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By the continuity of f*, we have | f'|4,, —gula.l* < 0. Hence ['|4,: A4, — A, has a fixed
point in ¥,,(C¥). Thus, f* has a fixed point in ¥,,(C}) = U,(C*).

From Cases 2(b)i) and (i) it follows that every mapping f': Z—»Z with
|f'=f] <min{6,, 65} has a fixed point in U,(C¥*). This completes the proof.

Remark. While Z has f*p.p., the cone over Z does not have fp.p. (see [3]).

Addendum. We can construct an example of a locally conneeted continuum which
has fp.p. but does not have f*p.p. Define

B, = {x|(x—1/2"2+y* < 1/(3-2"%},

w =]
Y = ({(0,0)} x )u |J (@B, xDu | (B, x{0}).
n=0 n=0
By a similar argument to that of Theorem 1, we can prove that ¥; has f.p.p. but does not
have {*p.p. Another similar example corresponding to Theorem 2 can also be easily
constructed.
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Torsion free types

by

John Dauns (New Orleans, La))

Abstract. It is shown how the known classification of nonsingular, injective modules M into
Types I, II, and III as well as corresponding direct sum decompositions M = M@ My @ My are
merely special cases of a more general phenomenon. There is a functor Z from rings R to complete
Boolean lattices (equivalently Boolean rings) Z(R), where each point of Z(R) is a class of similar
nonsingular modules. Types I, II, III, continuous, discrete, and certain other classes of modules
correspond to unique elements of Z(R). Appropriate finite sets of disjoint classes of modules induce
direct sumn decompositions of £ as a direct sum of subfunctors. The latter give rise to corresponding
direct sum decompositions of nonsingular injective modules M, such as M = M, ® M;® My,.

Introduction. This article will show how the classification of certain torsion free
modules into Types I, II, and III ((MN], [K], [B], and [GB]) is a special case of
a classification scheme developed in [D]. If A is a unital right R-module and ZA4 its
singular submodule, then the second singular submodule Z4 = Z, 4 < A is defined by
Z[A/ZA] = (Z,A)/ZA. A module is torsion free if ZA =Z,A4 =0, and torsion if it
equals its torsion submodule Z, A = A. This is a continuation of [D] where the following
was shown. There exists a contravariant functor £ applicable to any associative ring
R with identity. The result is a complete Boolean lattice Z(R). The functor = classifies or
partitions the class of all torsion free right R-modules {4, B, ...} into equivalence
classes Z(R) = {[4], [B], ...} where Ae[A], and [A4] consists of a class of modules that
are similar, or are like 4. An appropriate ring homomorphism R — S induces a lattice
{equivalently Boolean ring) homomorphism Z(S)— Z(R).

Goodearl and Boyle ([GB]) extended the Murray-von Neumann-Kaplansky
((MN1, [K], and [B]) classification of operator algebras, W*-algebras, and Baer »-rings
into Types I =1,Ul,, Il = II; UIL, III, abelian, directly finite, and purely infinite to
all torsion free injective modules. Here this latter theory is extended to all torsion free
modules over any ring by defining M to belong to any of the latter classes if and only if
its injective hull EM does (e.g. M eIl iff EM Ill). In order to obtain necessary and
sufficient conditions for M (as opposed-to EM) to be of Types I, II, III, abelian etc. (4.2,
4.4, and 4.5), the usual definitions are reformulated without reference to idempotents
(3.3, 3.4). .

It is shown that there exist unique largest elements [I], [II], [III]e Z(R) which
determine Type I, 11, and III modules (Corollary 3.16). More specifically, [11I] consists
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entirely of Type III modules, and determines the class IIT as Il = {M |[M] < [11I]}.
Or equivalently, the class III is the union of the interval [0, [I]] = Z(R), III = { J{x|
0 < x < [IIT]} .Verbatim identical statements hold for Types I, II and [, [II]. It is
shown that this latter phenomenon is not limited to Types I, I1, or I1I, but holds for any
so-called saturated class of modules (see 3.5). Types I, II, III are examples of saturated
classes. Four other examples are discrete, continuous, molecular, and bottomless torsion
free modules (see 3.1, 3.2). It is shown in Section 3 (Theorem 3.9) that there is a bijective
correspondence between saturated classes of torsion free R-modules 4 and elements of
E(R) given by 4 = {C|[C] < [4]}, where [4] = supremum {[C]|Ce 4}. Conversely,
any [D]eE(R) determines a saturated class 4 by 4 = {C|[C] < [D]}.

Suppose that for each associative ring R with identity, there is a saturated class
A(R) of torsion free R-modules. Then the assignment 4: R — A(R) is called a universal
saturated class provided one additional property holds (3.12 and 3.13). The above-
mentioned seven saturated classes are universal saturated classes. Theorem 3.14 shows
how a universal saturated class 4 induces a decomposition of the functor = as a direct
sum of two subfunctors £ = E,@ZE,,, where cd is a universal saturated class
complementary to 4. Such decompositions extend to certain finite number of disjoint
universal classes. Thus Types 1, II, and III induce a decomposition & = B @EDEy
(Corollary 3.16); or the continuous molecular, continuous bottomless, and discrete
classes induce another decomposition & = Eca® Ecp® Ep (Corollary 3.15). Such direct
sum decompositions of & induce unique direct sum decompositions of injective modules
as finite direct sums (Main Corollary 3.17). Furthermore, the Module Decomposition
Theorem 2.3 generalizes the latter even further, among other things, to full direct
product representations of injective modules.

The lattice Z(R) is isomorphic to the lattice of all fully invariant complement right
ideals J of R with ZR < J. For this reason alone fully invariant complement
submodules are important. Section 1 investigates such submodules, and particularly
how they are mapped under module homomorphisms. This section involves no special
hypotheses and should by itself be of independent interest. Section 2 reformulates some
of [D] in a form in which it will be used later, as well as derives some corollaries from
the results of [D]. Thus Corollary 2.7 gives the new result that if I' = E(R) is any
pairwise disjoint subset with supremum I' =1, then it induces a Boolean lattice
(equivalently ring) isomorphism Z(R) & [T{E.(R)|xe I} where cach xeI" defines a con-
vex sublattice =,(R) = E(R) with E,(R) E(R/R,) for a certain unique ideal R < R.
Section 5 shows how some of the criteria of Section 4 can be used to construct various
Type I, I, and bottomless modules. It also begins the problem of relating the Type I, 11,
and III classification to the discrete, continuous, molecular, and bottomless ones (5.3).

The author hopes to show in a subsequent paper that functors similar to & can be
defined for bigger ring categories, ie. 5 would be applicable to more ring homomor-
phisms; and that there also is an analogous theory for the torsion modules. In summary,
among other things, this article puts the previously well developed theory of torsion free .

injective modules over a single fixed ring R in a broader functorial context where many
open questions remain.
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1. Complements and full invariance. Some facts, needed in later proofs, have been
isolated out of the specialized contexts of later theorems, and proved here in a general
module setting, because these facts may be of independent interest. Moreover, many of
the subsequent proofs will just amount to quoting the lemmas of this section in the right
order.

1.1. Notation. Modules M are right unital over a ring R. Denote submodules by
< or ¥, and large or essential submodules by <. The symbol 4 << B means that
A < B but that 4 is not large in B. For K < M and me M, m* = {reR|mr =0} <R,
while m™*K = {reR|mreK} < R. For a subset Yo M, Y' ={reR|Vye?Y, yr =0}
= {r| Yr = 0}. Ideals (two-sided) in R or other rings are denoted by “<”; thus
M*<R.

The singular submodule ZM of M is Z(M) = ZM = {meM|m* < R}. Define the
second singular submodule in ZM < Z, M = M by Z[M/(ZM)] = (Z, M)/ZM. Deﬁne
Z, M to be the torsion submodule of M. Consequently M is torsion if M = Z, M, which
holds iff ZM < M, and M is torsion free, abbreviated t.f,, if Z,M =0, ie. iff ZM = 0.
Right R-injective hulls of right R-modules M are denoted by both “*” and “E” as
M = E(M) = EM, where E is used for quotient modules or when M is given by
a complex formula.

For those K < M with ZM = K — and only for these —, define the complement
closure K of K in K < K <'M as K/K = Z(M/K). Various facts and properties of K will
be used without further mention, see [D; pp. 51-55, 1.1-1.11]. The symbols <, <, <,
<<¢,% "4,2,2Z, ", E,and " refer to right R-modules over R, and never to other rings
S with 1eS which also will be used.

For a module map f* A—B, and for C < 4, denote the restriction of fto C by
fIC: C»B. The trace of a module 4 in a module B is defined as
trz A =Y {fA| feHomg(4, B)}. Dually the reject of A inside B is rej, B = ﬂ{k‘erh.I
heHomg(B, A)}. A submodule K <M is fully invariant—abbreviated fi—if
Homgz(M, M)K < K.

For any set X, 2(X) = (#(X), u, N, \, X, @) is the usual Boolean lattice of the
power set of X; also 2(X) denotes the associated Boolean ring. Denote the cardinality
of any set X by |X|.

The following simple construction will be used repeatedly.

1.2. PROJECTION ARGUMENT. Let {4,|yel} be any family of modules. View
E(@®A,)<=T]4,. For anmy 0#E=()eE(@4,), choose roeR‘ such that
0#&y=a+ ... +a,edyy® ... ® Ay with all 0 # a;€ Ay, and with the length
n#0 of &ry minimal. Then (érg)- =at =...=a; # R. Thus froR=a,Rc Ay In

_ particular, every nonzero submodule of E(@ A,) contains an isomorphic copy of a nonzero

submodule of some A,.

1.3. TRACE PROJECTION ARGUMENT. Let {A,|yeI} be any family of torsion free
modules and B any torsion free module. Suppose that 0 5 V< Eftrzs E(@ 1 A4))]. Then
there exists a yeI' and elements 03 acd,, 0#beBnV such that R = bR and
at =bt. -
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Proof. By [D; p. 55, Theorem 2.17 there are 0 % (eE(@rd,),0#veBnV with
Et=ot. Choose ryeR such that O#&rg=a,+ ... +a, O0#aed, with
Ayy® ... ® Ay a direct sum, and where n is minimal. Then (&r,)* = a', where
y=7(1), a=a,€A,, and b=wvroe BN V. Then b* = (vuro)* = (éry)* = a*.

1.4. LeMMA. Suppose that ZA < K < A and B are modules and that f: A—B is
a right R-module map with ZB < fK. Then

(i) fK <fK < (fK)".

(ii) In particular, VL < A, K < L also fK <fL.

Proof. If fxefK with xeK, then x"*K < R, and x~*K < (fx)"*(fK). Since
ZB = fK, we have fxe(fK)~. Consequently fK = (fK)~. But (fK) < (fK)~. Hence
FK <fK < (fK)".

From [D; p. 56, 24], the result below will be needed. The fact that an arbitrary
intersection of injective submodules remains injective may lead the reader to conjecture

that below, the “E” may be omitted from in front of the next summand. A counterexam-
ple (5.4) shows that this is not so.

L5. For any torsion free modules A and B, EB = E(trp A) ®rejgy EB is a direct sum
of two fully invariant submodules.

1.6. Remarks, Let K < M be any modules. Form M = K ®C. Then
K <M is fully invariant <> Homg(K, €) =0.
In particular, if M is torsion free, then
R<Misfi » €<Mis fi
Note that in case M is torsion free, Lemma 1.4 immediately proves the next lemma,
but not in general, for there is no guarantee that ZM < fK below.

1.7. LEMMA. For any modules ZM < K < M,
K<Misfi = K<M is also fi.

Proof Let feHomp(M,M) and (eK be arbitrary. Then since K =
{xeM|x"1K < R} (by [D; p. 53, 1.3(0)]), £~* K < R. But then (fOEKefK =K.
Hence ('K < (f8)"'K < R, and also f¢e K. Thus fRs K.

1.8. PROPOSITION. Let K = K < M be a complement submodule with ZM = K., Then

K< I\ZI is fi. = K < M is also fully invariant.
(i) K<Mis fi. = K<M is fully invariant.

3 Progﬁ (i) Since K <« KA M, K = K n M. For any ¢ € Homg(M, M), extend ¢ to
¢: M—~M. By hypotheses, K < K. But then ¢k S "M c KA M = K.

(ii) Let Y e Homg(M, M). Write M = K@ U for some U < M. For £e K, suppose
that Y& ¢ K. Then Y& =x+y, xeR, 0# yeU. Set L= 'K nx~' K < R. For any
ro€L, YéroeK, xroe K, and hence also yro€K. Thus L y™! K < R shows (by [D; p.
53, 1.3(0)]) that yeK, a contradiction.
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1.9. CoroLLARY. If ZM =< K < M, then
K<Misfi=>RK<Misfi: K<M isfi.=> K<M is fi.
Note that in the next proposition, K < M need not be a complement necessarily.

1.10. PROPOSITION. Let ZM < K < M and assume that K < M is fully invariant. Let
C be any

(a) complement submodule C < M such that

(b) K@C <M.
Then

(i) C< M is fully invariant. )

() Unique: If C, < M satisfies (a) and (b), then C; = C.

Proof. Write M = E® €. By 1.6 it suffices to show that Homg(C, K) = 0. If not,
let 05 ¢: C—R. Write € = U@ker¢. Then

C>U=¢U<K
contradicts the fact that K < M is fully invariant.

L.11. LemMA. If ZM < K = K < M, then below (ii) = (i), (iii) < (iv), (i) = (i),
and (iv) = (ii):

(i) K < M is fully invariant.

(i) K/Z,M < M/Z, M is fully invariant.

(iii) K < M is fully invariant.

(iv) E(K/Z, M) < E(M/Z, M) is fully invariant.

Proof. Conclusions (iii) = (i) and (iv) = (ii) were shown in 1.8. It will be shown
that (iii) <> (iv). The proof of (i) = (i) is similar and is omitted.

Take any D < M such that Z, M®D < M, and hence Z, M® (K n D) < K. Then
since Z,M < M is a complement,

Z,M®KnD) K E( K

— )= E(KnD);
ZoM M ZZM> (KnD)

Z,M®&D M M
2" ¢— E =~ E(D).
ZoM SZ,M (ZzM) ®)

Since EZ,M = Z,EM < EM is fully invariant it follows that:

K < M is fully invariant <> E(K~D) < E(D) is fully invariant

<« E(K/Z,M) < E(M/Z,M) is fully invariant.

1.12. LeMMaA. For any modules L< K < M assume that ZM < L and L< K. Then

(i) Z(M/L) = K/L.

(i) K <M is a complement < K/L < M/L is a complement.

Proof. (i) If m+ Le Z(M/L) then (m+L)* = m~'L <R, and meL < K by [D; p.
53, 1.3(0)].
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(i) <= Ifnot, K < B < M. By hypothesis, K/L << B/L. Hence there exists a cyclic _

submodule of B/L such that (bo+L)RNK/L =0, or (bR+L)nK = L. The latter
implies that by 'K = by *L. But K < B, and hence b5 'K < R. Thus by 'L < R and
boeL< K, a contradiction. Hence K < M is a complement.

(if) = This proof will only require that ZM < K. By way of contradiction, suppose
that K/L< B/L for some K < B. Then K <+ B, and hence K # K@®b,R for some bye B.
Since K/L < B/L, bg 'K = (bo+ L)~ }(K/L) < R. By [D; p. 53, 1.3(0)] from ZM = K we
conclude that boeK =K, a contradiction. Thus K/L < M/L is a complement.

1.13. CorOLLARY. If ZM < K < M, then K < M is a complement < K/Z,M <
<M/Z,M is a complement.

1.14. CorOLLARY. Suppose that Z,M < K < M and E(K/Z,M) < E(M/Z, M) is
a fully invariant complement. Let L,C < M be any submodules satisfying the following:
K®C <M and

(@) L< M is a complement with LnK = Z,M; and

(b) K+L < M.
Then

() K/Z;M®L/Z,M < M/Z,M and also L/Z,M is fully invariant.

(i) Unique: If L < M satisfies (a) and (b), then L, = L. Consequently,

(iii) L = (Z,M+C). '

L15. LEMMA. Suppose that {A;]iel} is a family of torsion free modules such that
Homg(A;, 4) = 0 for all i #j. Then

iel iel

Proof. View E(@;4)< H;fii. It suffices to show that for any
0# & =(&)e[r4i, and any & # 0, there exists an re R with 0 # é&r = &ire 4, < [, 4.
Since 4; is tf, we have & <+ R. Take any 0 # C < R with & @C < R. Suppose that
§iC#0 for some j#i Since &HnC=0,Cx&C, and the map & C—¢C,
Eico—¢&jco, coeC, extends to a nonzero element of Homg(4;, 4 /), a contradiction.
Hence for any 0streC < (\{&f|jel,j#i} we have 0 # & = Ered,.

2. The functor Z. This section reformulates, extends, and generalizes further some of
the facts about the lattice Z(R) from [D].

2.1. Types. On the class of all torsion free right R-modules A,B,C, ... define

a quasi-order < by A< B if there is an embedding A4 < E(@{B|J}) for some

(arbitrary) index set J. Then 4 ~ Bif A < B and B < A defines an equivalence relation,

- The equivalence classes [A]={C|C ~ A} are called types. The class

E(R) = {[4],[B],[C], ...} of all equivalence classes becomes a poset, where [4] < [B]

if and only if A < B. Whenever the least upper bound or the greatest lower bound exist

in Z(R), they are denoted by [4] v [B] and [4] A [B], and similarly for infinite suprema
and infima. Thus so far Z(R) is a poset with least element [©)]eE(R).

Next some facts from [D] are summarized and notation is established which we
later need to ‘use.
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22. TYPE LATTICE. Let E(R) = {[A],[Bj, ...} be the partially ordered class of
equivalence classes of torsion free right R-modules A, B,... Set R=R/Z,R. Let
{4,]|yer } < Z(R) be any indexed subset. Then

(1) E(R) is a set. |Z(R)| < |2(R).

) sup{[4,]17€T} = \V/yer[4,] = [@rer 4,]; and I Ajer[4,]€E(R).

(3) E(R).is a complete Boolean lattice { = distributive, with O and 1; and complemen-
ted): [A]v[B]=[A®B], [A]1A[B]=[tr,B] =[trz4]; 0=[0)], 1 =[R]; [A4°
= [rej4R], [A1v[4]° =1, [A]A[4]° =0.

See 3.17 for some very special cases of the next theorem.

2.3. MobULE DECOMPOSITION THEOREM. Let M be any torsion free module and
a < [M]e&(R). Define M, =3 {U|U < M,[U] <a}. Then

(@) [M,]=a; hence M, is the unique largest submodule of M of type «;
M,=M,<M; both M, <M and EM, < EM are fully invariant.

Suppose that I = E(R) is any pairwise disjoint subset such that \/T" = [M]. Then

(i) EM = E(@{M,|yel})=[[{EM,|yel}.

Proof Everything in 2.3 was established in [D; p. 63, 3.20] except the product
representation in (i), which follows from 1.15.

24. DerINITION. Let A be the category whose objects are all rings R and § with
identity, and morphisms ¢: R—S§ are ring homomorphisms satisfying: (a) ¢ 1gx = 15;
(b) R =S; and (c) I =ker¢ < Ry is a right complement, i.e. with closed kernels.
Dually B is the category of all complete Boolean lattices L; and L, whose morphisms
¢*: Ly — L, satisfy: (a*) ¢*0 =0; (b*) ¢* is monic; and (c*) ¢* L, = L, is convex, ie.
with closed images.

255. Functoriality. For any typical morphism ¢eA, for simplicity, take ¢:
R— 8 = R/I to be the natural projection with I = ker¢<a R. For any right S-module N,
Ny denotes the induced R-module, ie. NI =0. If N is S-torsion free we write
[N1s€Z(S), and define ¢*: E(S)—E(R) by ¢*([N]s) = [Ns]€Z(R). For a proof that
¢* is a well defined lattice homomorphism, see [D; pp. 65-68]. Define Z(¢) = ¢*. Then

i) &: A—-B is a contravariant functor; ¢*: Z(S)—Z(R) is a zero preserving
monic lattice homomorphism which preserves arbitrary suprema and infima.

(ii) ¢*E(S) = E(R) is a convex (and complete) sublattice, and hence E(R) is a lattice
direct sum Z(R) = ¢*E(S)D A for a (unique) convex and complete sublattice A < Z(R).

Among other things, the next theorem is a generalization of [D; p. 69, 4.12]. In the
latter the results were proved for « equal to one of four special elements of Z(R), while
here below for every aeZ(R). The proof proceeds as follows. The previous decom-
position 2.3 is applied to M = R/Z,R, and then with the aid of 1.11 and 1.13 the results
litted back up to R. Below (3) follows by use of 1.14. Since the ideal lattice #(R) defined
below is the simplest and in many cases the only way to explicitly compute, describe, or
determine Z(R) for examples of rings, or for concrete classes of rings, several
descriptions or characterizations are given for the elements R,e.#(R) = Z(R).
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2.6. IDEAL LATTICE THEOREM. For aeZ(R) define R, in Z,R<= R, <R by
(R/Z3R), = R,/Z3R. Let c(x) € E(R) be the complement ofie.ave(@=1,0nc()=
Define J(R) {R,|2eE(R)}. Then

(1) £(R) consists exactly of all J with Z,R < J <R such that J <R is a right
complement and EJ < ER is fully invariant. Hence J<1 R. For J € #(R) define J° to be
maximal with respect to the properties

Z,RcJ'<R, JnJ=Z,R
Then J¢e #(R) and F(R) is a Boolean lattice under
J1AJ2=J1n12, 11VJ2=(J1+J2)—;
JvJ'=R=1 JAJ=2Z,R=0, J J;,J,ef(R)
Then there is an isomorphism of Boolean lattices
(2) Z(R)—»F(R), «—R,, where
(1) Rau\[l = RmﬁRﬂ’ Ravﬁ = (sz+Rﬂ)-, Rc(oz) = sz RaﬁRc(w) = ZZR,
(i) « = [Ro/Z;R], c(a) = [R/R.] = [Rew/Z2R].
(3) For any aneE(R) let C, < R be any right ideal maximal with respect to
C,NZ,R=0, oa=[C,].
Then R, = (Z2R®C!)—$ ZZR@Ca@Cc(a) <R.

4) Ve(@)eE(R), Row < R is the unique smallest right ideal of R with respect to the

Sfollowing properties:

() Z,R = Ry = Ry < R; (i) [R/Ryy] = 0.
(5) R,f\Rc(m) = ZzR, Ru'l"Rc(:x) < R.

The next corollary is obtained by combining the ideal lattice J(R) of the last
theorem with the functoriality of . Later 2.7(ii) below will be used to show that
E = Ei@Eu®Ey is a direct sum of subfunctors corresponding to Types I, II, and IIL

2.7. COROLLARY. For any «€ E(R), let ¢(«), R,, Ryey<a R be as in 2.6, and let E,(R) be
the Boolean lattice Z,(R) = {feZ(R)|B < a} with largest element o and with relative
complementation B — c(B) A . Let memy: R — R/R, be the natural projection and form the
monic lattice homomorphism nl,: E(R/Rym)—E(R). Then

() E(R/Ryy) = Bu(R) = imagendy; ie. the corestriction of mky to its image is
a (complement preserving) isomorphism of Boolean lattices.

Now suppose that I' = E(R) is any pairwise disjoint subset whose supremum is
\/T =1€8(R). Then there is a canonical isomorphism of Boolean lattices

(i)) E(R) = [Taer Zo(R); if |I' < o0, then Z(R) = D er Ea(R).

(ii}) V t.f. injective M = My

M= E(tI'MRg)@E(trMRc(a));
[IM]Aw = E(tryR,),  [M]Ac(@) = [rejpw z.0M];
E(tryRo@) = rejpm yz.mM.
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Proof. (i) and (ii). The proof of these conclusions can be modeled after [D; p. 69
4.12], and is omitted.
(iii) From (R,/Z;R)®(R.w/Z:R) < R/Z,R it follows that
M = E[tryR] = E[tryR/Z,R] = E(tryR./Z; R)DE(try Roy/Z 2 R)
= E(try R)®E(try Re().

But in 1.5, the second complementary summand is unique because of full invariance,
and hence we also have

M= E(trMRa)@(rejE(Ralzzﬂ)M)s

and so E(tryR.y) = r€jgr,/z,ryM. The rest is clear.

>

3. Classes of modules. This section relates universal saturated classes of modules to
certain points of Z(R), and shows how such classes induce decompositions of = as
a direct sum of subfunctors. Type I, II, and III modules, and continuous, discrete,
molecular, and bottomless modules are examples of universal saturated classes. This
makes it possible to apply all the results of Section 2 and this section to these seven
classes of modules. The definitions of Types I, II, III are reformulated without reference
to idempotents so that later they can be applied to not necessarily injective torsion free
modules.

3.1. DerFINITION. Let C = Cyg and D = Dy; C is continuous if C contains no uniform
submodules. D is dicrete if D contains an essential direct sum of uniform submodules.
Let A = Ag and B = By be t.f. continuous. 4 is atomic if [A]e Z(R) is an atom. More
generally, A is molecular if every nonzero submodule of 4 contains an atomic one. At -
the other end of the continuous module spectrum, B is bottomless if B contains no
atomic submodules.

32. DermmION. Let A4, B, C, D generically represent tf modules. Define
Ep(R) = {[D1|D is discrete}, Ec(R)={[C]|C is continuous}, Zc,4(R) = {[A]|4 is
continuous molecular}, and Zcp(R) = {[B]|B is bottomless}.

3.3. DerFINITION. Let M be an injective torsion free module, and throughout this
definition let N represent any arbitrary nonzero direct summand of M, ie. M = N®N'
for some N’ < M, N # 0. Then M is directly finite if for any such N, N is not isomorphic
to N®N ([GB; p. 16, 3.1(c)]). The module M is abelian if any isomorphic direct
summands of M are equal ([GB; p. 12, 2.1]). Thus abelian implies- directly finite.

The module M is Type I if every N contains a nonzero abelian submodule ([GB; p.
30, 5.17). Secondly, M is of Type I1if for any N, N is not abelian, and if every N contains
a nonzero directly finite direct summand ([GB; p. 34, 5.5]). Thirdly, M is Type III if for
every N, we have N N®N ([GB; p. 38, 59]).

Our module M is purely infinite if M has no directly finite fully invariant direct
summands ([GB; p. 40, p. 41, 6.2]). Clearly Type III implies purely infinite. Next, M is
Type 1., (or Type 11,) if M is Type I (or Type II respectively) and M is purely infinite
([GB; p. 421). A module M is Type I; (or Type II,) if M is Type I (or Type 11
respectively) and directly finite.

3 ~ Fundamenta 139.2
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3.4. DEFINITION. A torsion free module M has any one of the properties in the last
definition, if M does (directly finite, abelian, L, II, III, purely infinite, L,, I, I, and II,).
Consequently, by 1.7, if M is purely infinite then M contains no directly finite fully
invariant submodules.

Our next objecfivc is to show that there is a simple and natural characterization of
the elements of Z(R) in terms of saturated classes, and to determine which of the above ten
classes of modules.in- the last definition in some sense correspond to elements of Z(R).

3.5. DerNiTION. For any nonempty class of modules 4 whatsoever, define
a complementary class ¢(4) by ¢(4) = {W | W = Wz, V0 # V < W, V¢ 4}, Furthermore,
if M is a torsion free module (and only in this case) define an intrinsic submodule
M,<Mby M,= Z{Ul U < M,Ue 4}, and similarly M.4) < M. A class 4 is said to
be closed under essential extensions if Ve d, V< W=Wed; and closed under essential
submodules if Wed, V< W= 4.

A nonempty class of torsion free modules 4 will be called a saturated class if 4 is
closed under direct sums, injective hulls, submodules, and isomorphic copies (i.e. Ve 4,
Ve W=Wed).

3.6. CONSEQUENCES. For any class A of modules, closed under submodules, and any
torsion free module M, the following hold:

(@) c(4) is closed under submodules, essential extensions, and in particular, under
injective hulls.

(i dnc(d) ={0)}; 4 = c(c(4)).

(iii) If 4 is closed under isomorphic copies, so is also c(d).

(i) MynMyy=0=>M,® My < M.

Proof. Suppose that M, @M. ®W <M for some 0% W <M. Since
M. ynW =0, W¢c(d), and hence there exists a 0 V< W, Ved. But then
0#£ Ve MyunW=0is a contradiction.

3.7. LeMMA. Suppose that 4 is a saturated class and M a torsion free module. Then
(i) 4 is closed under torsion free homomorphic images and arbitrary (not necessarily
direct) sums. ’
(i) ¢(4) is a saturated class.
(i) My My < M; My, Moqy < M are fully invariant complement submodules
with Msed, M, ec(d).
(iv) c(c(4) = 4.

Proof. (i) The proof of (i) is not difficult and is omitted.

(i) In view of 3.6(i), (iii), it suffices to show that c(d) is closed under direct sums. If
Ayec(d), yeT, with @A, ¢c(d), then there exists a 0 # V< @ A, where Ve 4. By
1.2, both Vand some one single A, contain nonzero submodules which are isomorphic,
a contradiction, Hence c(4) is saturated.

(iii) By 3.7(i) above, M, €4, Mygec(d), and MynM g€ dnc(d) = {(0)}. It now
follows from 3.6(iv), 3.7(i), (ii) that M,@ M., < M where both submodules are fully
invariant complements.
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(iv) Always for any class 4 closed- under submodules, c(c(d)) = {4 |4 = Ag;
V0 # B < A4,30% C< B, Ced}, and hence 4 < ¢(c(4)). By use of Zorn’s lemma and
the fact that 4 is closed under direct sums, injective hulls, and submodules, it now
follows that ¢(c(4)) = 4.

3.8. Remark. Except for 3.7(iii), the proofs of 3.6 and 3.7 did not use the torsion
free hypothesis in Definition 3.5.

The next theorem says among other things that the saturated classes are precisely
the unions of intervals | J{x[0 <x <y}, yeE(R), of the lattice Z(R).

3.9. THEOREM. Over any ring R, suppose that 4 is any (nonempty, well defined in ZFC)
class of torsion free right R-modules which is closed under isomorphic copies (3.5). Let c(4),
My, M), and E(R) be as in 3.5 and 2.1. Let A be any (torsion free) module defined by
VA[ClICed} = [4]eE(R).

(1) Then the following conditions are all equivalent.

@ 4={CI[C]<[4]}

(b) 4 is a saturated class.

(c) V torsion free module M, M,@ M, <M with Myed, M yec(d); and
4 is closed under injective hulls and essential submodules.

(2) Conversely, for any [D]eZ(R), {C|[C] < [D]} = U{[ClI[C] <[DP]} is a sa-

turated class.

Proof. Conclusions (2) and (1)(a)=>(b) are obvious.

(1)(b) = (a). Since E(R) is a set, there is an indexed set of torsion free modules
C,ed, yeT, such that 4 = E(@rC,). Since 4 is saturated, we infer that 4 4. From
the latter it follows that 4 = {C|3J such that € < E(@D ,4)}.

(1)(b)=>(c). This was shown in 3.7(iii).

(D)(c) = (b). First, for We 4 and 0 # ¥V < W, it has to be shown that Ve 4. By (1)(c),
W, ®W.yy < W, and from Wed we have W= W,. Firstly, since V< W, also
Vi = Waay = 0. By hypotheses (1)(c), secondly, V€ 4; thirdly, V< EV = E(V,)ed; and
fourthly, Ve d.

Next, suppose that 4,e 4, yeT, is an indexed set of modules. Let M = E(@ r4,),
and M ® M4 < M. If M 4 # 0 then by 1.2 we have for some W # 0 and ¥V # 0 and
some yel

Mc(A) >WxV< A-,,
a contradiction. Hence M, < M. We now invoke the two hypotheses that M e 4 and
that E(M,)e4 to conclude that M e A. Thus 4 is saturated.

3.10. MAIN CorOLLARY. For any ring R, let & denote the class consisting of all
saturated classes of torsion free right R-modules. Furthermore, let A be any one of the
Jollowing seven classes of right R-modules: Type 1, 11, 1, continuous, discrete, continuous
molecular, or bottomless (3.4 and 3.1). Then there exists a J < R such that the following
hold. '

() & is a set; |&| < 2PR),
(2 ER) > &, x—J{yI0<y< x}, is a bijection.
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(3) 4 is a saturated class; there exists a J < R such that in (2) [J/Z2R] — 4 and such
that the following hold:
4 (@) Z,R<J,J <Ry is a right complement, J/Z,Re .
4 ={CI[C] < [J/Z,R]}.
(ili) Unique: if I < R satisfies (i) and (ii), then I < J.
(iv) J <R and EJ < ER are fully invariant, in particular, J< R.

3.11. Observations. (1) Purely infinite modules need not be closed under
submodules, and hence they do not form a saturated class.

(2) By 3.10 and 3.7(j) it follows that if 4 is any saturated class, and {4,|yeI'} = 4
a subset, then Y'{4,|yel'}e 4. In particular, this holds for Types I, II, and III, and
generalizes three separate proofs in [GB] for merely direct sums of Type I ([GB; pp.
31-32, 5.2]), Type II ([GB; p. 35, 5.6]), and Type III ([GB; pp. 38-39, 5.10]).

Our next objective is to show that certain saturated classes induce decompositions
of the functor E as a direct sum of subfunctors.

3.12. Suppose that for any ring R with identity there is a saturated class A(R) of
torsion free right R-modules. Define 5(R) =\/{[C]|Ced(R)}€E(R) so that A(R)
= {C|[CI< 8(R)} as before in 39. Let ¢: R—S be in the category A, and thus
¢*: E(S)»E(R). Then the following are equivalent:

(i) VS-torsion free N = Ng, if N € 4(S), then Nye A(R).

(i) ¢*6(S) < S(R).

Proof. (i) = (ii). The proof requires the use of the fact from [D; p. 68, 4.10(i)] that
¢* commutes with arbitrary suprema,

$*5(S) = \/{¢*[NslsINe 4(S)} < 6(R)
because Nye A(R) implies that ¢*[Ns]s = [N4] < §(R) for all N.
(11)=>(1) Since ¢* is-order preserving we have

\/ [N, = \/ ¢*([N]s) ¢*( \d/()[N]S)=

NEA( )
If ¢*8(S) < 5(R), then for any Ny, [Ny] < 8(R) and hence N,eA(R).

3.13. DerINITION. If for every ring R with identity 4(R) is a saturated class of torsion
free right R-modules, and if for all R, § and all ¢: R — S in the category A the above
two conditions 3.12(i), (if) hold, then (4, 8) or 4 is called a universal saturated class. Note
that 4 is completely determined by 4. In this case (cd, ¢d) is another universal saturated
class, where (c4)(R) = c(4(R)) and (c6)(R) = ¢(6(R))e E(R) by 3.7(ii).

3.14. TeEOREM. Let R denote any ring with 1eR. Suppose that (4, 8), (44, 6,),

-, (4n, 8,) are universal saturated classés, and for any 4, (cd, cd) is as in 3.13. Define
E4(R) = {[C]| Ce A(R)}, and let Eygy(R) be as in 2.7. Let Z,R < Ryry be as in 2.6(2)
with 8(R) = [Ryg)/Z2R]. Then

(1) E4(R) = E5r)(R); E4 is a subfunctor of 5.

{2) E=E,@E., is a direct sum of subfunctors of &.

d*8(S).
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(3)‘ The following three conditions are equivalent:

() E=240...@8,, is a direct sum of subfunctors.
() VR, Vt.f Mp, Mgy ®...®@ My x < M.
(iii) VR, ;(R)V ... VO, (R) =1, 5;(R)A 8;(R) = 0, i # .
(4) Now assume that the above three conditions (3)(i)—(ii) hold. Then for any
1<j< n,

n
Regymy =[ X Roum]™ < R;  RymyNRugymy = Z2R,  Riymy+Rigomy < R.
i=1 . .

i#]
There is a canonical natural lattice (equivalently Bbolean,ring) isorﬁorphism
E4,(R) = E(R/Ro,ry)- )
Proof. (1) First upon combining 3.9(1)(a) and 3.12 we get that E4(R) = Esr)(R) is

‘ actually a Boolean lattice. If ¢: RS is any ring morphism in A, then by 3.12(i),

©*Z4(S) = Z4(R). Thus Z, is a subfunctor of =. )

(2) In view of (1) above, and by 27(i) (with I' = {6(R),(c6)(R)}), -we have
E(R) = Esy(R)® Eesymy (R) = E4(R) D Ec4(R). By 3.12, 3.7(ii), and 3.13 it follows that
@*Z.4(S) = Ec4(R), and thus £ =E,@ 5., is a direct sum of subfunctors.

(3)@) = (iii). By 3.14(1) above, Z5,x)(R)D... D Zs,m(R) = E(R) is a direct sum. If
8i(R)A 8)(R) # 0 for some i+ j, it is easily seen that this sum would not be direct.

(iii) = (ii). By the definitions of Mgy and Mg (in 2.3 and 3.5), from 2.7(i)
it follows that M gy = My, for any (4, 5). With I' = {5, (R), ..., & #(R)} in 2.3, we get
Mym@...®Msm <M.

(if) = (iii). First, by hypothesis each (4, 5;) is a umversal satu.rated class, wh1ch
entails that for any ¢: R—Sin A, p*E,,(S) < &,, (R). Set B=061R)v...v 5 (R)eE(R).
Since always My, = Myg), from 2.3 with I' = {§,(R), ..., & a(R), c(ﬂ)} we get that for
all tf Mg, My,®...@ M5 ® M5y < M. By our hypothes1s (i), this implies that
¢(f)=0, and 5;(R)v...v 56,(R)= 1. If for some i+ j, S;(R)AS;(R) #0; take any
M with 0 = [M] = 6;(R) A §;(R). Then 2.3 unphes that Mz = M&,(R) = M # 0, which
is a contradiction. Thus 6;(R) A 6;(R) = .

(4) Set

J= [Z Ram] ™

=1 ‘ o

Thus*by 2.6(2)(ii), !
Rsm/Z,R®I/Z,R € R/Z,R
[Raj(n)/zzR] v[J/Z,R] =1
5J(R) = [Ra,(x)/ZzR]

By 2.3(i) applied to M = R/Z,R we get first J < Resym)- Let J®C < Rysyry for some

torsion free C < R. It then follows from the above that (¢d)}(R)v [C] = (cé)(R).

Thus [C] =0 and hence C=0. By 1.13, J < <R is a right complement. Hence

J = Resjymy-

= [J/Z,R] = (cd)(R).
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The next corollary generalizes [D; p. 62, 3.15(iv)] where it was shown that we get
lattice direct sums if we apply the functors below to any ring R.

=
=

3.15. COROLLARY. & = Ec@ Ep = Ecy @ Ecp @ E) is a direct sum of subfunctors of
Z (see 3.2).

In view of their importance, it seems useful to summarize what the previous theory
says about Types I, II, and III. The next corollary shows among other things that every
associative ring with identity R contains certain six unique ideals. It would be
interesting to investigate and relate the algebraic properties of R to those six ideals,

3.16. COROLLARY. Let R be any ring with 1 e R. For (4, 8) equal to any one of Types 1,
11, or 111, denote the corresponding Ryg) and Ris ) given by 3.14(4) by Ry, Ry, Ry,
Reams ... etc. For Ay, 4y, 45 =1, 1L, 111, let B = 5@ 5y @ By denote the decomposition
of E as a direct sum of subfunctors. Then Sy(R) = {[M]|M is t.f. Type X1} and similarly
Jor 1 and 1L Then the following hold for any one of 1, 11, or III, say IIL
(1) () Z2R = Ry, R <R is a right complement, Ry/Z,Relll
(i) V t.f. Mgelll, there exists an embedding M < E(@ rRu/Z,R) for some T.
ie. [M] < [Rm/Z2R].
(iii) Unique: If L < R satisfies (i) and (i), then L < Ry.
(iv) Rm < R and E(Ry) < ER are fully invariant right R-modules, hence Ryy< R.
2 Ry = (Ri+Rn)”™, RunReay = Z2 R, R+ Reany <€ R.
(3) Rym < R is the unique smallest right ideal with respect to:
() Z2R = Ry = Regny < R; (i) [R/R;any] = [Rw/Z2R].
4) Ri+Ry+Ry € R; ReyRin € Z,R; RuyReqy © Z,R.
(5) Ep(R) = Ei(R); En(R)® En(R) S Ec(R); thus En(R) @ Em(R)

We combine 2.3, 3.7, and 3.14 to show how the classical direct sum decomposition
into Types L II, and III is a very special case of a general phenomenon.

is atomless.

317. MAIN. CoROLLARY. Suppose that (41,0,), ..., (4, 8,) are any saturated
universal classes satisfying the conditions 3.14(3) and that M is any t.f. R-module. Then
there exist submodules M; < M such that

(1) (@ M, ®..®&M, < M; (b) M; = M, < M are right complements; and (c) M;e 4.

(2 Unique: subject to (1) the M, are unique. Furthermore, M, = M 4.z, and
M; <M is fully invariant.

B M=M®..OM,; M= E(Maqr) = (EM) ) for i=1,2,...,n

(4) Applications. (a) If (4;,6) are Types I, I, and 111, then

M@My@® My < M < M = Mi® My ® My,

where My, M, are Type J for J =1, 11, Il

(b) If (4, 8) are continuous molecular (CA), continuous bottomless (CB), and the
discrete (D) modules, then similarly

Mc, @M@ Mp <M <M =Mc,®Mcy® M.

icm

Torsion free types 113

4. Characterizations of types. Various internal module-theoretic conditions are
found which will tell us whether a module is atomic, continuous molecular, bottomless,
or has some of the eight properties listed in Definition 34.

4.1. Atomic. For a tf module A, [A]€E(R) is an atom < Vx, yeA\{0},
Homg(E(xR), E(yR)) # 0.

Proof. = This is clear.

<= Take any index set I' of cardinality |I'| > |4]. We will show that for any
0#yed, there exists an embedding 4 < E(®ryR). Let = {(X, f),(L,g), ...}
where K < A and f: K — E(@,yR) is monic. Define (K, N)<(L,g) if K =L and
g restricts to g|K = f. By Zorn’s lemma, & has a maximal element (K, fleS. There
exists a y eI such that fKNE(yR), = 0, for otherwise [K| = |fK| 2 |I > |4]. If K 4,
then K @ E(xR) < E(@DyR) for some 0 # xe 4. Thus far we did not use the fact that
A is torsion free, but now it is needed to deduce from Homg(E(xR), E(yR)) # 0 that
there exists 2 submodule 0 # V< E(xR) and a monomorphism h: V— E( VR),. But then
the monic map g: K@ V- f(K)® E(yR), sE((—BryR) where g|K =f and g|V =h,
contradicts the maximality of (K, f)e%. Thus K = A.

4.2. Abelian. Let Ay be torsion free continuous. Then A is abelian < A0 #x,0+#y
€ A\{0} such that xR = yR but xRAyR = 0.

. Proof. = If not, then A= ExR)Y®E(yR)D A4’
E(xR) = E(yR) contradicts 3.3. .
< If A is not abelian, then 4 = K, @ A’ = K, ® 4" where 0 # K, = K,. By [Bu],
K\K, # @ and K)\K; # . Let ke K,\K,. Then by [D; p. 53, 1.3(0)], k'K, << R.
So there exists 0 # B < R such that k™ *K,®B < R. Then kBnK, =0. Let 0 #beB,
and let f: K; — K, be an isomorphism. Then x = kbeK,,y = fkbeK,, xRNyR =0,
R = (fx)R = yR, and x* = y*, and hence xR 2 yR. This is a contradiction, and hence
A is abelian.

Note that (i) below says that M is a direct sum of a Type II and Type I module.

for some A’ < A4, and

4.3. Continuous molecular. Let M be a torsion free continuous molecular module. Then

() VO£AV<M,IPOQ <V with P=Q.

(ii) M does not contain any nonzero Type I submodules.

Proof. (i) By Zorn’s lemma, there exists a maximal independent family {P;® Q;}
of submodules of V with P;=Q;. Let [DPOQ)®D<V and set
P = @ P2 @0 =

'ItD # 0, there ex1sts a continuous atomic submodule 0 # A4 < D. Take any 0 # a,
0 # be A with aRNbR = 0. There is an index set I such that bR < E(@ raR). From
this it follows by 1.2 that (bro)* = (ar,)* for some ro,7;€R. Thus ar; R = broR with
P®Q®ar; R®broR <V contradicts the maximality of P@®(Q. Hence D =0 and
POQ=EV,P=Q.

(i) By 4.3(i) and 4.2, M cannot contain a nonzero abelian submodule, and hence
no Type I submodules.
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The next criterion is particularly well adapted to showing that a module M is not
directly finite. In the proof below, B; and B; are defined nonsymmetrically.

4.4, Directly finite. A t. f module is directly finite < 8 a triple B;,B,,C <M of
" nonzero submodules of M such that B; =B, =C,Cn(B,®B,) <B;®B,, and
Cn(B;®By) < C. , -

Proof. = If not, then B; = B, @ € = B, ®B, is a contradiction.
< Ifnot, then M = V@M with 0 £ V=V, ®V,, Vi Vo = V. Let g: ¥V, — Vand
f: Vi—V, be isomorphisms. Set

By =MnLf™ (VanM)lng ™ [(VinM) @ (VanM)].

Since VinM < V;, inM)® (V, @ M) < V, @ V, = V. For t.f. modules the inverse image
of a large module is large. Hence B; < V;. By [D; p. 55, Lemma 1.8(1)1, gB; < V, and
fB1<V,. Note that ¢gB, = (VinM)®(VanM) and that fB, € VonM. Set
C=¢B; < VnM and B, = fB;. Then C = gB, = B, = /B, = B, satisfy the required
two conditions as follows:

Bi®B, < (rM)®(rM))  (Co(B@B)<C
C<(MnM)@(VonM) p = < and
Cn(B1® By) <« inM)@ (VM) CN(B1@®B;) < B, ®B,.

Note that a sometimes useful equivalent way to reformulate the last two conditions
is that (CnB;)@®(CnB,) < C and (CNB;)®(CNB,) < B; @ B,. This follows by inter-
secting both sides of Cn(B; @ B,) < B, ® B, with B; to get B,nC < B,.

45. Let M be any torsion free module and let 0 £ W =W < M represent any
arbitrary complement submodule. Then

(1) ) M is Type I <= YW, 30 A < W, A is abelian @4.2).

(i) M is discrete = M is Type 1. '
(i) M is continuous Type 1 = M is bottomless.

Q) Mis Type Il < YW,30£ V< W, Vis directly finite (4.4), and M contains no
nonzero abelian submodules (4.2). :

() M is Type IIl <> VW, 3B, ®B, < W, 3C < W such that B, @ B, = C.

Proof. (1)(),(i), and (2). These are clear.

(1)(iii) If not there exists a continuous atomic module 0 # A < M. Thus there exist
0 a,0# beA with aRNbR = 0, and an embedding 4 = E(@, aR). By 1.2, there are
ro,71 € R with (are)* = (bry)". Then x = arg, y = bry violate 4.1. Thus M is bottomless.

(3) = Let & = {<By,B,,C)|Bi®B, < W, C < W, 0+# B; = B,  C, (B, ®B,)nC
<B1®B,;, (Bi@®B)NC<C}. By 44, ¥ %0. Partially order & by
{B1,B3,C") <{By,B,,C) if B, €B,,B<B,, and C' < C. By Zorn’s lemma, let
{B1,B;,C)e¥ be maximal Set K = [CNBI@®BYI"<W. If KW, let
K@D < W,0#D < W. By hypothesis, there exist 0 #B @B, <D,C'<D as in

4.5(3) with B} = B}, = C". Then (B, @ B, , B2® B3, C® C'> contradicts the maximality
of {(By, B,,C).
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5. Examples. The next two examples illustrate how our characterizations of Type
I and III modules can be applied in concrete cases. ;

5.1. EXaAMPLE. Suppose that R, jeJ, is a family of torsion free rings and R = TIR;.
Then .

() VJj, Rjel=>Rgel.

(i) Vj, R;elll = Rpelll.

Proof. (i) For any 0# wR<R, w=(w)eR, there is a’ cyclic Rabelian
submodule a;R; = w;R; = wR; < R;, where a; # 0 whenever w; # 0. Then a = (a)€wR.
Suppose that 0% x, 0 # yeaR with xRAyR =0, but xR = yR. Take any j with
x; 5 0. Since xRR; = x;R < a;R;, necessarily x;Rny;R = 0, and also 0 5¢ x;R; = y;R;
are isomorphic as R- or R;-modules. This contradicts that a;R; is an R-abelian module.
Therefore 0 # aR < wR is an abelian submodule of wR. Thus Rzel.

(i) Let m; R—R; be the projection. Take 0 % W < R. For any j, m;W #0 is
a directly infinite R-module. There exist: two large R;-submodules of =;W as in 4.5(3),
where B;;®B;;=m;W and' C; = ;W are both Rplarge, with B;=~ B,; = C;. If
;W #0, alsoC;#0. Otherwise when m;W =0, also C;=0. Set B; = @ By,
B, = @ B,j, and C= @ C;. Then B, = B, = C, with B; ®B, < Wand C < W. By
4.5(3), R is Type IIL Co

A class of continuous bottomless rings is constructed below, and it ‘i's also
determined when these are Type I or IIL It is known ([D;.p. 75, 6.3]) that a domain
R that is not right Ore is continuous atomic, and it is easy to see ([D; p. 75, 6.4]) that
then Ry is Type III. Atomless Boolean rings aré examples of torsion free continuous
bottomless Type I, rings ([D; p. 77, 6.9]). Concrete atomless Boolean rings are given in
[P; p. 895, Thm. 3.33, [S; pp. 105-107, (A, B)], [H; p. 96, (4)], and [GHKLMS; p. 113, (3)].
By use of the above in the next construction, it is easy to construct very concrete
examples of bottomless Type I and Type III rings.

5.2. ConsTrRUCTION. For any family of rings with identity R;, jeJ, form P =[|R,,
S= @R, and set R = P/S. Then
i) Ry is torsion free.
(ii) Ry is continuous bottomless. .
If now in addition all the R;, jeJ, are countable domains, then
(ifi) {jeJ|R;¢I}| < o< Rgel.
(iv) {jeJ|R;j¢lI}| < co<> Rgelll.

Proof. First it will be shown that for any a= a+S,beR, a =(a) eP, and any
R-map f: @R—bR with b = fa, there exists a coset representative b = (b)eP with
b=b+S such that suppb = {jeJ|b; # 0} = suppa. For any subset Y= J, zy will
denote the characteristic function of Y, First take any beP with b =b+S§, and set
Y = supp b\ [suppansuppb]. Then ayy=0,axy=0, and hence" b = fla—ayy]
=[b(l—xy)]~. Consequently b=b(l—yy)+S and supp[b(1—yy)] = (J\Y)nsuppb
= supp ansupp b ‘as tequired. : : i
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() For 0s#deR, define a *0={pePlap=0}. Since a' = (a"10+S){s
= [(1— Xeuppa) P+ S))/S, and since &' @ [(fawppaP+5)/S]1 =R, we have a* <R iff
|suppa| < co. Thus ZR =0. ' .

(ii) If Ry is not continuous bottomless, then there exists a continuous atomic
submodule O s @R for some d = a+SeR. Partition suppa = YUZ, YNnZ =@, and
|Y| =]Z] = co. Since 0 # ayy, 0 # ajz€aR and the latter is atomic, it follows that
a7yR < E(@raxzR) for some I', and by 1.2, that (@%ys)* = @%1)"* for some 7, seR
with @yzr # 0. But then ayyjz = 0 and ayzsiz = Gxzr # 0 is a contradiction. Hence
Ry is continuous bottomless.

(iii) Set Y= {jeJ|R;¢I}. = If Rx¢l, then there exist = a--S,b=b+SeR
with 0 # GR = bR and with &RNBR = 0. But in general

ﬁRﬁER =0 '« |{j|a,R,nb,Rj # 0}[ < 0.

By a change of coset representatives @ and b of 4 and b we may assume that the latter set
is empty. By the observation at the beginning of the proof, we may also assume that
suppa =suppb. Thus for all jesuppansuppb, R;=a;R;=bR; and also
ajRinb;R; = 0. This implies that R;¢X. Hence suppa < Y. This contradicts that a 5 0,
Thus Ryel

(iii) < Suppose that |Y|=co. For each jeY choose 03 a;R;=b;R; with
a;RNb;R =0. Let m;: P—R; be the projection, and define elements a,beP by
suppa = suppb =Y, and with m;a=a;, mb=>5; for all jeJ. Then aPnbP =0,
aRnbR =0, and 0 # aR = bR becduse a* = b* = (1~F,)R. Thus Rx¢I, a contradic-
tion. Hence Y is finite.

(iv) = It suffices to show that any cyclic submodule of Ry is directly infinite. Let
0#¢&=c+SeR, ¢c=(c,)eP\S. For each n, there exists

(‘B ZLRn = (‘D Z:IP = CnP = C,,R,.,

i=1 i=1
where the latter is a large extension of right P-modules, and where we view all
zy€R, = § = P, and also c,eR, = P. If nesuppe, all 0 # z,e R,. When ¢, = 0, let all
z,=0. Set z'=(zl)y=1,2..€P. Then D2 zZ’P ScP is a large extension of right
P-modules. Moreover, also @2, 7R <R, where 7 = z'+SeR. Thus

o w

(®#R)a(P F-'R) < cR
i=1 i=1

shows that E(cR) = E(cR)®E(cR). Hence R is a continuous bottomless module of

Type Il <= This is similar to (iii) and is omitted.

5.3. The classes of discrete, continuous, continuous molecular, and bottomless
torsion free modules are denoted by D, C, CA4, and CB respectively; while the classes of
all modules of Types I, II, and III are abbreviated by I, II, and IIL By [D; p. 75, 6.4],
CAnIIL # {(0)}; while [D; p. 77, 6.9] shows that CBAI 3 {0)}. By 43, DI (and
hence DI = DAIII = {(0)}). From 5.2(iv) we get CBAIII % {(0)}. In the table below,
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“0” means that the intersection of the two classes (the one in the row and the second one
in the column) is {(0)}; and “yes” means that there exist nonzero modules in the
intersection of the two classes, and “?” means that so far the answer is not known.
|1 I m
D |yes 0 0
C{ CA| 0 yes
CB | yes yes
For any torsion free injective modules 4 and B, the reject rej,B is injective. The

next counterexample shows that the dual of this for the trace fails—trp 4 need not be
injective.

PROTINTY

5.4. COUNTEREXAMPLE. For an infinite-dimensional right vector space V over
a division ring F, take R to be the ting R = EndyV, where R acts on the left of V Then
the ideal H 1 R of finite rank transformations is a simple ring with H? = H < R. Since
Ris a right self-injective regular ring ([G; p. 53, 2.23]), for any 0 # x € H, xR is injective
because xR = eR for some ¢ = e R. Then the trace of xR in R is trgxR = RxR = H
and is pot injective,
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