approximablement par des fonctions \(k \) telles que, pour tout \(K \) dans \(U \), la borne inférieure de \(k(K) \) ne soit pas un point isolé de \(k(K) \). La construction d'une telle fonction \(k \) peut se faire en deux temps, comme celle de \(h \). On approxime d'abord \(id_y \), par une fonction \(k_l \), telle que, pour tout \(K \), la borne inférieure \(q_1(K) \) de \(k_l(K) \) soit \(>0 \). Notant \(L = \{0\} \cup \{1/n \mid n \geq 1\} \), on pose alors
\[
k(K) = k_l(K) \cup \{[q_1(K) - \alpha(K), q_1(K)](L)\},
\]
ou \(\alpha : U \rightarrow \{0, 1\} \) est une fonction continue suffisamment petite.

Compte tenu du corollaire 5.2, le lemme suivant achève de vérifier les conditions du théorème 1.1.

5.6. Lemme. \(\mathcal{H} \) est réunion dénombrable de \(Z \)-ensembles.

Démonstration. Soit \(Z_0 \) l'ensemble des éléments de \(2^I \) ne contenant qu'un seul point. Pour \(n \geq 1 \), soit \(Z_n \) le sous-ensemble de \(2^I \) de \(n \)-formes des \(K \) pour lesquels il existe un \(x \) appartenant à \(K \) tel que \(K \setminus \{x\} \) soit non vide et que \(d(x, K \setminus \{x\}) \geq 1/n \). Il est facile de vérifier que \(Z_n \) est fermé dans \(2^I \). La fonction \(\varphi : 2^I \times I \rightarrow 2^I \) définie par
\[
\varphi(K, t) = \{x \in I \mid d(x, K, t) < t\}
\]
est une déformation instantanée de \(2^I \) en \(2^I \setminus \bigcup_n Z_n \). Cela entraîne que les \(Z_n \) sont des \(Z \)-ensembles dans \(2^I \). Puisque tout compact dénombrable a un point isolé, \(\mathcal{H} \) est contenu dans la réunion des \(Z_n \). Les sommes 2.6 et 5.1 montrent alors que \(\mathcal{H} \) est la réunion des \(Z \)-ensembles \(\mathcal{H} \cap Z_n (n \geq 0) \).

Bibliographie

Received 8 January 1990; in revised form 17 April 1990

Collectionwise Hausdorffness at limit cardinals

by

Nobuyuki Kemoto (Oita)

Abstract. F. D. Tall conjectured:
If \(\kappa \) is a singular strong limit cardinal and \(X \) is a \(\kappa \)-CWH (Collection-Wise Hausdorff) normal or countably paracompact space of character \(< \kappa \), then \(X \) is \(\kappa \)-CWH.

In this paper, we shall show that the conjecture is true if the singular cardinals hypothesis is assumed. Furthermore, we shall study weak \(\kappa \)-CWH-ness, when \(\kappa \) is a certain limit cardinal.

1. Introduction. F. D. Tall conjectured in [T3]:

TALL'S CONJECTURE. If \(\kappa \) is a singular strong limit cardinal and \(X \) is a \(\kappa \)-CWH (Collection-Wise Hausdorff) normal or countably paracompact space of character \(< \kappa \), then \(X \) is \(\kappa \)-CWH.

W. G. Fleissner proved in [F1] that this conjecture is true if the GCH (Generalized Continuum Hypothesis) is assumed. More generally, as in [T2], this conjecture is true if there is a \(\mu < \kappa \) such that \(2^\lambda = \lambda^+ \) for every \(\mu < \lambda < \kappa \). Whenever of \(\kappa = \omega \) holds, this conjecture is true without other set-theoretical additional axioms or normality or countable paracompactness by the argument of the proof of [F2, Theorem 1 (b)]. Thus we focus on the case of \(\kappa \geq \omega_1 \).

In Section 2, we shall characterize \(\kappa \)-CWH-ness using the sparse-like argument in [F4], and also that the conjecture is true if the SCH (Singular Cardinals Hypothesis) is assumed. In Section 3, we shall study weak \(\kappa \)-CWH-ness (in the sense of [T1]) for various spaces where \(\kappa \) is a certain limit cardinal.

A closed discrete subspace \(Y \) of a space \(X \) is said to be separated if there is a neighborhood \(U_y \) of \(y \) for each \(y \in Y \) such that \(U_y \cap Y \) is disjoint. \(Y \) is \(\kappa \)-separated if every subset of \(Y \) of size \(< \kappa \) is separated. A space \(X \) is \(\kappa \)-CWH (\(\kappa \)-CWH) if every closed discrete subspace of size \(x \) (\(< \kappa \), respectively) is separated. “Closed UnBounded” is abbreviated as \(CUB \). In this paper, no separation axioms are assumed.

1980 Mathematics Subject Classification (1985 Revision): 54D15, 03E50.

Key words and phrases: collectionwise Hausdorff, strong limit cardinal, singular cardinals hypothesis.
2. The CWI-case. In this section, we shall prove that Tall’s conjecture is true assuming SCH. Some of our arguments will be somewhat similar to the arguments in \cite{F4} or \cite{Wa}. Throughout this paper, \(A \) denotes a neighborhood base at \(y \).

Definition 2.1. Let \(X \) be a space and let \(Y \) be a subspace of size \(x \) with \(\aleph_1 \geq \omega_1 \). A countable sequences of partitions \(\{ Y_n : \alpha < \aleph_1 \} \) of \(Y \) is said to be nice partitions if for each \(n < \omega \), there is a \(b_n \in \prod_{\alpha < \aleph_1} A_\alpha \) such that

1. \(\|Y_n\| < \omega \) for each \(n < \omega \) and \(\aleph_1 < \aleph_2 \).
2. \(\{ \alpha < \aleph_1 : \alpha < \aleph_1 \} \) contains a cub set in \(\aleph_2 \).

Here a "partition" means a disjoint cover.

Lemma 2.2. If \(Y \) is a \(\aleph_1 \)-separated discrete subspace of size \(x \) with \(\omega_1 \leq \aleph_1 \) which has nice partitions, then \(Y \) is separated.

Proof. Take such partitions \(\{ Y_n : \alpha < \aleph_1 \} \) and \(b_n \in \prod_{\alpha < \aleph_1} A_\alpha \) as in Definition 2.1. By \((1) \) of Definition 2.1, take a cub set \(C \) contained in \(\{ \alpha < \aleph_1 : \alpha < \aleph_1 \} \) for each \(n < \omega \). Put \(C = \{ 0 \} \cap \prod_{\alpha < \aleph_1} C_\alpha \). Enumerate \(C \) in increasing order, say \(C = \{ \mu(\gamma) : \gamma < \aleph_1 \} \). For each \(n < \omega \), put \(Y(\gamma, n) = \bigcup \{ \mu(\gamma) : \mu(\gamma) < \aleph_1 \} \). Since \(C \) is cub in \(\aleph_1 \), \(\{ Y(\gamma, n) : \gamma < \aleph_1 \} \) is a partition of \(Y \) for each \(n < \omega \). By induction fix a \(g_n \in \prod_{\alpha < \aleph_1} A_\alpha \) for each \(n < \omega \) such that

1. \(g_{n+1}(\gamma) = g_n(\gamma) \) for each \(n < \omega \) and \(\gamma < \aleph_1 \).
2. \(\{ \mu(\gamma) : \mu(\gamma) \in \prod_{\alpha < \aleph_1} C_\alpha \} \) is disjoint for each \(n < \omega \) and \(\gamma < \aleph_1 \).

The statement (b) is ensured by \(\aleph_1 \)-separatedness, (c) by \(\alpha(\gamma) \in C \) in \(C_\alpha \), and (2) of Definition 2.1. By (a) and (c), the following holds.

\[
\bigcup_{\alpha < \aleph_1} \{ \alpha(\gamma) : \alpha(\gamma) \in \prod_{\alpha < \aleph_1} C_\alpha \} \times g_{n+1}(\gamma) = 0
\]

For each \(\gamma \in \text{Y} \) and \(n < \omega \), put \(\gamma(\gamma, n) = \gamma(\gamma, n+1) = \gamma \). Then by (2) of Definition 2.1, it is easy to show that \(\gamma(\gamma, n) \in \gamma(\gamma, n+1) \gamma) \) for each \(\gamma \in \text{Y} \) and \(n < \omega \). Thus there is a \(\gamma \in \omega_1 \) such for each \(\gamma \in \text{Y} \) there is \(\gamma(\gamma, n) = \gamma(\gamma, n+1) \gamma) \). It suffices to show that \(\{ \gamma(\gamma, n+1) : \gamma \in \text{Y} \} \) is disjoint. To show this, fix \(\gamma, \delta \in \text{Y} \) with \(\gamma \neq \delta \). Then\(n = \min \{ n(\gamma), n(\delta) \} \). Then

\[
\text{Case 1.} \gamma(\gamma, n) = \gamma(\delta, n) = \gamma.
\]

\[
\text{Case 2.} \gamma(\gamma, n) < \gamma(\delta, n) \text{ (the remaining case is similar)}.
\]

Subcase 1. \(\gamma(\gamma, n) < \gamma(\delta, n+1) \gamma) = \gamma \). In this case, since \(\gamma = \gamma(\gamma, n+1) \gamma) \), the claim follows from (b), (c) and (a).

Subcase 2. \(\gamma(\gamma, n+1) \gamma) < \gamma(\delta, n) \). In this case, \(\gamma(\gamma, n+1) \gamma) < \gamma(\delta, n) \), we have \(n = n(\gamma) \). First assume \(\gamma(\gamma, n+1) \gamma) = \gamma(\gamma, n) \). Then by \(\gamma(\gamma, n) = \gamma(\gamma, n+1) \gamma) \), \(\gamma \) and \(\delta \) are in \(\text{Y}(n+1) \). Thus the claim follows from (b), (c) and (a).

Next assume \(\gamma(\gamma, n+1) \gamma) < \gamma(\delta, n) \). Then \(\gamma \) is in \(\bigcup_{\gamma < \aleph_1} \text{Y}(n+1) \) and \(\delta \) is in \(\text{Y}(n+1) \) by \(\gamma(\gamma, n+1) \gamma) = \gamma \). Thus the claim follows from (d), (e) and (a). This completes the proof.

Definition 2.3. Let \(\aleph_1 \) be a limit cardinal. A sequence \(\{ x_\alpha : \alpha < \aleph_1 \} \) of cardinals in \(\aleph_1 \) is said to be normal if

1. \(x_\alpha < x_{\alpha+1} \) for every \(\alpha < \aleph_1 \),
2. \(x_\alpha = \sup_{\beta < \alpha} x_\beta \) for every limit \(\alpha < \aleph_1 \),
3. \(x = \sup_{\alpha < \aleph_1} x_\alpha \).

Remark. Note that there always exists a normal sequence in \(\aleph_1 \) if \(\aleph_1 \) is a limit cardinal, and also that there exists a normal sequence \(\{ x_\alpha : \alpha < \aleph_1 \} \) with \(2^{\aleph_1} \leq \aleph_1 \) for every \(\aleph_1 < \aleph_1 \) whenever \(\aleph_1 \) is a strong limit cardinal.

The proof of the following lemma is routine.

Lemma 2.4. Let \(\aleph_1 \) be a limit cardinal with \(\omega_1 \leq \aleph_1 \) and let \(\{ x_\alpha : \alpha < \aleph_1 \} \) and \(\{ x'_\alpha : \alpha < \aleph_1 \} \) be normal sequences in \(\aleph_1 \). Then \(\{ \alpha < \aleph_1 : x_\alpha < x'_\alpha \} \) is cub in \(\aleph_1 \).

Lemma 2.5. Let \(Y \) be a closed discrete subspace of size \(x \) with \(\omega_1 \leq \aleph_1 \). Moreover, let \(\{ Y_\alpha : \alpha < \aleph_1 \} \) be a partition of \(Y \), \(\{ x_\alpha : \alpha < \aleph_1 \} \) be a normal sequence in \(\aleph_1 \), \(C \) a cub set in \(\aleph_1 \), such that \(\{ \alpha : \alpha < \aleph_1 \} \subset \{ \alpha < \aleph_1 : \bigcup \{ [b_\alpha] : \alpha < \aleph_1 \} \cap \bigcup Y_\alpha \in C \} \subset \bigcup \{ \alpha(\gamma) : \gamma < \aleph_1 \} \). Then there is a partition \(\{ Y_\alpha : \alpha < \aleph_1 \} \) of \(Y \) such that

1. \(C \subset Y_\alpha \),
2. \(\{ \alpha < \aleph_1 : \bigcup \{ [b_\alpha] : \alpha < \aleph_1 \} \cap \bigcup Y_\alpha \in C \} \subset \bigcup \{ \alpha(\gamma) : \gamma < \aleph_1 \} \).
to have property $P(\mu)$ if for every $m: \gamma \rightarrow \mu$, there is a $b \in \prod_{x \in Y} \mathcal{A}$, such that \(\{m(\gamma); b(\gamma) \cap \gamma(\gamma) \neq 0, \gamma \in Y\}\) is bounded in μ for each $\gamma \in Y$. The whole space X is also said to have property $P(\mu)$ if every closed discrete subspace Y has property $P(\mu)$ in the above sense. Thus we shall use property $P(\mu)$ in two different ways, but these differences will be clarified by the context.

Remark. Note that normal or countably paracompact spaces have property $P(\omega)$ and κ-para-Lindelöf spaces (in the sense of [F4]) have property $P(\kappa)$. The notion of the $\mathcal{A}(\mu)$-property is known as a generalization of countable paracompactness to higher cardinals, see [R]. A space has the $\mathcal{A}(\mu)$-property if for every increasing open cover \(\{U_\alpha: \alpha < \mu\}\) (i.e., $U_\alpha \subseteq U_{\alpha+1}$ if $\alpha < \beta$, each U_α is open and $\bigcup_{\alpha \in \kappa} U_\alpha = X$), there is an increasing open cover \(\{V_\alpha: \alpha < \mu\}\) such that $\text{cl} V_\alpha \subseteq U_\alpha$ for each $\alpha < \mu$. Note that "countable paracompactness $\Rightarrow \mathcal{A}(\omega)$-property" holds, see [En]. And note that the argument of the proof of this equivalence shows "κ-para-Lindelöfness $\Rightarrow \mathcal{A}(\kappa)$-property". Here we remark the relation between $\mathcal{A}(\mu)$-property and property $P(\mu)$.

Lemma 2.7. Every space X having the $\mathcal{A}(\mu)$-property has property $P(\mu)$, where μ is an infinite cardinal.

Proof. Let Y be a closed discrete subspace of a space X having the $\mathcal{A}(\mu)$-property. Fix an arbitrary mapping $m: \gamma \rightarrow \mu$. For each $\alpha < \mu$, put $U_\alpha = X \setminus \bigcup_{\beta \leq \alpha} \text{cl} V_\beta$. Then \(\{U_\alpha: \alpha < \mu\}\) is an increasing open cover of X. Take an increasing open cover \(\{V_\alpha: \alpha < \mu\}\) such that $\text{cl} V_\alpha \subseteq U_\alpha$ for each $\alpha < \mu$. For each $y \in Y$, let $f(y)$ be the least $\beta < \mu$ such that $y \in V_\beta$. If $y \in V_\mu$, then $f(y) = \mu$. Note that $a < f(y)$ if $y \in m^{-1}(a)$. For each $y \in m^{-1}(a)$, fix $h(y) \in \mathcal{A}$ such that $h(y) \in \text{cl} V_{f(y)}$. Then it is easy to see that \(\{m(\gamma); b(\gamma) \cap \gamma(\gamma) \neq 0, \gamma \in Y\} \subseteq m(\gamma)\) for each $\gamma \in Y$.

Lemma 2.8. Let μ be an infinite cardinal, Y a closed discrete subspace of a space X, and m_0 an arbitrary mapping $Y \rightarrow \mu$. Assume Y has property $P(\mu)$. Then for each $\alpha < \omega$, there is a $b_\alpha \in \prod_{x \in Y} \mathcal{A}$ and a $m_\alpha: Y \rightarrow \mu$ such that \(\{m_\alpha(\gamma); b_\alpha(\gamma) \cap \gamma(\gamma) \neq 0, \gamma \in Y\} \subseteq m_\alpha(\gamma)\) for each $\gamma \in Y$.

Proof. Assume that m_0 and b_0 have been defined. By property $P(\mu)$, there is a $b_\alpha \in \prod_{x \in Y} \mathcal{A}$ such that \(\{m_\alpha(\gamma); b_\alpha(\gamma) \cap \gamma(\gamma) \neq 0, \gamma \in Y\}\) is bounded in μ for each $\gamma \in Y$. Fixing $m_\alpha(\gamma)$ in μ which contains A_α for each $\gamma \in Y$, we are done.

Lemma 2.9. Let κ be a strong limit cardinal with $\omega_1 \in \mathcal{C}(\kappa)$, let Y be an infinite cardinal less than κ, and let \(\{x : \kappa < \mathcal{C}(x)\}\) be a normal sequence of cardinals in κ such that $2^\kappa < \kappa_\alpha$ for each $\alpha < \kappa$. Assume Y is a closed discrete subspace of size κ such that Y has property $P(\mu)$ and has a partition $\{Y_\alpha; \alpha < \kappa\}$ with $|Y_\alpha| < \kappa$ for each $\alpha < \kappa$ and each $y \in Y$ has a neighborhood basis \mathcal{A} with $|\mathcal{A}| < \kappa$. Then there is a $b \in \prod_{x \in Y} \mathcal{A}$ such that \(\{x \in \mathcal{C}(\kappa); b_\alpha(\gamma) \cap \gamma(\gamma) \neq 0, \gamma \in \alpha \in Y\} \subseteq m_\alpha(\gamma)\) for each $\gamma \in Y$. Fixing $m_\alpha(\gamma)$ in μ which contains A_α for each $\gamma \in Y$, we are done.

Proof. For each $x \in \mathcal{C}(\kappa)$, put $Z_x = x \in Y_\alpha$.

Claim 1. \(\alpha \in \mathcal{C}(\kappa); \prod_{x \in Y_\alpha} \mathcal{A}(\kappa) \rightarrow \mathcal{C}(\kappa)\) contains a cub set.

Proof. Since $|Y_\alpha| < \kappa$ for each $\alpha < \kappa$, we can fix $f(x) \in \mathcal{A}$ such that $|Y_\alpha| < \kappa^{\alpha}$, Then it is easy to see that $C_\alpha = \{x \in \mathcal{C}(\kappa); \forall \beta < \kappa (f(\beta) < \alpha)\}$ is cub. If α is an element of C_α,
Thus case 1 happens and using (b), we obtain

\[J(y, \Delta, b(y, \Delta)) = \{ b(y, \Delta) \cap b(y, \Delta) \neq 0, y \in Z_{\alpha(y)} \} \]

\[= \{ m_{\alpha}(y) : b(y, \Delta) \cap b(y, \Delta) \neq 0, y \in Z_{\alpha(y)} \} \]

\[\subset \{ m_{\alpha}(y) : b(y, \Delta) \cap b(y, \Delta) \neq 0, y \in Y \} \]

\[= m_{\alpha}(y, \Delta) \prec \mu. \]

Therefore subcase 1 of case 1 happens. Then by the definition of \(m_{\alpha, \beta} \)

\[(d) \quad m_{\alpha, \beta}(y, \Delta) = m_{\alpha}(y, \Delta) \prec \mu. \]

By \(b(y, \Delta) \cap b(y, \Delta) \neq 0 \) and by (d), there is a \(y \in Z_{\alpha(y)} \) such that \(b(y, \Delta) \cap b(y, \Delta) \neq 0 \). By \(b(y, \Delta) \cap b(y, \Delta) \neq 0 \) and by (a),

\[(e) \quad m_{\alpha}(y, \Delta) \in m_{\beta}(y). \]

Also by \(b(y, \Delta) \cap b(y, \Delta) \neq 0 \) and \(y \in Z_{\alpha(y)} \),

\[(f) \quad m_{\alpha}(y, \Delta) \in m_{\beta}(y). \]

Then by (d), (e) and (f), \(m_{\alpha, \beta}(y, \Delta) \in m_{\alpha}(y, \Delta) \prec \mu \). But this is a contradiction. This completes the proof.

Theorem 2.10. Let \(x \) be a singular strong limit cardinal with \(\omega_1 \leq cf < \kappa \), let \(\mu, \chi \) be infinite cardinals less than \(\kappa \), and let \(Y \) be a closed discrete subspace of size \(\kappa \) such that \(Y \) has property \(P(\mu) \) and each \(y \in Y \) has a neighborhood base \(\mathfrak{U} \) with \(|\mathfrak{U}| \leq \chi \). Assume that there is a normal sequence \(\{ x_n : n < \kappa \} \) of cardinals in \(\kappa \) such that \(\{ x : cf < \kappa \} : 2^n = x_n \} \) contains a cub set in \(\mathfrak{U} \). Then \(Y \) has nice partitions (Thus \(Y \) is separated if \(Y \) is \(\kappa \)-separated by Lemma 2.2).

Proof. Fix a 1-1 onto map \(f : Y \to \kappa \). For each \(\alpha < \kappa \), put \(Y_{\alpha} = f^{-1}(\kappa_\alpha) \). Then \(\{ Y_{\alpha} : \alpha < \kappa \} \) is a partition of \(Y \) with \(|Y_{\alpha}| < \kappa \) for each \(\alpha < \kappa \). Assume a partition \(\{ Y_{\alpha} : \alpha < \kappa \} \) of \(Y \) with \(|Y_{\alpha}| < \kappa \) for each \(\alpha < \kappa \) is defined. By Lemma 2.4, we may assume \(2^n = \kappa_{n+1} \) for each \(\alpha < \kappa \). Applying Lemma 2.9 to \(\{ Y_{\alpha} : \alpha < \kappa \} \), take a \(b_\alpha \) in \(\bigcap_{\beta < \alpha} \mathfrak{U} \), such that \(\{ x : cf(x) \in \{ Y_{\beta} : \beta < \alpha \} \} \rightarrow Y \). Then \(2^{n+1} = \kappa_{n+2} \) contains a cub set. Since \(\{ x : cf(x) = x_n \} \) contains a cub set, \(\{ x : cf(x) \in \{ Y_{\beta} : \beta < \alpha \} \} \rightarrow Y \) also contains a cub set. Then by Lemma 2.5, there is a partition \(\{ Y_{\alpha+1} : \alpha < \kappa \} \) of \(Y \) such that \(|Y_{\alpha+1}| < \kappa \) for each \(\alpha < \kappa \) and \(\{ x : cf(x) \in \{ Y_{\alpha} : \alpha < \kappa \} \} \rightarrow Y \). Then repeated applications of this process, one can get nice partitions.

Remark. If there is a normal sequence \(\{ x_n : n < \kappa \} \) as in Lemma 2.10, then \(2^\kappa = \kappa^+ \) by [Je, Lemma 8.2]. Next we shall show such a normal sequence exists assuming SCH (Singular Cardinals Hypothesis).

Lemma 2.11 [SCH]. Let \(x \) be a singular strong limit cardinal with \(\omega_1 \leq cf < \kappa \), and let \(\{ x_n : n < \kappa \} \) be a normal sequence of cardinals in \(\kappa \) such that \(2^n = \kappa_{n+1} \) for each \(\alpha < \kappa \). Then \(\{ x : cf(x) = x_n \} \) contains a cub set.

Proof. Take \(\{ x_n : n < \kappa \} \) and \(\{ Y_n : n < \kappa \} \) as in the proof of Theorem 3.1. For
each $a < \text{cfx}$, take separated $Y'_a \subseteq Y_a$ of size $|Y_a|$. Fix $b \in \prod_{a < \omega} b_a$, such that $\{b(y) : y \in Y'_a\}$ is disjoint and each $b(y)$ is μ-cc.

Claim. \(\bigcup (b(y) : y \in \bigcup_{a < \omega} Y'_a) \cap Y \subseteq \bigcup_{a < \omega} Y'_a \times \mu \) for each $\alpha < \text{cfx}$.

Proof. Assume the claim fails. Then one can take a separated $Z = \bigcup (b(y) : y \in \bigcup_{a < \omega} Y'_a) \cap Y$ of size $|\bigcup_{a < \omega} Y'_a| < \kappa$ by weak κ-separability. Take a $b' \in \prod_{a < \omega} b_a$, such that $\{b'(y) : y \in Z\}$ is disjoint. Then for every $y \in Z$, there is a $y \in \bigcup_{a < \omega} Y'_a$ such that $b'(y) \neq b(y)$. Then there are $a, \alpha < \omega$ such that $\alpha < \omega$ and $a \neq \alpha$. This contradicts the μ-cc-ness of $b(y)$.

Then the proof of the claim is complete.

Since for each $\alpha < \text{cfx}$ with $\mu < \kappa$, $|\bigcup_{a < \omega} Y'_a| = |\bigcup_{a < \omega} Y_a| = \kappa$, and $|Y'_a| = \kappa_{a+1}$, $|Y_a| - \kappa_{a+1} = |\bigcup_{a < \omega} Y'_a| = \kappa_{a+1}$ by the claim. Thus we can take a separated $Y_a' = Y_a - \bigcup (b(y) : y \in \bigcup_{a < \omega} Y'_a)$ of size κ_{a+1} for such α. Then it is straightforward to show that $Y = \bigcup \{Y_a' : \alpha < \text{cfx}, \mu < \kappa\}$ is desired. This completes the proof.

To end this paper, we shall study the relation between property $P(\text{cfx})$ and weak κ-CHW-ness.

Lemma 3.3. Let Y be a subspace of a space and κ an infinite cardinal. Then Y has property $P(\text{cfx})$ if and only if Y has property $P(\kappa)$.

Proof. Assume x is a singular cardinal (otherwise, this is clear). Fix a normal sequence $\langle x_a : a < \kappa \rangle$ of cardinals in κ. First assume Y has property $P(\text{cfx})$. We shall prove Y has property $P(\kappa)$. To show this, fix an arbitrary $m : Y \to \kappa$. Define $m' : Y \to \kappa$ by $m(y) = m(y) + a$ if $m(y) = x_a$ for each $y \in Y$. Then by property $P(\text{cfx})$, there is a $b \in \prod_{a < \omega} b_a$ such that $A_m = \{m'(y) : b(y) \vee b(y) \neq 0, y \neq 0\}$ is bounded in κ. Thus we can pick $a(y) < \alpha$ such that $a(y) \in A_m$ for each $y \in Y$. It is straightforward to show that $\{m'(y) : b(y) \vee b(y) \neq 0, y \neq 0\} = \kappa_{a+1} < \kappa$ for each $y \in Y$.

Next assume Y has property $P(\kappa)$. Fix an arbitrary $m : Y \to \kappa$. Define $m' : Y \to \kappa$ by $m'(y) = x_a$ for each $y \in Y$. Then by property $P(\kappa)$, there is a $b \in \prod_{a < \omega} b_a$ such that $A_m = \{m'(y) : b(y) \vee b(y) \neq 0, y \neq 0\}$ is bounded in κ for each $y \in Y$. Thus we can pick $a(y) < \alpha$ such that $a(y) \in A_m$. Then it is straightforward to show that $\{m'(y) : b(y) \vee b(y) \neq 0, y \neq 0\} = \kappa_{a+1} < \kappa$. The proof is complete.

Theorem 3.4. Let x be a singular cardinal, and let Y be a weakly $< \kappa$-separated closed discrete subspace of x having property $P(\kappa)$. Then there is a separated $Y' \subseteq Y$ of size x.

Proof. Fix a strictly increasing cofinal sequence $\langle x_a : a < \kappa \rangle$ of successor cardinals in x with $\kappa < x_\omega$ for example, this can be done by putting $x_0 = \lambda_1$ for each $a < \kappa$, where $\langle \lambda_a : a < \kappa \rangle$ is a normal sequence of cardinals in x with $\kappa < \lambda_\omega$. Fix a 1-1 onto map $f : x \to x$. By putting $Y_a = f^{-1}(x_a)$, $Y_a < \kappa$ is a partition of Y with $|Y_a| = x_a$ for each $a < \kappa$. Define $m' : Y \to \kappa$ by $m'(y) = a$ if $y \in Y_a$ for each $y \in Y$. Then by property $P(\kappa)$, there is a $b \in \prod_{a < \omega} b_a$ such that $\{m'(y) : b(y) \vee b(y) \neq 0, y \neq 0\} = \kappa_{a+1}$. Then we put $Y' = \{y \in Y : a(y) < \beta\}$. Since $Y' = \bigcup_{a < \omega} Y'_a$ and the size of Y' is a successor cardinal $> \kappa$, there is a $\beta < \text{cfx}$ such that $|Y'_\beta| = |Y'\beta|$. Then $\text{cfx} < \alpha$.

$C = \{a < \text{cfx} : \forall a < \alpha (\beta(a) < \alpha)\}$ is unbounded in cfx (in fact, C is cub in cfx if $\omega_1 < \text{cfx}$). By weak $< \kappa$-separability, choose a separated $Y'_\beta \subseteq Y'_\beta$ of size $|Y'_\beta| = |Y'\beta|$. Put $Y' = \bigcup_{a < \beta} Y'_a$. Take a $b \in \prod_{a < \omega} b_a$ such that $b(y) = b(y)$ for each $y \in Y'$ and $b(y) \neq b(y)$ otherwise. Since C is unbounded in cfx, the size of Y' is κ. We shall show $\{b(y) : y \in Y'\}$ separates Y'. To show this assume $\forall a < \alpha (\beta(a) < \alpha) \Rightarrow \forall a < \alpha (\beta(a) = \alpha)$. This completes the proof.

Finally, we shall show that weak $< \kappa$-separability can be removed from Theorem 3.4 if "singular" is replaced by "regular".

Theorem 3.5. Let x be a regular cardinal, and let Y be a closed discrete subspace of size x having property $P(\kappa)$. Then there is a separated $Y' \subseteq Y$ of size x.

Proof. Identify Y with x. By property $P(\kappa)$, there is a $b \in \prod_{a < \omega} b_a$ such that for each $a < x$, $\langle b(y) : b(y) \neq 0, y \neq 0\rangle$ is κ. Thus it is easy to show $C = \{a < x : \forall a < \alpha (\beta(a) < \alpha)\}$ is separable and of size x.

References

Department of Mathematics
FACULTY OF EDUCATION
Oita University
Daimaru Oita 870-11, Japan

Received 8 February 1990