problem, since the proof that H has at most one cycle applies to 2-cycles in
the same way that it applies to larger cycles.

The second complication arises from the fixed point O of ] so assume for the
moment that G, is a component of G which does not contain the vertex 0. The
assignment of elements of ¥ (G,) to sets of the partitions proceeds as in Theorem 4, but
the odd-numbered steps are somewhat simplified. In Step 1, for example, the sequence of
vertices in C; beginning at x, is simply

x}: f(xl)ﬂ fz(xt)v f3 (xl)= A

Every element of the sequence is assigned to A,, and all other elements of C, (exactly
the elements /™' (x,), f~2(x,),...) are assigned to Ay

Now suppose that G, is the component of G which contains the vertex 0. We show
that, in this case, I is acyclic. Let D, be the component of G, which contains 0. Suppose
there is a cycle in H. Let

DyxCyx,D,%x5C3... %—1 Cy—1x,D,

be a walk in H which starts at Dy, follows a path to the nearest vertex of a cycle of H,
travels once around the cycle, and then returns along the same path back to D, so
D, = Dy. If D, lies on a cycle of H, then the walk is simply around that cycle. As in
Theorem 4, we obtain nonidentity elements wg, wy, Wy, ..., w, of <g;,¢,> and
nonidentity elements v, v3, Us, ..., 0=y Of {f)> such that the direct isometry
W, Un—1...0; W fixes x,. Since the group </, g,, ¢, is the free product of the groups
{f» and {g,, g,>, the isometry w,v,-;...v, w, does not commute with f, and this
contradicts local commutativity. Thus, H is acyclic.

Assign O to A,. Then, alternately apply Steps A and B ad infinitum, beginning with
Step B. m -
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