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Linear topologies on sesquilinear spaces
of uncountable dimension*

by
Otmar Spinas (Ziirich)

Abstract. Appenzeller [A] introduced an invariant I for orthosymmetric sesquilinear spaces of
regular uncountable dimension x which takes its values in some Boolean algebra D(x).
Constructively he shows that I' maps onto D(wy). We show that this is not true for » > .
Orthosymmetric sesquilinear spaces naturally bear linear topologies defined by the form (see [O],
[B]). There are various relations between the arithmetic, geometric and topological properties of
such spaces. E.g. Bini [B] characterizes 7-diagonal spaces using the notions of y-compactness and
continuous bases. We present an alternative characterization: existence of a convergent algebraic
basis. In [B], the question is asked whether there exist y-compact spaces without continuous bases
for arbitrary regular y. We give a positive answer by showing that the spaces defined in [A] are
examples of this. '

0. Introduction. Modifying a concept of Eklof ([E1], [E2]), Appenzeller [A]
introduced an invariant I which assigns to every orthosymmetric sesquilinear space (%)
(X, ®) over a fixed *-field k a value in 2 (%), where » is the dimension of X (which is
supposed to be a regular uncountable cardinal) and 2(x) is the Boolean algebra P (%)
modulo closed unbounded sets. The invariant I' reflects some geometrical properties of
(X, @), but it does not classify up to isometry. E.g. the following holds: X, ) =0iff
*, éD) is u-diagonal (*). Using a method developed by Shelah (see [Sh, Thm. 1.2]),
Appenzeller has constructed spaces (which are called ladder spaces in the sequel) whose
invariant ranges over a certain nontrivial interval of @ (%). In case » = w,, this interval
equals D(w,). It follows that I" maps onto 9(w,). We show that this is not true for
% > w; (Chapter 1), .

As Ogg [O] and Biéni [B] pointed out, any orthosymmetric sesquilinear space of
dimension » bears linear topologies @, (for any infinite cardinal y < ) which are closely
related to the form, Using the notions of y-compactness and continuous bases, Bini [B]
gives a topological characterization of y-diagonal spaces. Namely: A nondegenerate
space is y-diagonal iff, with respect to the topology o,, it is y-compact and it has
a continuous basis, We give an alternative characterization: If the space has dimension
% =y then it is x-diagonal iff it has an algebraic basis which is convergent with respect
to ¢, (Chapter 2),

* This work is part of the author's Habilitationsschrift at ETH Zirich.
(*) The definition, which generalizes symmetric bilinear spaces, is given in' 1.2 after Lemma 1. -
{*) Le. it is an orthogonal sum of subspaces whose dimension is <x.
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In Chapter 3, we recall the definition of Appenzeller’s ladder spaces and some
essential properties of them.

In Chapter 4, we look at convergent sequences in ladder spaces and obtain a direct
proof for the fact that such a space has no convergent basis if its invariant I' is > 0,

In [B], the question arises whether there exist y-compact spaces (in some
dimension) without continuous bases. For certain y (e.g. y = (29)"), such a space has
been found in [B]. Particularly, the question remained open whether there is one for
y = w,. We show that there is one for every regular y >w (even 2% many in every regular
dimension » > y, which are nondegenerate ¢-Hermitian). Namely, in Chapter 5 we show
that Appenzeller’s ladder spaces, if endowed with o,, are y-compact for every
uncountable y < the dimension of the space. It is well known that if ¢, is complete, then
the space is of finite dimension. So this result cannot be improved.

From the result in Chapter 5 and Béni's characterization of y-diagonal spaces it
follows that a ladder space with its I' # 0 cannot have a continuous basis. In Chapter 6,
we give a direct combinatorial proof for this fact.

1. The I-invariant of a sesquilinear space

1.1. The Boolean algebra 2(y). For any limit ordinal u with cf(y) > w (cf is the
cofinality function) a set C < p is called cub (closed unbounded) if for all limit § < g, if
C 4 is unbounded in J then §€C, and if C is unbounded in u. The set of all cubs in
u generates the cf(u)-complete cub-filter % (1) on p. The dual ideal #(u) contains the
thin sets. A set E <y is called stationary if E¢ #(u).

The following well-known theorem (“pressing-down lemma”) which is due to
Fodor will be frequently used in in this paper. A map f: E -y, where E < u, is called
regressive if (Yaue E—{0}) f(¢) < .

THEOREM 1 (e.g. [Ku], p. 80; the additional statement can be proved analogously).
Let cf(u) > w, E a stationary subset of j, and f: E— p regressive. Then for some y < p,
{e€E: f(0) < v} is stationary. If u is a regular cardinal we can even Jind y < u such that
Sy} is stationary.

Remark. It is not difficult to see that Theorem 1 characterizes stationary sets;
moreover: Let E < p be unbounded and thin. Then there exists a regressive f> E — j such
that lim,ep f () = p, ie. (Vy < W@, < u)(Voe E)o > - f () =y,

For E, F = u let us define

E~F :e there exists a cub C < p such that EnC=F~C.

Then ~ is an equivalence relation on 2(u). I we set D)= P ~,
E” vF":=(EVF)” and E~ A F~:=(EnF)~ for E~, F~ € D(), then (.‘ﬁ(,u), v, A)
becomes a Boolean algebra with #(u) as its least and & (1) as its greatest clement.
From Solovay’s theorem on partitioning stationary subsets of a regular cardinal
% one obtains the following fact:
THEOREM 2 [Sh]. For every ee @ (x)—{0}, [{feD(x): f<e}| = 2.

‘For a regular cardinal y <x we set E,(:= {1 <u: cf(d) =9} and 9,02
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= {eeP(x): e < E, ()~ }. As is easily seen, E, (%) is stationary, hence by Theorem 2 we
have [2,(x)| = 2*.

1.2. The invariant T. The following concept is due to Eklof (see [E1], [E2]) who has
designed it for Abelian groups. Appenzeller has adapted it to the context of sesquilinear
spaces (see [A]).

Throughout this second part, k will be a skew field of any characteristic endowed
with an involutory antiautomorphism * and ¢ a central element subject to se* = 1.
(Thus, if * is the identity, k must be commutative.)

Given a k-linear space X of dimension x, a family (X,), <, of subspaces is called
a s-filtration of X if

(1) (Vv <2%)dim X, < %,

@ (VAelim() X, = (),<.X,,

B) X = Uyeu X,

For the rest of this section we assume % to be regular uncountable.

The [ollowing (easy) lemma is crucial for the definition of I

LemMa 1 ([A], p. 691). Let (X,),<, and (Yv<x be u-filtrations of X. Then
{v<u: X,=Y} is a cub. :

A Dbiadditive function &: XxX -k such that D(Ax, y) = 10(x, y),
D(x, Ay) = P(x, y)A* and P(x, y) = 0 implies b(y, x) =0 for all x, ye X and Aek is
called an  orthosymmetric = sesquilinear  form (). I in addition & satisfies
P(y, x) = eP(x, y)* it is called e-Hermitian (3). For a subspace Y< X the orthogonal
complement is defined by Y*={xeX: (VyeY)d(x, y)=0}. We say that Y is
a summand if X = Y@ ¥Y*. By Lemma 1 it follows that '

I'(X, )= {v <% X, is no summand}" e D(x)

is an invariant of the space (X, @) and does not depend upon the particular filtration
(Xhv<x of X. If no confusion about the form is possible we write I'(X) instead of
rex, o),

The following theorem characterizes the cases where I'(X) =0 and rxy=1.

TueorEM 3 ([A], p. 691). (1) I'(X) =0 iff X is x-diagonal.
2) T(X) # 1 iff for every w-filtration (X )<, of X there exists a normal (*) function
J: x=r3¢ such that for all vesuce(x), X o) 18 a summand in X.

Until Appenzeller’s work, no sesquilinear spaces were known with invariant
I' different from 0 or 1. In [A], for arbitrary ee@,(x) such a space (even 2*
non-isometric ones) has been constructed with e as its invariant. Since clearly
Do(@,) = D(w,) it follows that I' maps onto P{w,). The question remained open
whether this is true for % > w,, as one could have expected; for this holds (for every
% < w,) in the context of Abelian groups (see [E2], p. 62). Nevertheless, the following
lemma shows that the situation is differént with sesquilinear spaces.

() See [G1] for further details.
(*) Le,, strictly increasing and continuous at limit points.
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LemMMaA 2. Assume % >w,, and let (X, ) be a x- -dimensional orthosymmetric
sesquilinear space over k,* with a n-filtration (X \)y<x. If p < isa limit with cf(1) = w,
and X, is no summand, then the set {v<u: X, is no summand} contains a cub.in p.

Proof Assume by way of contradiction that the set E = {v<p X,is a sum-
mand} is stationary in 4. Then E N lim(y) is also stationary. Because X, is no summand
there exists x € X such that x—y¢ X;, for all ye X,. On the other hand, for every ve E
there exists a unique y,e X, such that x—y,€ X’ +. Let f'(v) denote the least & such that
y,€X,. Then clearly f is regressive on-E ~lim(y). By Fodor’s Theorem there exists
y < psuch that E' = {ve E:-f(v) < y} is stationary, thus unbounded in p. Let v, v, € Ef
with 3 < v, <v,. We conclude x—),,€ Xy, & Xt and y,,eX, € X,,, hence y,, = y,,
by uniqueness. Let us call this vector y. Then x—ye Xy for all ve E' with v >y, thus
x—yeXy;. A contradiction.

Lemma 2 implies that in case » > w; the image of I' is not all of 9(x). As an
example we nole

COROLLARY. Let wy <y <x be uncountable regular cardinals. There exists no
orthosymmetric sesquilinear space (X, ®) of dimension x such that 0 < I'(X) < E, (%)~

Proof. Suppose by way of contradiction that (X,), <, is a »-filtration of the space
(X, ®) such that 0 < E~ <E,()”, where E={v<x: X, is no summand}. By
hypothesis, there exists a stationary E; = E,(x) and a thin F < % such that E = E, U F.
It is not difficult to see that E, —{v < »: F.nvis thin in v} is thin, Hence, we can choose
AeE,—F such that 2~ F is thin in A Clearly E,(¥) n E = F, and we conclude that X,
is a summand for all ve(E,(%)—F)n A, which set is stationary in A. This contradicts
Lemma 2.

Remark. Lemma 2 has been observed independently by J. E. Baumgartner in
[Bal.' Furthermore, under the assumption of the Continuum Hypothesis, for every
E < x with the property that for every limit ue E with cf(y) > w, a cub in u is included
in E he constructs a space (X, @) such that I'(X) = E~. His construction is a variation
of the spaces found by Appenzeller. It is an open question whether CH is necessary for
this result.

2. Linear topologies on sesquilinear spaces

2.1. y-Compactness and continuous bases. We recall that a topological vector space

(X, 7) over k,* is said to be linearly topologized if k bears the discrete topology and
the filter of zero-neighbourhoods possesses a basis consisting of linear subspaces of X.
Thus, to give a linear topology 7 on the vector space X is the same as to give a filter
% in the lattice of subspaces. Elements of % are then open and closed and 7 is
separated iff ()% = {0}. The basic facts about linear topologies can be found in [B] and

" [K]. A filter # is called linear if it admits a basis consisting of affine subspaces (= linear
varieties) of X, and it is called a y-filter (where y is an infinite cardinal) if every

intersection of < y filter-elements belongs again to the filter. If the neighbourhood filter .

is a y-filter, we simply call X a y-space or I a y-topology.
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DeFINITION 1. We say that (X, 77) is p-compact (more exactly: linearly y-compact) if
every linear p-filter on X has a cluster point.

LemMA 1 ([B], p. 1565), Let y be an infinite regular cardinal.

(a) Any y-compact y-space is complete, and thus

(b) any vy-compact subspace of a sepdrated y-space is closed.

(¢) A closed subspace of a y-compact space is again y-compact.

(d) The image of a y-compact space by a linear continuous map is y-compact.

(e) Let y be regular. A discrete space X is y-compact iff dim X < y.

The well known notion of summability of infinite families of elements applies to
arbitrary commutative topological groups, in particular to linearly topologized spaces.
From [B], [K] we recall the concept of continuous bases.

DEFINITION 2. A family (x,),; of vectors in X is called a continuous basis of (X, ) if

(@) for every xeX there is exactly one family (&) of elements of k with

x = ZIEI &%y,

(i) all “coordinate functions” p,: X —k, x—¢, are continuous.
For regular y > w the following holds:

THEOREM 1 ([B], Prop. 2, p. 1568). Every continuous basis of a y-space is also a basis
in the algebraic sense.

2.2. The topologies ¢,. Let y < » be infinite cardinals and (X, ) an orthosymmetric
sesquilinear space of duncnsmn % The set {Y!: Yo X is a linear subspace with
dim Y < v} is the neighbourhood filter of a linear topology on X which is denoted by
o (P, y). If & is clear from the context we write o,,. If y is regular, then o, is a y-topology;
o, is separated iff ¢ is nondegenerate.

One main result in [B] is the following topological characterization of y-diagonal
spaces:

THEOREM 2 ([B], p. 1576). Let & < y < x be regular cardinals. For any orthosymmet-
ric sesquilinear space (X, ®) of dimension x the following statements are equivalent:

@) (X, ®) is y-diagonal and nondegenerate.
(i) (X, o,) is y-compact and has a continuous basis.
We give an alternative characterization in case of y = x:

THEOREM 3. Let »% > @ be a regular cardinal. For any space (X, &) as above, the
Jollowing statements are equivalent:

@) (X, ®) is x-diagonal.

(i) X has an (algebraic) basis (x)e, Such that lim,..,x, =0 with respect to the
topology o,.

For the proof of this statement we need the following generalized version of
Theorem 1 in [G2], p. 99. It can be proved analogously (x is supposed to be regular).

LemMA 2. If X has an (algebraic) basis ()., with the property that for every 1 < x we
have {{v < x: ®(x,, x,)# 0}| <x, then (X, ®) is x-diagonal.

4 — Fundamenta 139.2
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Proof (of Theorem 3). (i)—(ii). Let X = @ix, X, such that (V1 < x)dim X, < x.
Let &, be a basis of X, and (x,),, an enumeration of U,E,, %,. Then clearly lim,.,, x, = 0;
for {@®,<,<xX,: v<u} is a basis of the zero-neighbourhood filter of a,.

(i) —(@). Let (x),<» be a basis of X such that lim<,x, =0. Set X, :=
@<, kx, for every v < x. Then {X3: v < } is a basis of the neighbourhood filter of 7.
Let 1 < ». By hypothesis there exists v, < x such that (Vv < x)v > v,~x, € X} (. Hence
{v: &(x,, x,) # 0} < v,. By Lemma 2 we conclude that (X, &) is x»-diagonal,

Remark. It is not difficult to see that from the existence of a convergent basis of
X with arbitrary limit it-follows that there exists a basis with limit 0. Thus we arrive at:

THEOREM 3'. Let % > w be a regular cardinal. For any space (X, ®) as above the
following statements are equivalent:

() (X, @) is x-diagonal.

(i) X has a basis which is convergent with respect to the topology o,.

3. Appenzeller’s ladder spaces. Let x be a regular uncountable cardinal. If E < E (%)
(see 1.1), a ladder system on E is a family n = () such that every 7, is a ladder on 1,
ie. a strictly increasing function w— A.having sup,<,#;(n) = 4; we shall additionally
require that each round n,(n) is a successor ordlnal Given 7 on E, X (E, ) is the k-linear
space spanned by a basis

B ={x" 5¢{0, 1}, n< w, vesucc()} v {)4: te{0, 1}, AcE},

endowed with an e-Hermitian form over k, * defined as follows (s, t&{0, 1}; m, new;
T,068ucc(x); A, uck):

& ifs#FtAm=nAt=o0,
0  otherwise,

QD(xt 7xn' )_’{

1 fs=taz=mnn
&b z.n, 1y = A\
(<" 33) {O otherwise,
if s£EtApED
otherwise.

o0, )= {g"l{m < @ 1,(m) = m;(m)}|

For each function ¢: E—{{0}, {1}, {0, 1}} let X(E,#, §) < X(E,n) be the
subspace spanned by
B, ={x": 5e{0, 1}, n< o, Tesuce 0o} U {yh: AeE, tep(D},

endowed with the restricted form. If $(A) ={0, 1} for all AekE,
X(E,n, ¢) = X(E, ).
If we let X (E,#, ) be the span of

then clearly

{x™ s€{0, 1}, n < w, Tesuce(v)} V{ir leEnv, te (B},

then (X,(E, 7, §))y<x is a x-filtration of X(E, 1, ¢).
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We quote the following results in [A]. We keep 1 and ¢ fixed, writing X instead of
X(E, n, ¢) and X, instead of X ,(E, n, ¢). By - we mean orthogonality in X, and we use
I(v, ) = {n < w: n(n) <v}.

THEOREM ([A], pp. 694-695). For every v < » we have:

(1) Xy = span{x¢": 5€{0, 1}, n < w, tesucchy, v < 7} Dspan{ys—&'Y mere,n o™
AeE, v <, ted(A)}; consequently, X is nondegenerate.

(2) veE-»X = X, @®span{)l: tep(W} @ Xy~ X, is no summand.

(3) véE— X, is a summand; thus vesucc(x)—X, is a summand.

¥ Ix) =

4. Convergent sequences in ladder spaces. Let X (E, 7, ¢b) be a ladder space over
(k, *, &) endowed with the ¢, -topology. Again, we write X, X, instead of X (E, n, ¢),
X ,(E, 5, ¢) respectively.

If E is thin, then by the Theorem in Chapter 3, I'(X) = 0. Hence by Theorem 3, 1.2
and Theorem 3', 2.1, X has a convergent basis. Using Remark 1.1, we can specify such
a basis if |E| = % (unless 4, is sufficient). Choose a regressive function f: E—x such
that lim,cg /(1) = x and let % be an enumeration of all x;" (s€ {0, 1}, n < w, T esucc(x))
and all y4—&Y merrn Xaaod™ (t€{0, 1}, A E). It is not difficult to verify that
lim% = 0.

If E is stationary, then by the theorems referred to above, X cannot have
a convergent basis. This follows directly from the following lemma. For any x-sequence
(X)<x in X set

E((e)<r) = {A€E: (@1 < #)(@re{0, 1)) pys(x) # 0},

where p,. is the coordinate function (see Def. 2, 2.1) of the vector y}, with respect to the
basis 4,.

LEMMA. Let (x),<x be a -sequence in X such that lim,<,x, =0. Then the set
E((x)i<x) is thin.

Proof For every AEE((X,)1<,¢) choose 1(4) <% such that py(xy)#0 for
a te{0,1}. By nondegeneracy of X and the fact that for Aelim(x) we have
X% = (y<2 Xy there exists a greatest v < x such that x,, € X5; denote this v by v(1(3)).
Now consider the function

f: E((xl)z<x)°'+ *,

By clause (1) of the Theorem, Chapter 3, f is regressive.

Assume that E((x,),<,) is stationary. Hence, by Theorem 1, Chapter 1, there exists
a stationary S & E((x).<s) and y <x such that (VieS—{0}) f()) =y. So clearly
{1(l): €S} =x and for every v>y and AeS, X,¢Xy. This contradicts the
hypothesis.

A=v(1(A).

COROLLARY 1. Let (x)),<, be a convergent x-sequence in X. Then E((x),<) is thin.
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Proof. Let x = lim<, X,. Set y,:= x—x, for all 1 < x. Hence lim,<, y,= 0. In the
representation of x by 4,, let y4, ..., y§, be the finitely many y4 with a nonzero
coordinate. Then clearly E((x),<x) S E(()i<s)V {41, ..., 4,}. By the Lemma, this set is
thin. :

COROLLARY 2. Let (x,), <x be a basis of a ladder space X with I(X) > 0. Then (x,),<\
does not converge.

Proof. Clearly, we must have E((x,),<,¢) = E. By hypothesis, E is stationary; so, by
Corollary 1 we are done.

Remark. Let (x),<, be a Cauchy sequence in X (E, #, ¢). It is not difficult to see
that (x,).<, has a subsequence (y,),<, such that E((y),<,) ~ E((z),<), Where z, = y,,{ — Ve
Since (x),<, is Cauchy (z)<x is convergent with limit 0. Hence by the Lemma,
E':= E((y),<) is thin. But clearly we have Wh<x S X(E, 1, ¢) =X X(E, 1, ¢),
where 1’ = (1), ¢ = G|E". By Theorem 3, Chapter 1, X’ is %-diagonal and so
»-compact by Theorem 2, Chapter 2. Furthermore it is easy to see that on X', the
topology o, defined by ®|X'x X' coincides with the topology induced by o, on
X(E, n, ¢). It follows that (y,),<, is Cauchy in X’ and thus converges in X’ and hence in
X(E,n, ¢). ‘

In order to prove completeness of X (E, 1, ¢) (for arbitrary E < E, (x)) we still have
to show that convergence of arbitrary Cauchy sequences implies convergence of Cauchy

nets, which is true in a more general context. We do not prove this here since in the.

following chapter we show that ladder spaces are even y-compact for arbitrary regular
P> o

5. Ladder spaces are compact. Let » <y < » be regular cardinals and let X be
a ladder space of dimension %, endowed with the topology o,

A directed set (D, <) is called y-directed iff (VA4 = D)|Al < y—(3deD)(Vae A)
d>a. If D is y-directed, so is every cofinal D' = D.

The following lemma is the key element in the proof of y-compactness.

Lemma 1. Let te{0, 1} and let N = Yy, deD> be a net in X such that D is
y-directed. Then N has a cluster point.

Proof. Successively, we distinguish several cases:

Case 1: There exists a cofinal D' = D and A€ E such that (Vde D) A(d) = 1. Then
cleatly lim{y}s, deD'y = y4, and so ), is a cluster point of N. '

Case 2 (71Case 1): For every AekE there exists d,eD such that (VdeD)
d > d;— A(d) # A. We choose u < » minimal such that there exists a'cofinal D' < D with
the property (VdeD') Md) < pu. Then for every o < u there exists d,eD’ such that
(VdeD)dz d,»a < A(d) < p. We ' abbreviate this by writing limyep A(d) = u. By
y-directedness of D' we conclude of(u) 2y (>w) : :

Case 2.1: There ‘exists a subnet Viays a€ ) of V4@, deD’y such that A is

" y-directed a‘n'd limse 4 240y (0) = p1. This is a subcase of Case 2.2 ...'2.1 which will be
treated below.
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Case 2.2 (Case 2 A 1Case 2.1): In this case there exists e, < u and d, e D' such
that (Vde D) d > dy— 1124 (0) < ay; for otherwise, for every o < p and de D' there exists
d'e D' such that @’ > d and 11,4 (0) 2 o If we endow 9:= {{d, ade D' x u: Ny (0) = a}
with the product ordering, then 2 is y-directed, and the map f: 2>D', <d, adi—d, is
cofinal; hence {Vi(rcanrs <d, %) € D) is a subnet of (¥, de D’y and it is easily seen
that limegayed Nagrcany (0) = 4. A contradiction to Case 2.2.

We proceed analogously for 5,4 (1): Distinguish

Case 2.2.1: There exists a subnet {Viun, acAd of (I, deD'> such that A is
y-directed and limyeq faua (1) = p.

Case 2.2.2: As in Case 2.2, one shows that there exists a; < pand d, € D' such that
(VdeD)d 2 dy~nya(1) < oy

We claim that after finitely many steps we arrive at Case 2.2 ... 2.1. Otherwise,
there exist oy, o,...<pu and ‘dy, d,...€eD’ such that (Vn<wVdeD)
d 2= d,— (1) < a,. By of () 2 y > o, we have o= sup, <0, < 4, and by y-directed-
ness of D’ there exists d,eD’ such that (Vn< w)d,>d, Consequently
(VdeD'Vn < w)d = d, =134 (n) < o, and hence (Vde D')d > d, ~ A(d) < o,. This con-
tradicts the minimality of u (see Case 2). ‘

By what we have shown so far, there exist a subnet {}4u, a€4) of {Yya),deD’)
with y-directed 4 and n < w such that lim,e 4714 () = 1. We write A(a) instead of A(da).

Now consider {f,(0),ae4). :

We distinguish two cases: .

Case a: There exists o < pand a cofinal 4o € A sgch that (Vae Ao) 110 (0) = 'ﬁo.

Case b: For every f < p there exists a; € A such that (Vae A)a = ap— 1,0, (0) # B.
In this case set Ay:= A. ‘ )

Proceeding analogously, either choose a cofinal 4; < 4, and B; < u such that
(Vae Ay)n:q(1) = By (Case a) or otherwise (Case b) set A, := A,. Finally, we choose
A1 € A,-» and, possibly, B,-1 <u.

If in the ith step we can choose f; < u (Case a), set z;:= &'x},"", z;:= 0 otherwise
(Case b), and let z:= Zi‘;& z;. We claim that lim{y;q), a€4,-1) =z and thus, z is
a cluster point of N. ' '

Let U < X be a subspace such that dim U < y. We may certainly assume that U is
spanned by vectors in #,. By dimU <y and cf (4) > y there exists a < u such that
(V<n,td e x succ())xi"e U—rg¢{€: a < E<p}, and (VAeE).y,{"e U— (Vn< o)
namé{&: a < € < p}. Now since limgey,.,Naw(n) = u there exists ao € A,y such
that (Vaed4,-1)(Ym = n)a 2 ag—a < fym(m) < p. Hence, by construction of A,-;
SAy2S...€ 40 A and B; and y-directedness of A,-;, these exists a;€4,-q,
a; > ag, such that for all aeAd,- with a > a, the following two' statements hold:

1) (v, Dewx sucg:(x)) [ eU Am@() =1)-@0<i<n) {j, ) =<, ],

@ (VieEVj<a)[(i™ eU am(i) = naw())~@0 <i<n {m()) = G, B>].

We conclude (Vae A,-;)a = a;— Yyo—z€ U*, and hence, (yiq), € 4y—1) even-
tually remains in z+ U*; for let aed,~q, a > ay. If there exists x;™e U such that
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D(x2™, i) # 0, then by (1) there exists 0 < i < n such that x™ = x4/, and we compute
B(xh, Vi —2) = DY, Vi) — PO, e'x37™) = 1 —(g)*e' = 0.
If B(xi™, ) = O, then clearly ®(xp™, z) = 0. Finally, if y{ ~*e U, then by (2) we have
PUi™ V=2 = N0 < i < n mu() = B ~E*{0 < i < n: pu() = Bille =0.

Lemma 2. Let te{0,1} and let N = (x%",de D) be a net in X such that D is
y-directed. Then N has a cluster point.

Proof. We distinguish two cases:

Case 1: There exist a cofinal D’ = D and tesucc(x) such that (VdeD)t(d) =
Then by y-directedness of D' and y > , there exist ne w and a cofinal D" = D’ such that
(vdeD")n(d)=n. We conclude lim{xi ", deD"y = xb»,

Case 2: For every 7esucc(x) there exists d, e D such that (VdeD)d > d,— 7(d) # 7.
We claim that in this case we have limN = 0.

Let U< X be a subspace spanned by vectors in A, with dimU <+y. By
y-directedness of D, there exists doeD such that (V(n,t)ewx succ(x))xi """ U
—d:<do and (VieE)yieU—(Vnew)d, xm < do.  Consequently, (VdeD)d > d,
- X e UL,

THEOREM. Let @ <y < % be regular cardinals. For any ladder space X of dimension
% (X, 0y) is y-compact.

Proof. Let N ={z;,deD) be a net in X such that D is y-directed. We have to
show that the linear y-filter & which has as base the linear manifolds generated by the
final segments of N has a cluster point.

By y-directedness of D, there exist n < w and D, = D cofinal such that every z, with
de Dy has at most n nonzero coordinates with respect to the x2"’s, x2"’s, y9’s and yi’s.
Then every such z, can be written as :

1 n
2=y, Y (ald,t,)x(d,t,)+p(d,t, )y(d,t, 1),
t=0i=1
each x(d,t,i) being one of the x’s, each y(d,t,i) one of the yi’s.

Using Lemmata 1 and 2, we successively choose convergent subnets as follows:
Choose a convergent subnet N, = {x(da,,0, 1),a1€4:) of {x(d,0,1),de D, such that
Ay i5 y-directed and. let u(0,1):=1lmN,. Then: choose a convergent subnet
N2 ={x(da,a,,0,2),a,€4,> of {x(day,0,2),a;€4,) with yp-directed A, and let
u(0,2):=lmN,. In the 2nth step the net {x(day...azy-1,1,n), 85— 1€ Agu—yd has
a convergent subnet {x(daj...as.,1,n),a;,4,,> such that Ay, is y-directed. Let
u(1l,n):= limN,,. '

Now, analogously handle the y(d,t,9)’s: Choose a convergent subnet Nops1
={y(day...22441,0,1), 85041 €Agns 1> of <y(day...a,,0,1),a3,6 45,> such that
Aznsy is y-directed and let v(0, 1):=1lmN,,.;. In the 4nth step we arrive at
a convergent subnet N4,,=(y(da1...a4",1,n),a4n644") of (y(day...a4-1,1,n),
Q4n-1€Agn-1> such that A, is y-directed. Let v(l,n):=lmN,,.
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For simplicity, let us write A instead of Ay, a instead of a4, and d(g) instead of

dd1 /7P
By construction, we have Vte{0,1}Vigign

3) 1ir;1 {x(d(a),t,i),ae A = u(t, i), 1i13 {(d(a), t,1),ae 4 = o(t,i).

Now consider the net
{a(d(@),0,1), .., a(d(a),0,n), e(d(@), 1,1), ..., a(d(a), 1,n),
B(d(a),0,1), ..., B(d(a),0,n), B(d(a), 1,1), ..., B(d(a), 1,n),aeA>.

By Lemma 1(e), 2.1, the k-space k*", endowed with the discrete topology, is even
w-compact, Hence, there exist scalars a(t, i), B(t,))ek, where te{0,1},1 <i< n, such
that for every a€ A there exist finitely many a;e A with a; > a and §;ek with ¥ ;6; =1
such that for every te{0,1} and for all ie{l, ..., n} the following equations hold:

“ Y.0(d(ay), ) = alt, ), Ej]‘%ﬁ(d(aj);t, i) = B(t,1).
j .

We claim that the vector

I

1 n
z= 3 ¥ (ot ult,i)+p(t, o, )
t=0 =1
is a cluster point of #. So let U < X be a subspace such that dimU <y, and ae 4. We
have to show that z+ U' contains an affine combination of zy,’s with a” > a.
By (3), there exists a' € 4 such that for every a” > d, te{0,1} and ie{l, ..., n} we
have x(d(a"),t,i)eult, i)+ U* and y(d(a"),t,i)ev(t,i)+U*. Now choose finitely many
a;e A with a; > a,d' and §;ek with ¥ ;6; = 1 such that the equations (4) hold. Then for
all te{0,1} and ief1,..., n} we have

Y 8,a(d(a), t,i)x (d(ay), t,i) €. S;a(d(a), t,)ult, )+ U* = alt, dult, )+ U™,
I J .

Z éjﬂ(d(dj), t,i)y (d(aj), t,i)eZ&;ﬁ(d(a,), t i)U(t, l)+ Ul = ﬁ(tv i)U(t, l)+ U‘L’
J J

and hence

n

1 n ) )
S 8)2uap = 3.8 21: Y a(d(ay), t,i)x(d@),t,)+50; Y. Y. B(day,ti)y(d(a),t.i)
i j

t=Q =] J t=0 i=1
1

= i ‘2Z&,a(d(a,),t,i)x(d(aj),t,i)+Z Z 5Jﬂ(d(aj):t’i)y(d(aj):t’i)

t=0i=1J 1=0i=1j
& ‘2 i (o2, ute, )+ (e, Dolt, D)+ U™
£=0i=1

6. Ladder spaces and continuous bases. Assume that E = x is thin. Then, by the
Theorem in Chapter 3, the ladder space X = X (E, 7, §) satisfies I'X) = E™ = 0. So, by
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Theorem 3, 1.2, and Theorem 2, 2.2, (X, 5,) has a continuous basis. It is not difficult to
see that the basis € given at the beginning of Chapter 4 is continuous.

If E is stationary, we have I'(X) = E~ > 0. By the theorems referred to above and
the result in the previous chapter, for all regular w <y < %, (X, ¢,) has no continuous
basis. In the -sequel, we give a direct proof for this fact. We need the following
combinatorial lemma:

LeEmMA. Let E = x be stationary and (n,)ir o ladder system. Then there exists

resucc(x) such that for every v < with v > 1 the set
‘ AYE) = {AcE: u, has no rounds in {{ <x: 1< E<v}}
is stati'onary.

Proof. Assume by way of contradiction that for every 7 & succ(x) there exists v, < x
with v. >t such that A*(E) is thin. We may certainly assume v,esucc(x) for all
resucc(). Inductively, define an w-sequence: Let toesucc(x) be arbitrary and
Tys+1:="V,,. Then clearly the set ‘

A=) Apr(E)
, n<w
is thin (as the union of < x thin sets). It follows that E—A4 is stationary and hence
unbounded in %. Choose A€ E—A4 such that A > sup,<,7,. By construction, then the
ladder 7, has rounds in {£ex: 7, < & < 7,4} for every n < w. This contradicts the fact
that », is strictly increasing and sup,<en(n) = A.

TaeoreM. Let X be a ladder space (from Chapter 3) of regular dimension x. If
I'(X) >0 then (X,0,) has no continuous basis.

Proof. Assume by way of contradiction that (X, ¢,) has a continuous basis (%)ser-
By Theorem 1, 2.1, (x,),s is an algebraic basis of X. Thus, we may assume [ = x.
There exists t€{0,1}, n < w and a stationary E’' < E such that for all 1 E’ we have
te¢(d) and, in its representation by (x,),<., ¥4 has n nonzero coordinates.
Consider the function

Jor E—»x, A, (0).

. By definition, f; is regressive. So, by Fodor’s Theorem, there exists a stationary E” < E'
and ypesucc(x) such that #,(0) =y, for all leE".

By the Lemma there exists t; €succ(x) such that A, (E") is stationary for all v < s
with v > 7. Then clearly t; > . There exists I; < x with II;] < % such that

0] X., < @ kx,

i 9
By continuity of (x,),<, and regularity of %, there exists v; < % such that for all 11 1
)  p)={0},

where p, is the 1th coordinate function (see Definition 2, 2.1). We may assume v, > 1,.
Then A} (E") is stationary.
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Once more ‘using the fact that the union of < x thin sets is thin, we find m < o,
Yo <Y1 <... <m <7 and a stationary E; < 4%(E") such that for all leE,, for all
0<i<m and for all m+1< j<w we have ,(i) = y; and 1.(J) = vy,
Consequently, for any choice of icE,,

my
3) Z x']I‘A-(.Iil')m = Z x}{‘*t.l = Eth
mal(vy,d) i=0
and
) Vi—ugeXs,.

With respect to (x,),<x, #1 has a representation
q1

%) U=y wx,,
i=1

where ¢; > 0 and «; £ 0 for all 1< i<gqy.

From (1)-(5) we conclude p, (¥4 ~u;) = p, (%) —a; = O for all 1 < i< g, and hence
p,,(¥3) # 0. By construction, every y} has n nonzero coordinates (with respect to (x,), <).
But now, we already know g, of them; so clearly g, < n.

Now we repeat the procedure above. The function

Juprr: Ey=u,  Aoy(my+1),

is regressive on the stationary set E,. Again, by Fodor’s Theorem there exists
a stationary set By & E,; and y,,, 4 €succ(x) such that n,(m; +1) = yp,+ for all A€ E}.
Then clearly vy < Puy+1. '

By the Lemma, there exists 7, &succ(x) such that for all v < x with v > 7, the set
Al (E'y is stationary. Again, there exists I, < » with |I,| < % such that
© X, < @ kx,.

el

As above, we find v, < % with v, > 7, such that for all 1€l,

0 : p(X3) = {0}.
Again there exist m, < @, Vi € VYmyrt <Ytz <oor < Vm+m; <72 and a stationary
E; < A%(Ey) such that for all AeE,, for all m+1<i<my+m; and for all
my+my+1< j<w we have n;(i) =y and 7,()) = va.

For any choice of AeE, we conclude

mytmz

Z x#a\?v:t')m =ty Z x%r,'i =1ty Uy,

mel(va,A) P=mytl
® Ya—uy—upe X3,
and furthermore
(9) . Uy EX.,Z.
Let

q1+4q2

(10) up= oy Xy,

imgtd
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such that g; > 0 and «; # 0 for all g, +1 < i< q;+q;. Putting together (1)-(9), we
conclude

P (i—u—uz) =0

for all 1 <i< q;+4g,. Furthermore, ;;¢{1,, ..., 1,,} for every ie{g,+1, ..., g +q,};

for otherwise we would have p,(4—uy) = p,,(y4—us —us) = 0, thus P, (uz) = 0. This

contradicts (10). We conclude p, (y3) # 0 for all 1<i<g;+q,. Hence g, +g, <n.
After finitely many steps we must arrive at »;q, > n. A contradiction.

CorOLLARY. Let w <y < x be regular, X a ladder space of dimension x. If I'(X) > 0,
then (X,0,) has no continuous basis.

Proof. By Theorem 1, 2.1, a continuous basis (x,),e of (X, g,) is an algebraic basis.
Because o, is coarser than g, the coordinate functions p, are continuous on (X,0,); and
hence, (x,),e; would be a continuous basis of (X,s,). This contradicts the Theorem.
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Relative consistency results via strong compactness
by
Arthur W. Apte‘r* (New York, N.Y.) and James M. Henle* (Northampton, Mass.)

Abstract, We show in this paper that certain relative consistency proofs which had originally
been done using supercompactness can be recast, using Henle’s notion of modified Prikry forcing,
in terms of strong compactness.

The notion of strongly compact cardinal is perhaps the most peculiar in the entire
litany of large cardinal axioms. The well known results of Magidor [M] and Kimchi
and Magidor [KM] show that strongly compact cardinals suffer from a severe identity
crisis: The least strongly compact cardinal can be either the least measurable cardinal or
the least supercompact cardinal, and the class of strongly compact cardinals can
coincide precisely with the class of measurable cardinals or with the cl_ass of
supercompact cardinals (except at limit points). It is further the case that the cons%stency
strength of strongly compact cardinals is still unknown. Guesses on their consistency
strength range from equiconsistent with supercompacts to a consistency strength far
below that of supercompactness. :

One of the most frustrating aspects of working with strongly compact cardinals is
their intractability in forcing constructions due to a lack of the normality anfl closure
properties associated with supercompactness. Very few forcing proofs fgr th_Js reason
have been done using strongly compact cardinals. A motable exception is Gmk’s
construction of [G1] in which, starting from a class of strongly compact cardinals,
a model in which all uncountable cardinals are singular is constructed.

In [H], a notion of modified Prikry forcing in which normal measures are not used
was developed. We adapt this forcing construction to shov»f that certain theorems
originally proven using supercompactness can be reproven using strong compactness.
Specifically, we establish the following results.

Taeorem 1. Con (ZFC + There exist cardinals % <A so that % Is 1 stronqu
compact and A is measurable) = Con(ZF + x is a strong limit c‘ardinal _of cofinality
@ carrying a Rowbottom filter + »* is a measurable cardinal which carries a normal
measure). .

TreoREM 2. Con (ZFC + There exist cardinals % <4 s0 t}_mt * Is A strongly
compact and . is measurable) = Con(ZF + N, is a strong lfmlt cardinal carrying
a Rowbottom filter + N,y is a measurable cardinal which carries a normal mea;ure).

* The research of the authors was partially supported by NSF. Grants DMS-8616774 and
INT-8513211.


Artur




